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How Can Software Engineering 
solve the “AI Dilemma”?
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“Only 53% of AI 
prototypes 
actually make it 
into production.”
[Gartner]
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Many AI models 
fail after deployment
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• Acceptance / trust issues
• Bad integration into user’s 

workflows 
• Accuracy issues because 

context or environment not 
controllable anymore

• Unrealistic assumptions 
about the domain

• Legal, technical or social 
requirements not met
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Some problems are 
emerging simply 
due to the lack of 
RE/SE skills!

This is rather ”easy” to solve!
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• 1960’s: Symbolic AI / Reasoning / Logic Programming

• 1980’s: Rule-based Systems / Blackboard Patterns

• 1990’s Reasoning in RE / (Goal) Modeling 

• Last decade: Mega Machine Learning (ML) 
trend through availability of data:

• SE has “ridden” this mega trend 

• Open-source data ⇢ Mining Software Repos

• RecSys in software engineering from 2010+ 

• NLP for SE (now also Computer Vision for SE)

• 2022: CAIN Conference @ ICSE
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SE & AI: Long co-existence 
& co-development



While “surfing 
the ML wave”, 
we neglected our 
core strengths to 
help AI!
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AI-based systems are different

• Design system (behavior) and “data 
scheme”
Users will “feed” system with data

• Here’s the data, build a system 
around it! It shall tolerate and adapt 
to user “errors”; but no bias please!

Now…Then…

• Observable errors are debug'able 
through decision paths

• ”I trust you know what’s reasonable/ 
feasible for my requirements”

• ”We need an AI for this. 
Can’t we do all this with ChatGPT”

• Black-boxed tacit errors 
Unclear/ untraceable decision logic
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TSE’19 ICSE’22

Selection of recent general studies about 
engineering ML systems
ICSE’19

“Requirements are more 
uncertain for ML systems than 

non-ML systems”

~“the product team must involve the 
data science team in the negotiation of 

requirements to avoid unrealistic 
expectations”

“The randomness… complicates testing: random 
data, random observation order, random 

initialization for weights, random batches… 
random optimizations in different … libraries”

“test case generation for ML 
systems is more challenging, 

compared to non-ML systems ”
25



Tailoring 
Software and 
Requirement  
Engineering 
for AI
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1. Move from 
correct to  
acceptable 
requirements



Acceptable AI requirements

28

• Instead of “as high as possible”
• Depending on domain, use case, 

requirements, release plan…
• Qualitative and quantitative 

failure analysis 
• What types or failures/ rates are 

acceptable, when, why, for 
whom…?



Metamodel for discussing and specifying 
acceptable quality requirements
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AI Quality
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Negotiate and specify 
standard levels 
instead of values
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• Deal with technical dept 
and uncertainty

• Allow comparison
• Manage expectationFrom Wikipedia



2. Prototyping is different in AI
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Prototyping in AI ≈ Computational Notebooks



> Data- + User- 
Centered 
Prototyping

37

• Design AI with human (users) in the loop!
• E.g. using prediction uncertainty

[Maalej & Pagano, On the Socialness of Software, DASC’11] [Andersen and Maalej, ACL 22]



Moderated classifiers as deployment pattern

and compare their initial and post-moderation F1-
scores and evaluate their suitability.

The remainder of the paper is structured as fol-
lows: Section 2 introduces our moderation frame-
work and outlines the uncertainty estimation tech-
niques to decide when to moderate. Then, Section
3 describes the setting to evaluate our framework.
In Section 4 we report on the experiment results
and discuss the implications and limitations of our
findings in Section 5. Finally, Section 6 discusses
related work and Section 7 concludes the paper.

2 Moderating NN Classifiers

2.1 Moderated Classifiers

In order to prevent low confident classifications
and increase the accuracy of NN text classifiers,
we propose the concept of a moderated classifier.
A moderated classifier combines an artificial clas-
sifier with a human oracle. The oracle steers the
decision-making in case the machine is unable to
provide a reliable outcome. The level of reliability
is measured based on the predictive uncertainty of
the artificial classifier.

Misclassifications occur when the inferred label
yi of an input xi does not correspond to the ac-
tual true label ŷi and thus ŷi != yi holds. If only
classifications made under a high uncertainty are
delegated to a human oracle, the number of mis-
classifications can be significantly reduced while
keeping manual workloads low.

A moderated classifier fω
mod

is created from an
artificial classifier fω as follows:

fω
mod(x) :=

{

fω(x) if u[y|x,ω] ≤ ϑu

oH(x) else
(1)

where oH : X → Y represents the human ora-
cle, u[y|x,ω] ∈ U ⊂ R+ an uncertainty measure
of fω(x) and ω the learned parameters of f . If
the uncertainty is below a threshold ϑu ∈ U , the
inferred label y = fω(x) is considered to be reli-
able and will be kept. If the threshold is breached
(u[y|x,ω] > ϑu), a human oracle oH is consulted
and his or her decision is deemed correct. The ora-
cle can also include a group of moderators to share
the workload or increase accuracy in the case of
contradictions. Conflicts could be solved following
inter-annotator agreement approaches (Artstein and
Poesio, 2008). In this paper, we focus on single
human moderation.

Figure 1: Saturation detection for manual moderation.
Saturation is reached at the highest point of the differ-
ence between the expected and random accuracy curve.

2.2 Determining Uncertainty Thresholds

The efficient use of (the usually limited) human
resources is essential for semi-automated classifi-
cation approaches. The moderation of text classifi-
cation can be particularly time-consuming and cost
intensive, as moderators might need to carefully
read and think about the text. It is thus important
to limit the moderation effort to a reasonable and
worthwhile amount. Limiting the moderation ef-
fort is a trade-off between saving resources and
increasing accuracy.

We suggest a saturation-based moderation
strategy to determine the uncertainty threshold ϑu.
As we assume misclassifications to occur more
frequently with high uncertainty scores, the mod-
eration is expected to become less efficient with
an increasing moderation load. At some point, sig-
nificant improvements may not be achieved and
further efforts have a decreasing impact in terms
of increasing accuracy. A saturation-based strat-
egy seeks to limit the moderation up to a point,
where the expected accuracy improvement turns
and becomes less rewarding.

Figure 1 shows a hypothetical saturation curve
for a moderated classifier. The blue curve repre-
sents the expected held-out accuracy of our frame-
work when a certain amount of the most uncertain
predictions are manually moderated. The accu-
racy of a moderated classifier is based on (a) the
manual classification and (b) the accuracy of the
machine classifying the instances which are not
passed to a human. An accuracy of 100% is reached
when 100% of the instances are correctly decided
manually. The plotted accuracy curve is of shape
f(x) = a(1−e−bx). The black line shows the mod-
eration accuracy when instances are randomly sam-
pled for moderation. A random moderation selects

[Andersen and Maalej, ACL 22]

Human oracle  

Example of Human (Users) in the Loop:

Uncertainty 
measure

Threshold based 
on a moderation 
strategy
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3. RE += Data 
Requirements 
Engineering

41



From model-
centric to 
data-centric AI

42

• Data processes
• Data smells
• Data labeling
• Quality of labels &  

labelers
• Quality of single 

labels vs the entire 
dataset

Quality Data 
instead of 
Big Data



Embedding 
responsible AI 
terminology into 
the engineering 
workflows
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5. TRADEOFF 
ANALYSIS FOR 
RESPONSIBLE  AI

47



Tradeoff analysis for AI systems

48

Fairness PrivacyPrediction AccuracyExplainability

Given name Facial imageDecision Tree Transformer

Data Model

AND

OR OR

+5 to 6%+2 to 4%
+9 to 10%

-+ -
- +

+

Sustainability
-+

[Strubell et al ACL’19] [Chazette et al. RE’21]



6. Requirements as 
foundation for AI testing 
and quality assurance
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Software 
Testing  

50

Model 
Testing  



The interplay between black-box
 and white-box testing



Two black-box testing ideas

TSE’21ACL’20

52
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Labels: positive, negative, or neutral; INV: same pred. (INV) after removals/ additions; DIR: sentiment should not decrease ( Ò ) or increase ( Ó )

Test TYPE and Description
Failure Rate (%)

Example test cases & expected behavior

� � � RoB

Vo
ca

b.
+

PO
S

MFT: Short sentences with neu-
tral adjectives and nouns 0.0 7.6 4.8 94.6 81.8

The company is Australian. neutral
That is a private aircraft. neutral

MFT: Short sentences with
sentiment-laden adjectives 4.0 15.0 2.8 0.0 0.2

That cabin crew is extraordinary. pos
I despised that aircraft. neg

INV: Replace neutral words
with other neutral words 9.4 16.2 12.4 10.2 10.2

@Virgin should I be concerned that ) when I’m about to fly ... INV
@united the ) our nightmare continues... INV

DIR: Add positive phrases, fails
if sent. goes down by ° 0.1 12.6 12.4 1.4 0.2 10.2

@SouthwestAir Great trip on 2672 yesterday... You are extraordinary. Ò
@AmericanAir AA45 ... JFK to LAS. You are brilliant. Ò

DIR: Add negative phrases,
fails if sent. goes up by ° 0.1 0.8 34.6 5.0 0.0 13.2

@USAirways your service sucks. You are lame. Ó
@JetBlue all day. I abhor you. Ó

Robust.

INV: Add randomly generated
URLs and handles to tweets 9.6 13.4 24.8 11.4 7.4

@JetBlue that selfie was extreme. @pi9QDK INV
@united stuck because sta↵ took a break? Not happy 1K.... https://t.co/PWK1jb INV

INV: Swap one character with
its neighbor (typo) 5.6 10.2 10.4 5.2 3.8

@JetBlue ) @JeBtlue I cri INV
@SouthwestAir no thanks ) thakns INV

N
ER

INV: Switching locations
should not change predictions 7.0 20.8 14.8 7.6 6.4

@JetBlue I want you guys to be the first to fly to # Cuba ) Canada... INV
@VirginAmerica I miss the #nerdbird in San Jose ) Denver INV

INV: Switching person names
should not change predictions 2.4 15.1 9.1 6.6 2.4

...Airport agents were horrendous. Sharon ) Erin was your saviour INV
@united 8602947, Jon ) Sean at http://t.co/58tuTgli0D, thanks. INV

Temporal MFT: Sentiment change over
time, present should prevail 41.0 36.6 42.2 18.8 11.0

I used to hate this airline, although now I like it. pos
In the past I thought this airline was perfect, now I think it is creepy. neg

N
eg

at
io

n

MFT: Negated negative should
be positive or neutral 18.8 54.2 29.4 13.2 2.6

The food is not poor. pos or neutral
It isn’t a lousy customer service. pos or neutral

MFT: Negated neutral should
still be neutral 40.4 39.6 74.2 98.4 95.4

This aircraft is not private. neutral
This is not an international flight. neutral

MFT: Negation of negative at
the end, should be pos. or neut. 100.0 90.4 100.0 84.8 7.2

I thought the plane would be awful, but it wasn’t. pos or neutral
I thought I would dislike that plane, but I didn’t. pos or neutral

MFT: Negated positive with
neutral content in the middle 98.4 100.0 100.0 74.0 30.2

I wouldn’t say, given it’s a Tuesday, that this pilot was great. neg
I don’t think, given my history with airplanes, that this is an amazing sta↵. neg

SR
L

MFT: Author sentiment is more
important than of others 45.4 62.4 68.0 38.8 30.0

Some people think you are excellent, but I think you are nasty. neg
Some people hate you, but I think you are exceptional. pos

MFT: Parsing sentiment in
(question, “yes”) form 9.0 57.6 20.8 3.6 3.0

Do I think that airline was exceptional? Yes. neg
Do I think that is an awkward customer service? Yes. neg

MFT: Parsing sentiment in
(question, “no”) form 96.8 90.8 81.6 55.4 54.8

Do I think the pilot was fantastic? No. neg
Do I think this company is bad? No. pos or neutral

Table 1: A selection of tests for sentiment analysis. All examples (right) are failures of at least one model.

placeholder (e.g. positive verbs for {POS_VERB}).
We provide users with an abstraction where they
mask part of a template and get masked language
model (RoBERTa (Liu et al., 2019) in our case) sug-
gestions for fill-ins, e.g. “I really {mask} the
flight.” yields {enjoyed, liked, loved, regret,
...}, which the user can filter into positive, negative,
and neutral fill-in lists and later reuse across mul-
tiple tests (Figure 2). Sometimes RoBERTa sug-
gestions can be used without filtering, e.g. “This
is a good {mask}” yields multiple nouns that
don’t need filtering. They can also be used in per-
turbations, e.g. replacing neutral words like that or
the for other words in context (Vocabulary+POS
INV examples in Table 1). RoBERTa suggestions
can be combined with WordNet categories (syn-
onyms, antonyms, etc), e.g. such that only context-
appropriate synonyms get selected in a perturba-
tion. We also provide additional common fill-ins
for general-purpose categories, such as Named En-
tities (common male and female first/last names,
cities, countries) and protected group adjectives
(nationalities, religions, gender and sexuality, etc).

Open source We release an implementation of
CheckList at https://github.com/marcotcr/
checklist. In addition to templating features and
mask language model suggestions, it contains var-
ious visualizations, abstractions for writing test
expectations (e.g. monotonicity) and perturbations,
saving/sharing tests and test suites such that tests
can be reused with di↵erent models and by di↵erent
teams, and general-purpose perturbations such as
char swaps (simulating typos), contractions, name
and location changes (for NER tests), etc.

3 Testing SOTA models with CheckList

We CheckList the following commercial Sentiment
analysis models via their paid APIs2: Microsoft’s
Text Analytics (�), Google Cloud’s Natural Lan-
guage (�), and Amazon’s Comprehend (�). We
also CheckList BERT-base ( ) and RoBERTa-
base (RoB) (Liu et al., 2019) finetuned on SST-23

(acc: 92.7% and 94.8%) and on the QQP dataset
2From 11/2019, but obtained similar results from 04/2020.
3Predictions with probability of positive sentiment in the

p1{3, 2{3q range are considered neutral.
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understand when modifiers di↵erentiate questions,
e.g. accredited in (“Is John a teacher?”, “Is John an
accredited teacher?”). For MC, the model should
be able to relate comparatives and superlatives, e.g.
(Context: “Mary is smarter than John.”, Q: “Who
is the smartest kid?”, A: “Mary”).

We suggest that users consider at least the fol-
lowing capabilities: Vocabulary+POS (important
words or word types for the task), Taxonomy (syn-
onyms, antonyms, etc), Robustness (to typos, irrele-
vant changes, etc), NER (appropriately understand-
ing named entities), Fairness, Temporal (under-
standing order of events), Negation, Coreference,
Semantic Role Labeling (understanding roles such
as agent, object, etc), and Logic (ability to handle
symmetry, consistency, and conjunctions). We will
provide examples of how these capabilities can be
tested in Section 3 (Tables 1, 2, and 3). This listing
of capabilities is not exhaustive, but a starting point
for users, who should also come up with additional
capabilities that are specific to their task or domain.

2.2 Test Types

We prompt users to evaluate each capability with
three di↵erent test types (when possible): Mini-
mum Functionality tests, Invariance, and Direc-
tional Expectation tests (the columns in the matrix).

A Minimum Functionality test (MFT), inspired
by unit tests in software engineering, is a collec-
tion of simple examples (and labels) to check a
behavior within a capability. MFTs are similar to
creating small and focused testing datasets, and are
particularly useful for detecting when models use
shortcuts to handle complex inputs without actually
mastering the capability. The Vocabulary+POS ex-
amples in the previous section are all MFTs.

We also introduce two additional test types in-
spired by software metamorphic tests (Segura et al.,
2016). An Invariance test (INV) is when we apply
label-preserving perturbations to inputs and expect
the model prediction to remain the same. Di↵er-
ent perturbation functions are needed for di↵erent
capabilities, e.g. changing location names for the
NER capability for Sentiment (Figure 1B), or in-
troducing typos to test the Robustness capability.
A Directional Expectation test (DIR) is similar,
except that the label is expected to change in a cer-
tain way. For example, we expect that sentiment
will not become more positive if we add “You are
lame.” to the end of tweets directed at an airline
(Figure 1C). The expectation may also be a target

label, e.g. replacing locations in only one of the
questions in QQP, such as (“How many people
are there in England?”, “What is the population
of England ) Turkey?”), ensures that the questions
are not duplicates. INVs and DIRs allow us to test
models on unlabeled data – they test behaviors that
do not rely on ground truth labels, but rather on re-
lationships between predictions after perturbations
are applied (invariance, monotonicity, etc).

2.3 Generating Test Cases at Scale

Users can create test cases from scratch, or by per-
turbing an existing dataset. Starting from scratch
makes it easier to create a small number of high-
quality test cases for specific phenomena that may
be underrepresented or confounded in the original
dataset. Writing from scratch, however, requires
significant creativity and e↵ort, often leading to
tests that have low coverage or are expensive and
time-consuming to produce. Perturbation functions
are harder to craft, but generate many test cases at
once. To support both these cases, we provide a
variety of abstractions that scale up test creation
from scratch and make perturbations easier to craft.
Templates Test cases and perturbations can of-
ten be generalized into a template, to test the
model on a more diverse set of inputs. In Fig-
ure 1 we generalized “I didn’t love the food.” with
the template “I {NEGATION} {POS_VERB} the
{THING}.”, where {NEGATION} = {didn’t, can’t
say I, ...}, {POS_VERB} = {love, like, ...}, {THING}
= {food, flight, service, ...}, and generated all test
cases with a Cartesian product. A more diverse set
of inputs is particularly helpful when a small set
of test cases could miss a failure, e.g. if a model
works for some forms of negation but not others.
Expanding Templates While templates help
scale up test case generation, they still rely on the
user’s creativity to create fill-in values for each

Figure 2: Templating with masked language models.
“I really {mask} the flight.” yields verbs that
the user can interactively filter into positive, negative,
and neutral fill-in lists.

Checklist capabilities of models based 
on templates and human creativity

53[Tulio Ribeiro et al., ACL’20]

How to get and 
prioritize the 
capabilities?

Humans in the loop



Metamorphic testing for NLP models

towards a demographic characteristic, such as gender [30],
[32]. For example, the sentiment predicted by an SA system
may differ for a piece of text after a perturbation in the text
to replace words that describe a demographic characteristic,
e.g., changing “I am an Asian man” into “I am a black
woman” may cause a predicted sentiment to change from
positive to negative, therefore, showing that the SA system
reflects demographic bias.

As SA systems are used in many domains, including
sensitive areas such as healthcare, and may be used for
business analytics to make critical business decisions, it is
important to detect biases in these systems. Early discovery
of these biases will help to prevent the perpetuation of
human biases, and aid to prevent real-world harms. To do
so, SA systems should be tested for fairness (i.e., absence
of unintended bias), as existing studies suggest [5], [30].
Prior studies have relied on a small number of templates to
generate short texts that may uncover bias. Specifically for
SA systems, Kiritchenko and Mohammad [30] propose EEC,
which generates test cases produced from 11 handcrafted
templates. These test cases help to detect if an SA system
predicts a different sentiment given two texts that differ only
in a single word associated with a different gender or race.

These test cases are limited in number and may not
adequately uncover biases in a system. Very recently, SA
researchers [9] have noted that “the templates utilized to
create the examples might be too simplistic” and identify-
ing such biases “might be relatively easy”. They suggest
that “Future work should design more complex cases that
cover a wider range of scenarios.” In this work, our goal
is to address these limitations of handcrafted templates by
automatically generating test cases to uncover biases.

We propose BiasFinder, a framework that automatically
generates test cases to discover biased predictions in SA sys-
tems. BiasFinder automatically identifies and curates suit-
able texts in a large corpus of reviews, and transforms these
texts into templates. Each template can be used to produce a
large number of mutant texts, by filling in placeholders with
concrete values associated with a class (e.g., male vs. female)
given a demographic characteristic (e.g., gender). Using these
mutant texts, BiasFinder then runs the SA system under test,
checking if it predicts the same sentiment for two mutants
associated with a different class (e.g. male vs. female) of the
given characteristic (e.g. gender). A pair of such mutants are
related through a metamorphic relation where they share
the same predicted sentiment from a fair SA system.

The key feature of BiasFinder is its automatic identifi-
cation and transformation of suitable text in a corpus to a
template. This allows BiasFinder to produce a large number
of test cases that are varied and realistic compared to pre-
vious approaches. Identifying suitable texts to transform to
a template is challenging. For instance, all references to an
entity should be replaced in a consistent way that does not
make the text (e.g., a paragraph) incoherent. An example is
shown in Figure 1, in which all expressions referring to an
entity (“Jake”) need to be updated. The name “Jake” and
its references (bolded and underlined) need to be updated
together for the text to remain coherent. BiasFinder ad-
dresses this challenge through the use of Natural Language
Processing (NLP) techniques, such as coreference resolution
and named entity recognition, to find all words that require

modification.

Original Text
It seems that Jake with all his knowledge of the great
outdoors didn’t realize the danger! He enters a mine shaft
that’s leaking with dangerous gas!
Mutated Text
It seems that Julia with all her knowledge of the great
outdoors didn’t realize the danger! She enters a mine shaft
that’s leaking with dangerous gas!

Fig. 1. An example of how all references to the same entity has to
be considered when mutating a text to be associated with a different
gender.

Our framework, BiasFinder, can be instantiated to iden-
tify different kinds of bias. In this work, we show how
BiasFinder can be instantiated to uncover bias in three
different demographic characteristics: gender, occupation,
and country-of-origin. We obtained 10 SA models by fine-
tuning 5 Transformer-based models on two popular senti-
ment analysis datasets: the IMDB movie review and Twitter
Sentiment140 (the IMDB and Twitter datasets for short in the
following parts). We compare BiasFinder with two baselines
(EEC [30] and MT-NLP [31]) on the two datasets. We eval-
uate the effectiveness of BiasFinder in uncovering biases by
measuring the number of bias-uncovering test cases (BTCs)
found. A BTC is a pair of two mutants, which only differ
in sensitive information (e.g., gender), that is predicted
as different sentiments by an SA system under test. Our
experiments showed that BiasFinder could uncover more
BTCs than two baselines (EEC [30] and MT-NLP [31]) on
two datasets. Additionally, we evaluate whether the gen-
erated texts are fluent by performing a manual annotation
study. The results demonstrate that participants consistently
consider texts generated by BiasFinder to be more fluent
than texts generated by MT-NLP.

The contributions of our work are:
• We propose BiasFinder, a framework that uncovers bias

in SA systems through the automatic generation of a large
number of realistic test cases given a target characteristic.
The source code of BiasFinder is publicly available3.

• BiasFinder automatically identifies and curates appropri-
ate and realistic texts (of various complexity) and trans-
forms them into templates that can be instantiated to
detect different types of bias. Prior work only considers
a small set of manually-crafted simple templates or focus
on detecting one type of bias.

• We compare BiasFinder with two baselines on IMDB and
Twitter datasets. The results show that BiasFinder can
generate more BTCs, and an annotation study demon-
strates that human annotators consistently consider that
BiasFinder can generate more fluent text mutants.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the necessary background related to our
work. Section 3 presents BiasFinder. Section 4 elaborates
GenderBiasFinder, an instantiation of BiasFinder to detect
gender bias. Section 5 briefly discusses instantiations of
BiasFinder for detecting occupation and country-of-origin
bias. Section 6 describes the results of our experiments.

3https://github.com/soarsmu/BiasFinder
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such expressions is useful for many NLP tasks where the
correct interpretation of a piece of text has to be derived
(e.g. document summarization, question answering). Coref-
erence resolution only links expressions together, and does
not identify the types of the referenced entities, which is
done through NER. An example of coreference resolution
can be found in Figure 2, in which the expressions ”Maria”
and ”She” are linked. Likewise, the expressions ”a friend”
and ”him” are linked as they refer to the same entity.
Given an input text, running a coreference resolution on it
will produce n lists of references; each list corresponds to
references to a single entity.

Input Text
Maria has a friend. She loves him.
POS-tagging
Maria|PROPN has|VERB a|DET friend|NOUN .|PUNCT
She|PRON loves|VERB him|PRON .|PUNCT
NER
Maria | PERSON
Coreferences Resolution

+———————-+
| |

Maria has a friend. She loves him.
| |
+———————-+

Coreferences
Maria, She
a friend, him

Fig. 2. Example of POS-tagging, NER, and coreference resolution.
There are two entities identified by the coreference resolution, ”Maria”
and ”a friend”, and the expressions referring to these entities are linked.

2.2.4 Dependency Parsing
The process of assigning a grammatical structure to a piece
of text and encoding dependency relationships between
words is known as dependency parsing [43], [44]. Encoding
such information as a parse tree, words in a text are con-
nected such that words that modify each other are linked.
For example, a dependency parse tree connects a verb to its
subject and object, and a noun to its adjectives.

Fig. 3. Example of a dependency parse tree for the sentence “That guy
from Blade Runner also cops a good billing”. The root word of the phrase
“That guy from Blade Runner” (bolded in the above image) is ”guy”.

Figure 3 shows an example of a parse tree that is out-
put by performing a dependency parsing of an input text:
“That guy from Blade Runner also cops a good billing”.
The directed, labeled edges between nodes indicate the
relationships between the parent and child nodes. From the
parse tree, the root word of a phrase can be identified. For

example, the root word of the phrase “That guy from Blade
Runner” represented in Figure 3 is “guy”, as its node does
not have any incoming edges from the nodes of other words
in the phrase.

3 BIASFINDER

Figure 4 shows the architecture of our proposed approach:
BiasFinder. It takes, as input, a collection of texts and a senti-
ment analysis (SA) system, and produces, as output, a set of
bias-uncovering test cases. BiasFinder has three components:
(A) template generation engine, (B) mutant generation engine,
and (C) failure detection engine.

The template generation engine generates bias-targeting
templates from a collection of texts. These templates are
designed to target bias towards a specific characteristic (e.g.,
gender). The generated templates are input to the mutant
generation engine. This engine generates text variants (mu-
tants) that differ in a target bias characteristic (e.g., two
paragraphs, which are otherwise identical, but describe an
individual using words associated with a different gender)
and should have the same sentiment. These mutants are
then input to the failure detection engine. This engine makes
use of the metamorphic relation between mutants (i.e., they
have the same sentiment as they are generated from the
same template) to infer failures (i.e., bias). This engine
identifies mutants that uncover bias in the SA system. These
mutants are output as the bias-uncovering test cases.
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Fig. 4. The Architecture of BiasFinder.

3.1 Template Generation Engine

The template generation engine follows the workflow in
Figure 5. It takes a collection of texts as the input and
produces bias-targeting templates. Each template is a text unit
(e.g., a paragraph) that contains one or more placeholders;
the placeholders can be substituted with concrete values to
generate different pieces of text that should have the same
sentiment.

4

[Hilmi Asyrofi et al., TSE’21]

Generate templates (and then mutants) for gender, occupation, and county-of-
origin biases
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Beyond Duplicates: Towards Understanding and Predicting Link
Types in Issue Tracking Systems
Clara Marie Lüders, Abir Boura�a, Walid Maalej

ABSTRACT
Software projects use Issue Tracking Systems (ITS) like JIRA to
track issues and organize the work�ows around them. Issues are of-
ten inter-connected via di�erent links such as the default JIRA link
types Duplicate, Relate, Block, and Subtask. While previous research
has focused on analyzing and predicting duplication links, this work
aims at understanding the various other link types, their prevalence,
and characteristics towards a more reliable link type prediction. For
this, we studied 607,208 links connecting 698,790 issues in 15 public
JIRA repositories. Besides the default types, the custom types De-
pend, Incorporate, Split, and Cause were also common. We manually
grouped all 75 link types used in the repositories into �ve general
categories: General Relation, Duplication, Composition, Temporal /
Causal, andWork�ow. Comparing the structures of the correspond-
ing graphs, we observed several trends. For instance, as expected,
Duplication links tend to represent simpler issue graphs often with
two components and Composition links present the highest amount
of hierarchical tree structures (97.7%). Surprisingly, General Relation
links have a signi�cantly higher transitivity score than Duplication
and Temporal / Causal links.

Motivated by the di�erences between the types and by their
popularity, we evaluated the robustness of two state-of-the-art
duplicate detection approaches from the literature on our JIRA
dataset. We found that current deep-learning approaches confuse
between Duplication and other links in almost all repositories. On
average, the classi�cation accuracy dropped by 6% for one approach
and 12% for the other. Extending the training sets with other link
types seems to partly solve this issue. We discuss our �ndings and
their implications for research and practice.

ACM Reference Format:
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1 INTRODUCTION
Development teams use Issue Tracking Systems (ITS) such as Bugzilla,
Github Issues, or JIRA to track issues, including bugs to be �xed or
features to be implemented. Over the years ITS have emerged as a
central tool for planning and organizing development work [37],
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and for communicating with users and other stakeholders [4]. Most
ITS allow the creation of links between the issues to indicate tech-
nical or work�ow dependencies. For instance, Bugzilla allows to
set properties such as “depends on”, “blocks”, and “See also” for bug
reports as well as to set the resolution status as “duplicate” with
link to a duplicate report [1]. Similarly, JIRA users can choose be-
tween four possible default types in the Issue Links section: Relate,
Duplicate, Block, and Clone1. Additionally, Subtasks and Epics can
be linked in separate sections.

Organizations can create and use additional link types to meet
their speci�c needs. For instance, Qt2 uses 6 link types including
Split and Replace. Apache3 uses as many as 21 including the custom
link types Container or Breaks. Each link type usually has an explicit
de�nition in the ITS. Over time, stakeholders might also develop
an “implicit” understanding of the connection represented by the
link type. This might be either indeed unique to the community
or simply a di�erent name denoting the same connection labeled
di�erently in another community. For instance, Apache uses both
the link type Depend and Block, while all other repositories only
use one of these types predominantly. However, in Bugzilla these
two link types are equivalent4.

Studying the various link types and their usage patterns across
the communities is essential to understanding collaboration in ITS
and tightening automated tool support such as predicting missing
links [27, 35]. In recent years, research has intensively studied the
speci�c type Duplicate. Detecting those links would reduce the
resolution time of duplicated issues and might reveal additional
information included in one but not the other issue [5, 8]. Based on a
Bugzilla dataset by Lazar et al. [21], researchers recently presented
duplicate prediction approaches using state-of-the-art machine
learning models with top performances of up to 97% [10, 16].

This work takes a holistic view on issue link types. We report
on a study comparing the various types and their usage in 15 well-
known public JIRA repositories [25]. By studying link types in JIRA,
a widely used ITS in practice, we hope to create awareness about
how the other types beyond duplicates are used and to inform a
more generalizable and reliable link type predictions. Our work
has three speci�c contributions. First, we manually reviewed and
analyzed all types found in the ITS and categorized them into �ve
general link categories. We report on the types, categories, and
usage frequencies across the studied repositories. Second, we apply
techniques from the �eld of graph theory to compare the complex-
ity, shape, transitivity [29], and assortativity [26] of the di�erent
graphs corresponding to each link category. Our comparison reveal
structural similarities across the repositories and several expected
and unexpected trends. Third, we show that current link prediction
models seem to rather learn the existence of the links instead of the
1JIRA users can clone an issue. A Clone link is then automatically created.
2https://bugreports.qt.io/secure/Dashboard.jspa
3https://issues.apache.org/jira/secure/Dashboard.jspa
4https://bugzilla.readthedocs.io/en/latest/using/understanding.html
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(Out-of-) Distribution 
aware Testing

Taxonomy aware 
Testing

[Lueders et al. MSR’22][Berend et al. ASE’20]

Capability in handling data 
that falls outside of its learned 
distribution (ID and OOD test 
case generation) 

Capability of recognising  
similar but negative classes
(e.g. canids vs. wolf vs. dogs) 
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Can’t we do all this with 
ChatGPT?
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