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Cope with changing and 
highly personalized needs
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Continuously & quickly 
prioritize, decide what to build

Understand how software
is actually being used
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Cope with changing and 
highly personalized needs
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Understand how software
is actually being used

Understand frustrated 
users and win them back

Continuously & quickly 
prioritize, decide what to build
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Apple App Store

~1.4 million 
reviews

Google Play

~4.7 million 
reviews

Twitter
@SpotifyCares

~2.4 million 
tweets

Community 
Forum

~0.3 million posts
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[Pagano & Maalej  RE’13] [Guzman & Maalej RE‘14] [Maalej et al. REJ‘16] [Martens & Maalej EMSE‘19], [Martens & Maalej 
RE‘19], [Martens & Maalej Software‘19] [Stanick et al RE‘20], [Haering et al. ICSE‘21]…

How can we make user feedback 
useful for software teams?
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Continuously and systematically gather & 
process user data to inform RE/SE decisions

What user say What user do+
1 2

User Feedback Usage Data
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A Survey of App Store Analysis

for Software Engineering

William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang and Mark Harman

Abstract—App Store Analysis studies information about applications obtained from app stores. App stores provide a wealth of

information derived from users that would not exist had the applications been distributed via previous software deployment methods.

App Store Analysis combines this non-technical information with technical information to learn trends and behaviours within these

forms of software repositories. Findings from App Store Analysis have a direct and actionable impact on the software teams that

develop software for app stores, and have led to techniques for requirements engineering, release planning, software design, security

and testing. This survey describes and compares the areas of research that have been explored thus far, drawing out common

aspects, trends and directions future research should take to address open problems and challenges.

Index Terms—App Store, analysis, mining, API, feature, release planning, requirements engineering, reviews, security, ecosystem
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1 INTRODUCTION

App stores are a recent phenomenon: Apple’s App Store and
Google Play were launched in 2008, and since then both
have accumulated in excess of 1 million downloadable and
rateable apps. Google announced that there were 1.4 billion
activated Android devices in September 2015 [32]. Mobile
app stores are also extremely lucrative: the set of online
mobile app stores were projected to be worth a combined
25 billion USD in 2015 [152]. The success of app stores has
coincided with the mass consumer adoption of smartphone
devices. Smartphones existed prior to the launch of these
stores, but it was not until 2008 that users could truly exploit
their extra computing power and resulting versatility through
downloadable apps. In-house and even commercial applica-
tions had been available before the launch of app stores, but
app stores had some differences: availability, compatibility,
ease of use, variety, and user-submitted content.

It is the user-submitted content that fundamentally dis-
tinguishes app stores from the ad-hoc commercially available
applications that existed beforehand. As a result, software
engineering researchers have access to large numbers of
software applications together with customer feedback and
commercial performance data, unavailable in previous soft-
ware deployment mechanisms.

Furthermore, through readily available, downloadable
toolkits, users can write their own applications to make use
of a smart device’s hardware. They can subsequently publish
their software in the central app store for users to download
(and possibly pay for). This publication process is subject to
the store’s in-house review and certification policies, but in
general apps and app updates can be made available quickly
(typically within hours/days).

In this paper we provide a survey of literature that per-
forms “App Store Analysis for Software Engineering” between
2000 and November 27, 20151. Our contributions are as
follows: i) We provide formal definitions of apps, stores,
and technical and non-technical attributes, which are used

1. This paper is an updated version of an earlier technical report [157].

category

pricein-app purchases

descriptionname

size

rank of downloads

installs

what’s new

release date

version

platform version
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version control

issues

discussions number of ratings

rating

reviews

reviewers

Technical Attributes Non-technical Attributes

author

Fig. 1. Example attributes showing mined attributes that are strictly

technical (left) or non-technical (right), and attributes that may be in

either category (centre in box).

for App Store Analysis research. ii) We study the growth
patterns of App Store Analysis literature both overall, and in
each emergent subcategory. iii) We analyse the scale of app
samples used, and discuss how this is likely to progress in
the future. iv) We identify some of the key ideas published in
App Store Analysis, in addition to common aspects, trends
and future directions, to help readers to understand the
progression of the field overall.

1.1 Definitions
The following definitions help to clarify key components of
App Store Analysis literature. We used them to find all the
relevant literature.
App: An item of software that anyone with a suitable plat-
form can install without the need for technical expertise.
App Store: A collection of apps that provides, for each app,
at least one non-technical attribute.
Technical attribute: An attribute that can be obtained solely
from the software.
Non-technical attribute: An attribute that cannot be ob-
tained solely from the software.



Lots of continuous feedback with 
varying topics and quality
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Feedback
Feedback

Feedback

[Pagano & Maalej  RE’13] [Finkelstein et al. 2014] [Martens & Johann SEMotion’16]… 

1

E.g. in App Store users submit on average 
22 reviews per app per day

“Fire the idiot who designed this app!”

“Worst thing I did since I 
dated my ex is to use 

this app!”



78%

33%

31%

13%

Topics included in user feedback

Reviews including one or more of the topics

Rating
Praise, dispraise, promise

User Experience
Helpfulness, feature information

Requirements
Shortcoming, bug report, feature

request, improvement request

Community 
Recommendation, question, ref. 

to other apps or feedback

[Pagano & Maalej, RE‘13]
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Automated feedback classification

24

Bug reports Feature request User experience irrelevant

Sentiment analysis
Multiple scores, e.g. with SentiStrength 

Document classification
BoW,  With/out tf-idf, 
Embeddings / End-to-End 
Learning

Natural language processing
 Stop words, Lemmatization, 

Bigrams…

Review metadata
Star rating, length, tense, time

[Maalej & Nabil RE‘15] [Maalej et al. REJ‘16] [Dhinakaran et al. RE‘18] [Stanik et al. AIRE‘19] 

Top accuracy: 
80-95%



Feedback refers to multiple 
features with mixed sentiments

Sharing files is great, but the 

white background is horrible. 

Please put the background 

from before!

25[Guzman and Maalej, RE’14]

I love this app, it’s the best of its 

kind! the pdf viewer is great. But 

I hate that the files take so long 

to synch.

2
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want upload
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Automated extraction of features and 
summarization of the sentiments

26

J

L -3.9
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[Guzman and Maalej, RE’14]



User reviews

Sentiment scores 
for each review

Nouns, verbs 
and adjectives

Fine-grained
features

Feature-Sentiment
scores

High-level features
with sentiment score

POST, removal of stopwords 
and sentiment words, lemmatization

Sentiment Analysis Feature Extraction

Collocation finding (NLTK), 
synonyms (Wordnet)         Feature-Sentiment

estimation

        Topic Modeling (LDA)          and weighted average

Lexical sentiment analysis 
(SentiStrength)

Approach for feature extraction und 
sentiment analysis

27[Guzman & Maalej, RE’14]



Evaluation of the feature extraction
App Precision Recall F-Measure

Angrybird 0.368 0.321 0.343

Dropbox 0.603 0.473 0.531

Evernote 0.451 0.389 0.418

Tripadvisor 0.403 0.370 0.386

Picsart 0.815 0.661 0.730

Pinterest 0.658 0.592 0.623

Whatsapp 0.910 0.734 0.813

Average 0.601 0.506 0.549 28



Feedback

Deep Learning / Clustering Approach

29

@Company Hi I keep getting
calls from 01932 948747. 
Is this one of your numbers?

@Company Hi I keep getting
calls from 01932 948747. 
Is this one of your numbers?

@Company Hi I keep getting
calls from 01932 948747. 
Is this one of your numbers?

Text Representation Identifying Related 
Tweets

Preprocessing

Embedding 
SBERT

Dim. Reduction
UMAP

Clustering
HDBSCAN

Topics
AAA

AAC

AAB

…
[Stanik, Pietz, Maalej RE’21]

Hi I keep getting calls 
from PHONE. Is this one 

of your numbers?

Tokenization
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Requirements Intelligence Prototype

github.com/OpenreqEU



Developers “live in a parallel 
universe”

32
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DeepMatcher: automatically match 
issue reports with related user feedback
App 

reviews/ 
tweets

Automatic
bug report
classification

When I type into the 
search box’s it type’s 
random words on it’s 
own even when I 
delete the random 
words it adds words in, 
it’s not my prediction 
keyboard that’s 
messing up it only 
happens on Firefox

Feedback

I am able to type words 
in Firefox search bar 
but unable to type 
anything in the 
websites

Issue summary

GitHub Issues

Feedback 
embedding

Issue report 
embedding

Cosine
similarity 0.91

Relevant
match

Text
embeddings

[Haering, Stanik and Maalej ICSE’21]
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Text embedding

DistilBERT
tokenizer

Feedback
or

Issue report 
summary

DistilBERT Contextualized 
embeddings

SpaCy
tokenizer POS-tagger Nouns

Token
mapping

Embedding 
calculation

Text
embedding
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Evaluation Results

Firefox
(Bugzilla)

VLC Media 
Player (Trac)

Signal Messenger
(GitHub)

Nextcloud
(GitHub)

Hit ratio
(1 / 3 suggestions)

Mean average precision
(1 / 3 suggestions)

0.50 / 0.58

0.32 / 0.40

0.38 / 0.50

0.62 / 0.73

0.50 / 0.74

0.32 / 0.51

0.38 / 0.68

0.62 / 0.89

⌀ 0.46 / 0.71 0.45 / 0.55⌀
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Major findings

Manual analysis  
revealed 47 of 91 
potentially missing issue 
reports

• VLC has the largest 
language gap (lowest 
similarity)

• Nextcloud has the 
smallest language gap 
(highest similarity)

Strength of contextual 
embedding similarity

“synchronization” ≈ “upload”

“download” ≈ “save”
“consuming” ≈ “draining”

“update” ≈ “version”

Language gap leads 
to fewer matches

 In 35 of 167 relevant 
matches, users reported the 
bugs before the developers

[Haering, Stanik and Maalej ICSE’21]
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Use cases

Detect bugs earlier Enhance bug reports Find similar bugs

• Continuously 
monitor user 
feedback

• Discover and 
create bug reports

• Crowd-based severity 
level of bugs

• Extract context-
information from app 
reviews

• Find duplicated 
bugs

• Find recurring bugs



Negative feedback often lack 
relevant details for developers

39

My tweets are not shown. Pleasefix!!!

[Pagano & Maalej RE‘13]

4

App keep carshing after update :(



Ratings distribution across the topics

of feedback that includes at least one of the associated topics.
In our random sample, “rating” is by far the most frequent
theme with a frequency of over 77%. This corresponds to the
main intention behind application distribution platforms after
the distribution itself, which is giving other users indicators
for good applications and thus guaranteeing a high quality
among the applications. The second most frequent theme is
“user experience” which is predominant in nearly one third
of all feedback. We think that the high popularity of this
theme is interesting. It suggests that users tend to share their
experiences with other users and developers, presumably to
justify their statements about an application such as ratings,
recommendations, or dissuasion. The theme “requirements” is
predominant in around 30% of all feedback. This suggests that
despite the overall quite positive ratings, users often external-
ize requests for improvement. Last, the theme “community”
shows up in around 13% of the analyzed samples. We think
that this number is quite high, given the original purpose of
the AppStore. It might suggest that users naturally tend to
form communities, i.e. to react to each other, ask questions,
or publish possibly helpful information.

2) Feedback Patterns: We used the frequent itemset mining
algorithm ECLAT by Zaki [18] to identify co-occurrences
of topics in our data sample. Itemset mining [1] is a data
mining method for discovering relationships between different
variables based on their co-occurrence in databases. It takes
as input a database containing at least two different variables
as well as a parameter specifying the minimum support �
for the relationships to discover. The output includes frequent
itemsets, i.e. sets of values which co-occur in at least � percent
of the data. Our goal was to find sets of topics which co-
occur in our data set with a higher frequency than others.
Consequently, we built a database, which contained the topic
codes for each feedback in our random sample. We ran the
ECLAT algorithm with a minimum support of � = 0.01 and a
minimum pattern length of 2, which means that results should
only include itemsets with at least 2 topics.

Table V shows the 20 patterns, which we obtained with
these thresholds. The most frequent pattern is {helpfulness,
praise}, which is present in more than 20% of all feedback.
It describes the usefulness of an application together with a
positive rating. A concrete example in our data set is “Great
for uploading receipts on the go. Easier than reconciling on
the computer.” The second most frequent pattern {feature
information, praise}, which applies to over 14% of our random
sample is similar to the first, with the difference that it
describes more concretely a positive feature or functionality of
an application. A concrete example in our data set is “I love
that this app takes less than ten seconds to let you know where
your battery life is!!! I love it.” The third pattern {feature
request, praise} is predominant in nearly 5% of our random
sample. It illustrates positive feedback which also includes a
feature request. From such a pattern we would expect a lower
rating of the application than we would for instance from the
first pattern. To test this hypothesis, we investigate regularities
between feedback content and ratings in the following section.

Table V
FREQUENT TOPIC PATTERNS IN USER FEEDBACK. N = 1100. ASTERISKS

MARK PATTERNS WHICH ARE NOT CLOSED.

# pattern support Ø rating

p1 {helpfulness, praise} 22.18% 4.86

p2 {feature information, praise} 14.18% 4.83

p3 {feature request, praise} 4.64% 4.37

p4 {helpfulness, feature information, praise} 4.27% 4.87

p5 {helpfulness, feature information}
⇤

4.27% 4.87

p6 {praise, recommendation} 3.73% 4.90

p7 {other app, praise} 2.64% 4.79

p8 {praise, shortcoming} 2.64% 4.24

p9 {content request, praise} 2.27% 4.60

p10 {dissuasion, shortcoming} 1.82% 1.45

p11 {helpfulness, praise, recommendation} 1.73% 4.95

p12 {helpfulness, recommendation}
⇤

1.73% 4.95

p13 {bug report, dissuasion} 1.27% 1.21

p14 {bug report, shortcoming} 1.27% 1.57

p15 {bug report, praise} 1.18% 4.23

p16 {feature information, praise, recommendation} 1.09% 4.83

p17 {feature information, recommendation}
⇤

1.09% 4.83

p18 {improvement request, praise} 1.00% 4.18

p19 {feature information, other app, praise} 1.00% 4.91

p20 {feature information, other app}
⇤

1.00% 4.91

Table VI
DISTRIBUTION OF RATINGS ACROSS TOPICS IN USER FEEDBACK.

–

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1
corrective
forward
management
re-engineering
not classifiable1 STAR,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

2 STARS,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index
1

corrective
forward
management
re-engineering
not classifiable

3 STARS,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

4 STARS,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

5 STARS.

# topic Ø rating rating distribution

t8 recommendation 4.88

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t2 helpfulness 4.85

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t3 feature info. 4.81

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t17 howto 4.80

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t1 praise 4.78sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0
t11 content request 4.25

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

Ø sample rating 4.08
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C. Feedback Impact
1) Market Impact: To study the market impact of feedback,

we explored relationships between application ratings and
feedback topics as well as feedback patterns. We first tested
the independence of the identified topics and the final rating
of the application by the user with a number of �2-tests.
The results show that the topics “other app” (p=0.90), “other
feedback” (p=0.69), and “howto” (p=0.56) are independent
from the rating, while all others are not (p<0.05).

To further study the impact of specific feedback types on
the app rating, we calculated for each topic the distribution of
the associated ratings as well as the average rating across all
feedback where it occurs. Table VI illustrates the results and
relates them to the overall average rating of the feedback in our
random sample. The topic leading to the most positive reviews
is “recommendation”, followed by “helpfulness” and “feature

130
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Best case
Tweet includes complete and correct basic context 
information

“I can’t open playlists shared 
via WhatsApp on my iPhone XR, 
iOS 12.1.4, Spotify 8.4.61”

Platform

System Version
App Version

Device Model

41



Reality case
• Missing information
– Limited time, willingness, and 

ability of users

– Unstructured feedback processes

• Unreproducible issues 

• Manual clarification efforts

42[Martens and Maalej RE’19]



~40% of tweets by support teams to 
clarify missing information

43



I. Clarify in 
discussions 

with the users

44

II. Collect data 
implicitly (in 
background)



I. Bot-based approach to exchange 
context information

platform            device    app version       and system version

45[Martens and Maalej RE’19, Martens PhD thesis 2020]



Phase 1: Tweet classification
• Only reports which require context information to be understandable and 

reproducible (e.g. bug reports or enhancement requests)

46



Phase 2: Context extraction
• Example: “The app widget has died and is now a. rectangular black 

hole. Xperia xz3 running Android”

– Missing: App Version, System Version

47



Phase 3: Context clarification
• Chatbot requests missing context items from reporting user

• Example Reply: “Hey, help’s here! Can you let us know the app version 
you’re running, as well as the system version installed?”

48



Phase 4: Issue creation
• Once basic context items are present, these are used to create structured 

bug reports within issue trackers

49[Martens and Maalej RE’19, Martens PhD thesis 2020, Wolfinger et al. RE’22]



50

Continuously and systematically gather & 
process user data to inform RE/SE decisions

What user say What user do+
1 II

User Feedback Usage Data / Implicit Feedabck



Usage data is (partly) sensitive 
heterogeneous and include much noise

51

5

GPS

Motion detector

Gyroscope
Rotation and speed

Compass

Light sensor

Room temperature

Proximity sensor

Humidity sensor
Pulse sensor

Air pressure
[Hamka et al. I&T 2014]
Smartphone measurement

App usage sequence with 
neural networks

e2e1 V2 e2 e3 V3

[Jesdebodi & Maalej UbiComp‘2015]



Focus on user interaction context for non-
crashing bugs

53

V1 V2 V3 V4 V5e1 e2

e3

e4

e5

Bug: Tweets are
missing

e1V1 V2 e2 e3 V3 e4 V4 e5 V5

Bug t
User interaction trace:

Submit
Review

Capture
Context Data

User
Interaction
Context

Execution
Context

Server1

Isolate Bugs

Developers

3Crowd

Validate 
Reviews

2
Feedback

Error/Crash

[Gomez et al. Software 17]



Crowdsourced isolation of context 
information

56[Martens PhD Thesis 2020]



Isolated issue report in reviewkit

57



Bug reproduction experiments

58

• Does isolated context information help developers understand and 
reproduce non-crashing bugs?

• 14 iOS developers + 2 software testers

• 4 open-source iOS apps: DuckDuckGo, Firefox, Wikipedia, and Wordpress

• Real bug data from app reviews, issue trackers, and fixed bugs in 
unreleased commits of the apps

• Developers needed  30% to 70% less time and fewer interactions to 
understand and reproduce non-crashing bugs when context information is used

[Martens PhD Thesis 2020]



A granularity gap between 
observable and useful context data

59

6

Learning app features
and their usages from

context data



A large crowdsourcing study

62

Background interaction 
data collection

9 event types like: click, 
scroll, 

edit text, …

Session labeling

55 GB
Raw Data

170
Unique Apps

53
App Categories

5,815
Labeled Session

[Stanik et al. RE’20]



Data Modeling

64

Goals Data transformation

• Transform interaction 
events to vectors

• Respect privacy

• Keep it simple

We excluded:

• Context data

• Artifact data

• Location

We included:

• 9 interaction events

• The app name

1. Extract 
app sessions

AS1

AS2

2. Create ML 
feature vectors

AS1

AS2

ASn

E1 E1 E10

E1 E1 E10

E1 E1 E10

. . .

. . .

. . .

E1 E1 E10

E1 E1 E10

E1 E1 E10

E1 E2 E10

E1 E2 E10

E1 E2 E10

. . .



Data modeling – Data transformation

65

Pr
op

or
tio

na
l i

nt
er

ac
tio

n
ev

en
t o

cc
ur

re
nc

e

App Interaction Type App Feature

Facebook 
Messenger Send Message

Click View
Click View
Scroll View
Edit Text
Click View

ML Feature 
Vector:

0.
6

0.
2

0.
0

0.
2

0.
0

0.
0

0.
0

0.
0

0.
0

[Stanik et al. RE’20]



How we trained the model

Within-apps analysis

67

App App feature F1
FB Messenger Send message .88

Play game .80
Read message .73

Goal

Learn all app feature usages in 
one app.

We can learn app features 
from interaction events.

ML feature significance hints 
toward understandable decisions.



Between-apps analysis

68

App feature F1 Part of n 
apps

Listen to music .86 4
Delete .83 4
Play game .75 10

How we trained the model

Goal
Learn all app feature usages 

across apps.

Promising results for introducing 
a system-wide ML model.

User interactions across apps 
are alike for the similar 
features.



Understanding app and feature usage

69[Stanik PhD 2020]



Outline of my talk

User feedback

Motivation1

70

Usage data

Summary and future directions4



User feedback and usage data analytics tap 
the full potential of DevOps

71



Impact on RE/SE decision making

72

How: Shift from intuition and
experience to data-driven
explainable decisions

Who: involve more
stakeholders and
users

What: Features can evolve and die 

When: real time 
and even proactive

[Maalej et al Software 2016]



User data can make modern software 
engineering a “little less hard”

76

„The hardest single part 
of building a software 
system is deciding 

precisely what to build.”

Fred Brooks 

(Turing Award Winner) 1987 

7
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Mining [Links in] 
Issue Trackers



QTCREATORBUG-21833

Depends on

QTBUG-73045 QTCREATORBUG-21198

QTQAINFRA-3614

Depends 
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Depends 
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Depends on

QTCREATORBUG-22249

QTCREATORBUG-22400
QTBUG-74988

QTBUG-72615

QTBUG-72002

QTBUG-
74923

Re
la

te
d

QTCREATORBUG-21068
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⬢ 16 JIRA Repositories

⬢ 2.7M Issues

⬢ 940K Links

⬢ 8.5M Comments

⬢ 1.276 Projects

Repository Year #Issues #Links #Comments #Projects
Apache 2000 1,014,637 264,076 4,608,221 646

Hyperledger 2016 28,146 16,846 44,590 32

IntelDAOS 2016 9,474 2,667 32,203 2

JFrog 2006 15,535 3,303 13,152 10

Jira 2002 274,545 110,507 779,104 30

JiraEcosystem 2004 14,950 12,422 68,387 101

MariaDB 2009 31,229 14,906 - 11

Mindville 2015 2,134 46 - 7

Mojang 2012 420,819 215,821 933,348 8

MongoDB 2009 137,172 92,362 368,976 27

Qt 2003 148,579 41,402 41,426 21

RedHat 2001 353,000 127,721 859,880 241

Sakai 2004 50,550 20,292 180,191 53

SecondLife 2007 1,867 674 15,728 2

Sonatype 2008 87,284 4,975 339,127 5

Spring 2003 69,156 14,716 186,077 80

Total - 2,659,077 942,736 8,470,410 1,276

Mean 2007.2 166,192.30 58,921.00 605,029.30 79.8

Median 2006.5 59,853.00 15,876.00 183,134.00 24

St. Dev 5.3 261,128.40 82,003.70 1,197,962.10 162.6

Dataset

Montgomery, Lueders and Maalej “An Alternative Issue Tracking Dataset of Public Jira Repositories”, MSR2022 82



Understand
How do stakeholders use linking 
in their issue-tracking system?

Predict
How can we reliably predict links 
and their types?

Apply
How can we make this viable for 
practice?

83
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90 unique link types

33 cleaned link types

COMMON LINK TYPESLüders, Buraffa and Maalej, “Beyond duplicates: towards 
understanding and predicting link types in issue tracking systems”, 
MSR2022 84



Repositories 
differ in the 
link type 
shares

Repository Rel. Dup. Sub. Clo. Blo. Dep. Epic Spl. Inc. Bon. Cau. Cov.
Apache 28.3 10.1 32.8 1.7 6.1 5.1 4.9 0.0 4.1 0.0 1.2 94.3

Hyperledger 17.2 3.9 27.6 2.9 8.2- 39.6 0.5- 0.0- 100.0

IntelDAOS 39.3 9.7 10.5 8.2 25.6- - - - - - 93.3

JFrog 27.4 19.9 36.0 0.8- 7.9- - 1.4- - 93.5

Jira 63.8 21.7 2.5 2.9 1.0 0.2- 0.2 2.5 0.2 1.8 96.6

JiraEcosystem 22.9 15.3 20.0 1.8 5.9 1.1 24.3 1.2 1.8 0.9 3.9 99.1

MariaDB 51.1 9.4 6.1- 13.0- 6.4 0.2 7.9- 6.0 100.0

Mindville 43.2 38.6- 15.9 2.3- - - - - - 100.0

Mojang 9.5 90.0- 0.3 0.1- - - - 0.1- 100.0

MongoDB 39.9 13.5 1.4 0.3- 22.9 15.9 1.2- - 1.7 96.7

Qt 22.4 10.6 24.4 0.1 0.0 15.6 13.5 6.7- - - 93.4

RedHat 25.9 4.9 20.8 15.4 15.2- - 0.1 8.9- 2.6 94.0

Sakai 49.0 9.3 17.0 4.8 0.0 13.0- - 6.7 0.0- 100.0

SecondLife 29.5- 49.8 7.6- 4.4- - 2.2- - 93.5

Sonatype 40.0 7.7 30.1- - 3.6 0.2 0.1- 8.1 5.3 95.0

Spring 47.7 12.1 13.4 0.1- 12.1 11.3- - - - 96.7

Mean 34.8 18.4 20.9 4.5 7.0 8.6 14.5 1.1 4.4 1.3 3.2 96.6

Median 34.4 10.6 20.4 2.4 5.9 6.5 12.4 0.2 3.3 0.1 2.6 96.7

St.Dev 14.3 21.5 13.8 5.4 8.1 7.2 12.5 2.1 3.0 3.0 1.9 2.8

Lüders, Pietz and Maalej, “Automated Detection of Typed Links in Issue Trackers”, RE2022 86



Link Prediction Models

Title

Description

Title

Description

Is
su

e 
1

Is
su

e 
2

Model
(CNN, LSTM, 

or BERT)

Single Channel Architecture 
(separate encoding)

He et al., “Duplicate Bug Report Detection Using Dual-Channel Convolutional Neural Networks.”. ICPC2020

Title

Description

Title

Description

Is
su

e 
1

Is
su

e 
2

Dual Channel Architecture 
(joint encoding)

Model
(CNN, LSTM, 

or BERT)

Issue 1 Issue 2

Model

Output

Duplicate or Non-Duplicate

Description

Title

Properties

88



Duplicate Detection Set-Up 

⬡ Creation of Non-Links by randomly selecting pairs that do not have resolution 
Duplicate*

⬡ How robust are traditional trained SotA models when presented with other link types?

RelateDepend Sub-TaskDuplicate Epic Split Replace Test Clone BlockQt Non-Link

*Lazar et al. “Generating Duplicate Bug Datasets”. MSR2014

Training

Testing

89



Can State-of-
the-Art models 
reliably detect 
other link types 
as Non-
Duplicates? 

No, they can’t.

Lüders et al., “Beyond duplicates: towards understanding and 
predicting link types in issue tracking systems”, MSR2022
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Link Type Detection Set-Up

Relate Depend Sub-Task Duplicate Epic Split Replace Test Clone Block

Prediction

In-Depth Analysis

Qt

Non-Link

Deep Learning
Ø CNN with Word2Vec/FastText
Ø BERT & distillBERT

Traditional Models
Ø SVM
Ø Random Forest

BERT outperforms 
DCCNN and SCCNN

91
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Significant 
Correlations

Characteristic Correlation
Basic Coverage                   0.85

Link Types

Common Link Type Coverage                      0.52

Duplicates 0.55

Subtasks -0.75

Structure

% Isolated Issues                -0.79

Assortativity 0.52

Median Comp. Size               0.60

Mean Comp. Size                 0.71

St. Dev. Comp. Size                0.70

Communication Comment Link Correlation     0.64

Collaboration

Links Per Project            0.62

Issues Per Maintainer        0.57

Links Per Maintainer         0.62

Issues Created Per Maintainer 0.60

Mean Link Edits               0.62

Median Link Edits             0.58

Links Edited Per Project      0.63

Quality/Smells

Duplicate Issues without Links      -0.70

Duplicate Issues without 

Duplicate Links    -0.62

Ref. Comment without Link        0.84

94C-M Lueders, T Pietz, W Maalej: “On understanding and predicting issue links” REJ 2023



Link Type 
Analysis

Relate 
seems to be 
problematic.
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Prediction Improvement Strategies

Repository Baseline No Relate Only Link Types Categories Only Linked
Apache 0.55 0.62 0.08 0.62 0.07 0.66 0.11 0.97 0.42
Hyperledger 0.77 0.79 0.02 0.80 0.03 0.71 -0.06 0.95 0.18
IntelDAOS 0.66 0.75 0.09 0.79 0.13 0.68 0.02 0.89 0.23
JFrog 0.46 0.55 0.09 0.49 0.03 0.55 0.09 0.93 0.47
Jira 0.74 0.80 0.06 0.78 0.04 0.72 -0.02 0.98 0.24
JiraEcosystem 0.53 0.58 0.05 0.57 0.04 0.63 0.10 0.94 0.41
MariaDB 0.72 0.82 0.10 0.79 0.07 0.73 0.01 0.93 0.21
Mojang 0.88 0.98 0.10 - - 0.88 +/-0 0.99 0.11
MongoDB 0.72 0.80 0.08 0.82 0.10 0.73 0.01 0.95 0.23
Qt 0.67 0.75 0.08 0.74 0.07 0.63 -0.04 0.96 0.29
RedHat 0.64 0.70 0.06 0.69 0.05 0.72 0.08 0.96 0.32
Sakai 0.62 0.74 0.12 0.73 0.11 0.66 0.04 0.94 0.32
SecondLife 0.50 0.36 -0.14 0.41 -0.09 0.57 0.07 0.90 0.40
Sonatype 0.41 0.58 0.17 0.71 0.30 0.53 0.12 0.95 0.55
Spring 0.63 0.73 0.10 0.73 0.10 0.12 -0.41 0.94 0.31
Mean 0.63 0.70 0.07 0.69 0.08 0.63 0.01 0.95 0.31
Median 0.64 0.74 0.08 0.73 0.07 0.66 0.02 0.95 0.31
St. Dev 0.13 0.15 0.07 0.12 0.08 0.17 0.13 0.03 0.12

96C-M Lueders, T Pietz, W Maalej: “On understanding and predicting issue links” REJ 2023



Read more… 

99

https://arxiv.org/abs/2206.07182 

https://link.springer.com/article/10.1007/s00766-023-00406-x 

Extended version:

https://arxiv.org/abs/2206.07182
https://link.springer.com/article/10.1007/s00766-023-00406-x

