
An Ns-2 Module for Simulating Passive RFID

Systems

Rafael Perazzo Barbosa Mota

Department of Computer Science

University of São Paulo - USP

São Paulo, São Paulo, Brazil

Email: perazzo@ime.usp.br

Daniel M. Batista

Department of Computer Science

University of São Paulo - USP

São Paulo, São Paulo, Brazil

Email: batista@ime.usp.br

Abstract—This paper presents the design and validation of an
RFID module for the Network Simulator 2 which implements
the ISO/IEC 18000-6C Class 1 Generation 2 standard, Schoute
and Eom-Lee anti-collisions protocols in order to evaluate the
performance of RFID systems and Internet of Things environ-
ments. The module includes mechanisms for the definition of
parameters related to the standards and for QoS provision.
Moreover, the implementation is open source and intended to be
a reference tool for evaluating RFID protocols for anti-collision
algorithms, security, privacy and other desired resources. Brief
results obtained with the module showing the benefits of a QoS
mechanism proposed by the authors are also presented. The
module is important to the network community and this paper
provides a scientific methodology attesting its functionality and
conformity with existing standards and protocols.

Keywords—RFID, IoT, Simulators, Performance Evaluation.

I. INTRODUCTION

The Internet of Things (IoT) is a novel paradigm that
is being developed in the modern scenario of wireless com-
munications. The basic idea of this concept is the pervasive
presence around us of a variety of things or objects such as
Radio-Frequency IDentification (RFID) tags, sensors, actua-
tors, mobile phones and other technologies [1]. This new com-
munication paradigm is expected to make everyday life more
sophisticated, flexible and able to access any object across
the world when compared with the current traditional Internet.
The radio frequency identification system (RFID) allows us to
identify objects, record metadata or control individual targets
through radio waves. When RFID readers are connected to
the Internet, they can identify, track and monitor the tagged
objects. Consequently, RFID is being seen as a key technology
for advancing the state of art of the IoT [2].

Simulation is an essential tool in the development and
performance evaluation of communication networks, especially
those employing new protocols and technologies. Network
simulation is useful for researchers and developers who can
design and analyze networks efficiently at low cost [3]. Among
the applications available for network simulation, the Network
Simulator (ns-2) is one of the most popular in the research
community. Much of this popularity is because the ns-2 is a
free software which implements a rich set of Internet protocols,
including several kinds of wired and wireless mechanisms [4].

To the best of our knowledge, there is no published module

proposed for simulation of RFID-based systems using ns-
2. This paper presents the design and validation of an ns-2
simulation module for IoT scenarios based on RFID systems.
The focus of the module implementation is the probabilistic
anti-collision approaches such as Q Algorithm[5], Schoute
[6], Eom-Lee [7] and mechanisms for QoS support. Also, the
module allows IoT researchers to study open challenges and
to evaluate a variety of new protocols and view results before
acquiring any kind of IoT physical hardware.

The module was validated through comparison with re-
sults obtained from previous publications. We compared the
main important parameters such as overall system efficiency
[8], total number of slots [8] and identification time [9] of
the ISO/IEC 18000-6C standard, also known as the Class 1
Generation 2 (C1G2) standard.

The contributions of this paper are:

• The presentation of a novel RFID module for the ns-2
simulator;

• The validation of the novel RFID module considering
the ISO/IEC 18000-6C anti-collision standard;

• The presentation of details regarding the implementa-
tion of a new QoS mechanism for IoT using the novel
RFID module.

This paper is different from those found in the literature
because it introduces an open source ns-2 RFID module based
on the global communication standard. Existing similar tools
don’t work with NS-2 and don’t follow the part of the ISO/IEC
18000-6C standard related to anti-collision mechanisms.

The rest of this paper is organized as follows: Section II
provides the background on RFID simulation tools and ns-
2 modules in the literature. In Section III, we present the
proposed module and explain how our contribution differs
from that of prior work. In Sections IV and V we show
the methodology of the experiments to validate our proposed
module, comparing results using the Q Algorithm. Section VI
suggests future work and Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Some RFID simulators have been developed in the litera-
ture. In [10] an RFID simulation platform is presented, RFID-
Sim, which allows users to build their own virtual scenario and

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.325

2263

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.325

2263

deploy RFID facilities in it. This simulation platform, which
relies on a discrete event simulator, is designed to implement
part of the ISO/IEC 18000-6C [5] communication standard
related inventory procedures. It does not introduces other anti-
collision protocols for evaluation neither trace files. The goal
of RFIDSim is to provide users with a visual development
platform for RFID applications. Another recent RFID simu-
lator is introduced in [11]. It was developed in line with the
ISO/IEC 18000-6C standard for passive tags. This simulator
allows the user to know the behavior of the RFID system with
a concrete number of tags. Tests have compared them with the
latencies measured in a commercial RFID reader to validate
the behavior of the simulator. As RFIDSim it does not allow
the evaluation of other anti-collision protocols. Vuza, Chitu,
and Svasta [12] presents a tag simulator which represents an
example of hardware simulation by a combination of software
and other hardware. Users must use a real reader and simulate
tags with software. As the described simulators are specific to
RFID technology only, the integration of other technologies
such as Wireless Sensor Networks - WSN and Wifi - is not
possible. Our proposed module, as it is implemented in ns-2,
allows integration with any supported standard or technology
already available in ns-2 which is essential for evaluating and
testing IoT scenarios. For example, with our module it is
easy to simulate a scenario wherein the RFID reader sends
information to an FTP server remotely located, since the
TCP/IP stack and FTP protocols are already simulated in ns-
2. In an RFID-only simulator it is not trivial to simulate IoT
scenarios.

ns-2 simulation results are used to model and validate
several wireless protocols, proposals or technologies such as
WiMax [13], [14], WSN [15], fixed wireless systems [16],
communication among high-speed vehicles or between a ve-
hicle and a roadside infrastructure network [17], refined Wifi
[18] and MESH networks [19]. The consolidated acceptance
of ns-2 thus justifies the development of an RFID module with
the possibility of integration with other existing technologies
in the IoT.

III. RFID NS-2 MODULE

The RFID module1 was developed on release 2.35 of
the ns-2 simulator. It is designed not only for the ISO/IEC
18000-6 standard but also for Schoute [6] and Eom-Lee [7]
Dynamic Frame Slotted Aloha - DFSA algorithms. It also
supports the ns-2 mobility model. The implementation was
made in C++. Our contribution consists of the design and
implementation of the entire module for ISO/IEC 18000-6C,
Schoute and Eom-Lee systems. The scope of this module is
the inventory part of the standard (query commands), such as
the DFSA algorithms like Q Algorithm, Schoute and Eom-Lee
backlog estimation. The session control specified in standard
is also implemented. The commands specified on [5] such as
SELECT, READ, WRITE are not implemented since they do
not affect the identification process performance . In order to
simulate the identification process, we implemented the reader-
tag communication as shown in Figure 1b [5]. The difference
from the complete standard (Figure 1a) is that in the standard
there are messages being exchanged to send a random code

1http://www.ime.usp.br/∼perazzo/rfid

(called as RNG16) before the tag send its own ID. As our
focus is on anti-collision procedures we have omitted this step
which does not affect the module accuracy since this step is
not counted for performance evaluation.

Fig. 1. Example of a single tag identification

Figure 2 presents the module’s main classes. These classes
were inherited from the ns-2 default Agent and Packet classes
but, as seen in Figure 2, they were modified and redesigned to
support specific RFID features. Agent class has base methods
to allow the sending and receiving of data. Packet class is
the base class used to specify any kind of data packet. The
RfidReader class, as illustrated in Figure 2, stores much useful
information for performance analysis such as slots counter
(success, idle and collision), identification IDs (its own ID and
last received tag ID) and standard parameter values (constant c,
Q value - qValue , current command in progress - command
and QoS provision - mechanism). Table I shows the modified
and created files added by the RFID module to ns-2 default
installation. The first column indicates the modified/created
files. The second column shows if the file was created (C)
or modified (M). The third column summarizes the content of
the files.

TABLE I. MODIFIED/CREATED FILES

File (C)/(M) Comments

apps/rfidReader.{cc,h} C RFID reader class definitions

apps/rfidTag.{cc,h} C RFID tag class definitions

apps/rfidPacket.{cc,h} C RFID packet class definitions

trace/cmu-trace.cc M Inclusion of rfidPacket trace information

tcl/lib/ns-default.tcl M Inclusion of RFID reader and tags pa-

rameters

common/packet.h M Inclusion of rfidPacket parameters

Makefile.in M Inclusion of reader, tag and packet

classes

A. Reader Agent (RfidReader Class)

The Reader Agent models an RFID reader with its main
functions such as all query commands used to identify a set of

22642264

Fig. 2. Class diagram for ns-2 RFID module

tags using the Q algorithm explained in [9] and presented in
Algorithm 1. The reader is the node responsible for tag identi-
fication according to Algorithm 1 as defined in the standard. It
exchanges packets with tags through Query commands (Query,
QueryAdjust and QueryRep) until all tags are identified. The
first step of Algorithm 1 is to get the initial Q value, which
represents the initial frame size (possible value range to be
randomly selected by each tag). The reader rounds the Qfp

value to the nearest integer and assigns this value to Q in
the Query command (lines 1-2). The identification process,
initialized by a Query command (line 3), can be divided in
frames of Q size as shown in Figure 3 - I. When there is
more than one tag reply during the wait time (t2 - line 5),
we have a collision slot (lines 6-10 and Figure 3 - II). In
this case, the value of Q is considered too small or there
are several remaining unidentified tags [9]. Therefore, Qfp is
incremented by the value of c (line 7) as seen in Figure 3 - II,
which is a real number in the interval of [0.1, 0.5], provided
by the user before the identification process begins. Otherwise,
if there are no tag replies (lines 11-15), we have an idle slot
(Figure 3 - II). The reader will not receive any replies if no
tags have selected the value of zero for the slot counter. This
means that the value of Q is too large or there are a small
number of unidentified tags remaining [9]. Therefore, Qfp is
decremented by the same value of c (line 12). If only one
tag replies (lines 16-20), we have a success slot, and then the
reader sends a QueryRep command (line 19) to receive the tag
ID and to ensure all other tags have their slots decremented
by one unit. In the case of collision or idle slots (lines 6-15),
the reader tries to adjust the frame size by exchanging the
Q value through a QueryAdjust command (line 9 or 14) as
seen in Figure 3 - II. While the Q value is greater than zero
(line 4) the reader keeps exchanging packets with unidentified
tags through QueryAdjust and QueryRep commands (lines 4-
21). QueryAdjust works by sending packets to unidentified tags
with adjusted Q values. QueryRep command sends a packet to
all tags changing the identified tag state to ACKNOWLEDGE
and making all other tags decrease their slots. Table II summa-
rizes the internal implemented reader structure and operations
used by Algorithm 1. We designed reader implementation with
six groups of variables as seen in Table II:

• Identification: Stores its own identification ID and tag
ID (id and tagEPC);

• ISO/IEC 18000-6C standard properties: Deals with all
needed parameters related to the Q Algorithm such
as Q value (qValue), command type (command),
replies counter (counter) and wait time (t 2);

• Counters: Used to count all kinds of slots such as
collisions (collisions), success (success), idle (idle)
and total (slotCounter);

• ISO/IEC 18000-6C standard methods: Implementation
of Query, QueryAdjust and QueryRep commands used
to identify a population of tags (send *);

• Send/Receive methods: Used to implement send and
receive packets operations (recv() and command()) ;

• QoS provision: Applied to provide QoS for tracking
scenarios (mechanism and timer).

Fig. 3. Q Algorithm explanation

B. Tag Agent (RfidTag Class)

RFID tags are the hardware attached to objects to allow
their identification. The tag agent in the module was modeled
to operate as a passive tag according to Algorithm 2. This
means that tag agents are not able to initiate a communication.
Internal structure follows the standard defined in [5] such as
rng16 (generated number based on received Q value) [5,
46], memory (optional memory), tag state (ready, arbitrate,
reply and acknowledge) [5, 45] and service as shown in [20]
and detailed in Section III-E. The tag operation starts when it
receives a command from the reader. It checks the command
type (line 3). If the command is a Query or QueryAdjust then
the tag generates and stores a new random number based on the
received Q value (line 5) and changes its state to ARBITRATE
(line 3). If the generated number is equal to zero (line 6), it
immediately replies (lines 7-9). If the received command is a

22652265

Algorithm 1: Reader operation (based on [9])

Input: c in [0.1, 0.5]
1: Qfp = 4.0 {Q value as a float number}
2: Q = round(Qfp)
3: Send Query Command
4: while Q ≥ 0 do
5: Wait t2
6: if (Received more than one reply) then
7: Qfp = Qfp + c
8: Q = round(Qfp)
9: QueryAdjust()

10: end if
11: if (Received no reply) then
12: Qfp = Qfp − c
13: Q = round(Qfp)
14: QueryAdjust()
15: end if
16: if (Received just one reply then
17: Qfp = Qfp + 0 {Q value keeps unchanged}
18: Q = round(Qfp)
19: QueryRep()
20: end if
21: end while

TABLE II. READER PROPERTIES AND FUNCTIONS

Parameter Value

id Reader unique identification

tagEPC Last received tag ID

qValue Generated Q value (frame size) [5, 96]

command Current command in progress

(query, queryAdjust, queryRep) [5, 53]

t 2 Reader wait time

(time the reader waits after a query

command, before change Q value)

counter Number of received replies during t2

collisions Total number of collision slots

idle Total number of idle slots

success Total number of success slots

slotCounter Total number of slots (any type)

send query() Query command [5, 57]

send query adjust() Query adjust command [5, 58]

send query rep() Query reply command [5, 59]

(directed to the tag that had replied)

send query reply update slot() Query reply command [5, 59]

(directed to all tags that did not reply)

command() Send an implemented command

recv() Handle the received packets

mechanism QoS mechanism

0 - no QoS; 2

explained in Section III-E

timer ns-2 structure to control

t2 waiting time [5, 94]

QueryRep and the tag has zero value on slot number (line 12)
then it goes to ACKNOWLEDGE state (line 13). Otherwise,
if the command is also a QueryRep but the slot is not zero
then it goes to ARBITRATE state (line 16) and decrements its
slot number by one unit (line 17). A new verification is made
by the tag to check if the new slot number is equal to zero
(line 18). If the verification is true then the tag goes to REPLY
state (line 19) and replies immediately (lines 20-21) and so the
process begins again.

Algorithm 2: Tag operation (based on [9])

Input: RfidPacket pkt
1: Get cmd type from pkt
2: if (cmd = Query)||(cmd = QueryAdjust) then
3: state = ARBITRATE
4: Get Q value from pkt
5: slotV alue = rng16(0, (2Q)− 1)
6: if (slotV alue = 0) then
7: state = REPLY
8: Create new packet p
9: Send Packet p to requesting reader

10: end if
11: end if
12: if (cmd = QueryRep)&&(slotV alue = 0) then
13: state = ACKNOWLEDGE
14: end if
15: if (cmd = QueryRep)&&(slotV alue �= 0) then
16: state = ARBITRATE
17: slotV alue = slotV alue− 1
18: if (slotV alue = 0) then
19: state = REPLY
20: Create new packet p
21: Send Packet p to requesting reader
22: end if
23: end if

C. Packet Class (RfidPacket Class)

This class is designed to help tasks that analyze post-
simulation generated data, as the trace file is generated through
data contained on exchanged packets. The RFID packet pro-
vides all information needed to simulate the standard behavior.
We modeled the packet class with all the required parameters
defined in [5] and some other parameters to allow a detailed
trace file. Required parameters include Q value generated
by the reader, random number calculated by tags (based on
received Q value), flow type (reader to tag or tag to reader),
reader ID, tag ID, type of service (tracking service, for
instance), command (Query, QueryAdjust and QueryRep) and
QoS mechanism (based on Algorithm 3 discussed in Section
III-E). Additional data include a set of counters (collision, idle,
success and total slot counters) and session control (in the case
of scenarios with periodic requests such as a tracking scenario).

D. Trace File

The trace file is one of the most important ns-2 components
because it allows analysis of the simulation. It enables relevant
information to be extracted about the entire simulation. We
modeled a trace file to show the main information for RFID
protocol analysis such as number of collisions, idle and success
slots allowing users to calculate information like system effi-
ciency and total number of slots for anti-collision algorithms.
This information allows not only the study of final protocol
parameters but also the intermediate steps taken during the
entire protocol execution. Our customized RFID trace file
presents the information described in Table III.

22662266

TABLE III. TRACE FILE FORMAT

Flag Value Comments

s/r Send (s) or receive (r) s indicates a sending packet and r a

receiving packet

-t Event time Exact time the event has occurred

-Zt Flow type 0 represents reader to tag and 1 tag to

reader

-Zi Node ID The identification ID if the node is a

reader or EPC Code if it is a tag

-Zs Source ID Identifies who has sent the packet

-Zd Target ID Identifies who should get the packet

-Zc Command type 0 - Query; 1 - QueryAdjust; 2 -

QueryRep; 3 - Reader ACK; 4 - Reader

NAK; 5 - Tag reply

-Zq Type of service Represents what kind of service is being

established: 2 - Pure Q Algorithm; 3 -

Pure Q Algorithm with QoS provision

[20] 4 - Schoute; 5 - Eom-Lee

-Zr Generated random number The random number generated by the

tags based on the formula: r =
random(0, 2Q − 1)

-Zv Q value Current reader Q value

-Zz Slots counter Counts the total number of slots includ-

ing success, idle and collision slots

-Zc Collision slots counter Counts the total number of collision

slots during one identification process

-Zi Idle slots counter Counts the total number of idle slots

during one identification process

-Zs Success slots counter Counts the total number of success slots

during one identification process

-Ss Session ID Session number (each new Query com-

mand generates a new session number)

E. QoS Mechanism

Mota and Batista [20] proposed a QoS mechanism for
application in RFID tag operation, as described in Algorithm
3. We have implemented this mechanism and made possible
its utilization in the proposed ns-2 RFID module. This feature
is designed for simulation analysis of IoT tracking scenarios.
()Welbourne, Battle, Cole, et al. [21]) described a real appli-
cation of this type of scenario. Our mechanism is based on
the principle that the tags do not need to reply to all reader
queries. Each tag, when it receives a Query command, has
to check the reader ID (lines 10-11). The first request (line 2)
means no reader has sent any previous packet, so the tag replies
(lines 3-4) and waits for ACK (line 5) before record reader ID
(lines 6-7) and goes to ACKNOWLEDGE state (line 8). If the
request was sent by the same reader (line 11) the tag does not
reply (line 12); otherwise, the tag sends its ID (line 15) and
waits for the ACK (16). When the ACK command is properly
received the tag records reader ID on memory to avoid sending
another reply to the same reader (lines 17-18). The mechanism
needs to be implemented only on tags. We have not considered
the energy comsumption, making necessary to observe that all
tags can change to READY state when there is no more power
to store the ACKOWLEDGE state.

IV. EXPERIMENTS

We conducted two sets of experiments for the module
evaluation. The first one was used for standard compliance
validation. This first set of experiments aimed to get a Q
Algorithm performance evaluation comparison based on the
most evaluated parameters such as system efficiency, for in-
stance [8], [9], [22], [23]. The second one was done to obtain
a performance analysis of the QoS mechanism proposed by
Mota and Batista [20] and compare it with the Q Algorithm
and the Binary Tree Slotted Aloha Algorithm (BTSA) [2].

Algorithm 3: QoS mechanism proposed in [20]

Input: Query Command
Considering the tag has 0 as slot number

1: Receive Reader Query Command
2: if (First request) then
3: Go to REPLY state
4: Send ID
5: if (received an ACK command)) then
6: Store Reader ID on optional memory
7: tagMemory ← readerID
8: Go to ACKNOWLEDGE state
9: end if

10: else
11: if (tagMemory=readerID) then
12: Stays on ARBITRATE state
13: else
14: Go to REPLY state
15: Send ID
16: if (received an ACK command) then
17: Store Reader ID on optional memory
18: tagMemory ← readerID
19: Go to ACKNOWLEDGE state
20: end if
21: end if
22: end if

For the first set of experiments, the system efficiency
(Sef) [8], total slot counter (Tslots) [8] and identification time
(Idtime) [9] for the number of tags was calculated according
to Equations 1, 2 and 3 respectively.

Sef =

100∑
i=1

suci

suci + coli + idli

100
(1)

Tslots =

100∑
i=1

suci + coli + idli

100
(2)

Idtime =

1000∑
i=1

timei

1000
(3)

where

• i− Iteration;

• coli− Number of collision slots from iteration i;

• idli− Number of idle slots from iteration i;

• suci− Number of success slots from iteration i;

• timei− Identification time (in ms).

All required variables were extracted from the trace file
for both sets of experiments. The Sef shown in Equation 1
represents the 100-observation average of the ratio between the

22672267

number of success slots and the total number of slots. Equation
2 calculates the 100-simulation results mean between the total
number of slots. The time average calculation is performed
through the 1000-simulation results mean of the time taken to
identify all tags in the range. All parameters in the first set of
experiments are listed in Table IV.

TABLE IV. FIRST SET OF EXPERIMENTS PARAMETERS

Parameter Value

Simulated time 10 seconds

Number of tags 50 to 1850

Steps 50

Number of readers 1

Initial positions Random (in reader interrogation zone)

Movements No movements

Meaning Tags population identification

Readers queries One query

Random Number Generator class Random::uniform(0,2q − 1)

Initial Q value 4

Constant c 0.3

Slot time(T2) 1 ms (according to [9])

Iterations for Sef and Tslots 100

Iterations for Idtime 1000

The second set of experiments introduces the Delay slots
- Tdelay concept, defined in Equation 4. It represents a
mean sum of generated delay slots (idle and collisions) for
each reader during the entire simulation. We evaluated this
parameter to analyze the reduction of wasted slots (delay
slots) when applying the QoS mechanism proposed in [20]
compared with the traditional Q Algorithm and the BTSA.
This reduction is important because the energy consumption is
directly related to the delay slots between the reader and the tag
communication[24]. The parameters used in the experiments
are detailed in Table V.

Tdelay =

r∑

i=1

m∑

j=1

(colj + idlj) (4)

where

• i− Reader i;

• r− Number of readers;

• j− Frame j;

• m− Number of frames during the entire simulation;

• colj− Number of collision slots during frame j;

• idlj− Number of idle slots during frame j;

• Tdelay− Total number of delay slots during the entire
simulation;

TABLE V. SECOND SET OF EXPERIMENTS PARAMETERS

Simulated time 1800 seconds

Number of tags 100 to 900

Number of readers 3

Steps 200

Initial positions Random (0-30 meters x 0-15 meters)

Movements Random Way Point(0-30 meters x 0-15 meters)

Meaning 3 rooms with a reader covering only one location

Readers queries Each reader issues a query command every minute

Topology 30x15 (meters)

Nodes speed 0-1.5 (meters/second)

Both sets of experiments were performed on a server
equipped with an Intel Core i7-2700K 3.5GHz, 16GB of RAM
and 1TB of disk space running the Debian GNU / Linux
version 6.0 operating system.

V. SIMULATION RESULTS AND VALIDATION

This section presents the simulation results of the exper-
iments we carried out to validate the performance of our
proposed RFID module. Figure 4 shows the time taken for tag
identification when the population of tags varied between 50
and 500. To verify if the results are as expected, we compared
them with the results presented in [9]. A curve with our results
and a curve with the results from [9] are presented in Figure
4. This simulation result shows the linear relationship between
the number of tags and time spent during the identification
process [9], [17], [25], [22], [2]. Comparing our results with
[9] we found an average difference of ∼= 11% when the tag
population is 50 and 5% when the number of tags is 500.
The average difference tends to stay around 5− 6% when the
number of tags is about 150. The difference is justified because
parameters as bandwidth and random number generator are not
informed from [9] which affect the results.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 50 100 150 200 250 300 350 400 450 500

T
im

e
to

 id
en

tif
y

th
e

ta
gs

 (
m

s)

Number of tags

Confidence Interval (CI) 95%

Q Algorithm − Our simulation (1000 iteractions)
Q Algorithm − Simulation from [9] (Figure 7, Page 7)(approximate values)

Fig. 4. Tags population identification time

In Figure 5, the curves show the average system efficiency
obtained by previous works (we did not re-simulate the pre-
vious works but used the numbers presented in these works)
and by simulations with our module. Our curves are close to
each other (difference around ∼= 6−7.5%), appearing between
the lower (∼= 0.29) and higher (∼= 0.34) results, representing
a average Sef value of 0.32. The important aspect is that
our curve is also near to a constant value for all numbers of
tags. Our results are also near to the analytic values (∼= 0.34)
provided by [9]. Not all simulations in the previous works
used the same number of tags. Therefore some curves are not
plotted to all values of the x axis.

Figure 6 shows another important parameter used by the
authors to evaluate RFID system performance, the total slots
generated to identify all tag populations. All curves are close
to each other (∼= 3−5% when the number of tags is higher than
500). The main aspect to be observed in this graph is the type

22682268

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0 200 400 600 800 1000 1200 1400 1600 1800

S
ys

te
m

 e
ffi

ci
en

cy

Number of tags

Confidence Interval (CI) 95%

Our Aprox. System Efficiency: 0.32

Standard deviation interval(SD) [0.003,0.05]

Our C1G2 System Efficiency simulation results
[22] n/a iterations
[23] 100 iterations
[2] 500 iterations
[18] n/a iterations
[8] 100 iterations

[26] 400000 iterations

Fig. 5. System efficiency

of curve: all of them have almost linear plots. For both Sef and
Tslots the observed differences occur because of the different
system parameters and the random number generators used.
Some curves on this graph also are not plotted to all values
of the x axis, because some authors used different numbers of
tag population.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0 200 400 600 800 1000 1200 1400 1600 1800

M
ea

n
id

en
tif

ic
at

io
n

tim
e

(s
lo

ts
)

Number of tags

Confidence Interval (CI) 90%

Q Algorithm − Our simulation
[18] 10 iterations
[8] 100 iterations

[26] 400000 iterations

Fig. 6. Total slots counter

The last graph, in Figure 7, shows the simulation results for
the second set of experiments. Our results show the obtained
gains (∼= 6 − 37%) compared with BTSA and (∼= 10 − 40%)
compared with ISO/IEC 18000-6C when we applied the QoS
mechanism proposed in [20].

The results presented in this section were obtained to
validate our RFID module, and they confirm some observations
presented in the literature [8], [9], [22], [23]:

• Idtime has a linear curve when the number of tags
increases;

• Sef follows an almost constant value;

• Tslots has an almost linear plot when related to the
number of tags;

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 100 300 500 700 900

A
ve

ra
ge

 D
el

ay
 S

lo
ts

 C
ou

nt
er

 (
#p

ac
ke

ts
)

Number of tags

Confidence Interval (CI) 90%
Our mechanism

Q Algorithm
BTSA [3]

Fig. 7. IoT tracking scenario applying different anti-collision approaches

These results validate the proposed module, since the
protocol behavior works as expected. Besides, our new QoS
mechanism was simulated with the RFID module and it has
a clear advantage when compared with the Q Algorithm and
the BTSA, which is an interesting new finding, as presented
in Figure 7.

VI. FUTURE WORK

In our future work we plan to extend the current module to
allow power consumption evaluation and the complete identi-
fication process as shown in Figure 1a instead of summarized
one, allowing the evaluation of not only complex IoT plus
RFID systems but also simple RFID systems. We will also
work towards creating a user friendly interface from which a
simulation script can be designed allowing the module features
already provided to be used. As RFID ns-2 module is written
in a modular way following the object oriented programming
(OOP) principles, it is fairly easy to extend it in order to
support new anti-collision aproaches and also security/privacy
mechanisms. Currently, we are using the module to imple-
ment new anti-collision algorithms. Other future work will
focus on interoperability between RFID technology and other
wireless standards, making research on multi-technology IoT
applications possible. We also will add support for active RFID
systems.

VII. CONCLUSIONS

We introduced a novel RFID module for the ns-2 simulator.
The module introduces an improved simulation platform for
the RFID and IoT application deployment. The module imple-
ments the inventory part of ISO/IEC 18000-6C communication
standard and supports passive systems, capture and tag mobil-
ity models as well. It also supports other DFSA algorithms
such as Schoute and Eom-Lee. It has strong expansibility en-
abling future integration implementations using other wireless
technologies since ns-2 has a lot of extension modules which
are freely available. Experiments were designed to evaluate
the implementation of the main ISO/IEC 18000-6C MAC
functionalities. The results indicate that the module works
according to standard requirements and they are similar to

22692269

those obtained with other tools and via analytical models in the
literature. The RFID module can benefit research on RFID/IoT
networks, especially those on QoS provision.

ACKNOWLEDGMENTS

We thank Leonardo D. Sanchez and Victor M. Ramos of
the Universidad Autonoma Metropolitana, Mexico City for
providing the simulation results described in [26].

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] H. Wu, Y. Zeng, J. Feng, and Y. Gu, “Binary Tree Slotted ALOHA for
Passive RFID Tag Anticollision,” IEEE Transactions on Parallel and

Distributed Systems, vol. 24, no. 1, pp. 19–31, 2013.

[3] C. Bouras, S. Charalambides, M. Drakoulelis, G. Kioumourtzis, and
K. Stamos, “A Tool for Automating Network Simulation and Processing
Tracing Data Files,” Simulation Modelling Practice and Theory, vol. 30,
pp. 90–110, 2013.

[4] S. Ben-Guedria, B. Sans, and J.-F. Frigon, “PolyMAX, a Mobile
WiMAX Module for the ns-2 Simulator with QoS and MAC Support,”
Simulation Modelling Practice and Theory, vol. 19, no. 9, pp. 2076 –
2101, 2011.

[5] IncTM, EPCglobal, “EPCTM Radio-Frequency Identity Protocols
Class-1 Generation-2 UHF RFID Protocol for Communications at
860MHz-960MHz Version 1.2.0,” 2008.

[6] F. Schoute, “Dynamic frame length aloha,” Communications, IEEE

Transactions on, vol. 31, no. 4, pp. 565–568, 1983.

[7] J.-B. Eom and T.-J. Lee, “Accurate tag estimation for dynamic framed-
slotted aloha in rfid systems,” Communications Letters, IEEE, vol. 14,
no. 1, pp. 60–62, 2010.

[8] F. Baloch and R. Pendse, “Comparison of Transmission Control Pro-
tocols Based on EPC C1G2 Standard,” Int. J. Com. Net. Tech, vol. 1,
no. 1, pp. 83–94, 2013.

[9] V. Namboodiri, M. DeSilva, K. Deegala, and S. Ramamoorthy, “An
Extensive Study of Slotted Aloha-based RFID Anti-collision Protocols,”
Computer Communications, vol. 35, no. 16, pp. 1955–1966, 2012.

[10] T. Zhang, Y. Yin, D. Yue, Q. Ma, and G. Yu, “A Simulation Platform
for RFID Application Deployment Supporting Multiple Scenarios,” in
Proceedings of the Eighth International Conference on Computational

Intelligence and Security (CIS), 2012, pp. 563–567.

[11] H. Landaluce, A. Perallos, and I. Angulo, “A Simulation Tool for RFID
EPC Gen2 Protocol,” in Proceedings of the 7th Iberian Conference on

Information Systems and Technologies (CISTI), 2012, pp. 1–6.

[12] D. Vuza, S. Chitu, and P. Svasta, “An RFID Tag Simulator Based on the
Atmel AT91SAM7S64 Micro Controller,” in Proceedings of the 33rd

International Spring Seminar on Electronics Technology (ISSE), 2010,
pp. 427–432.

[13] M. Barria and A. Cordiviola, “Proposal and Evaluation of Load-
Dependent Distributed Scheduling Algorithm for WiMAX in Mesh
Mode,” IEEE Latin America Transactions, vol. 10, no. 6, pp. 2309–
2315, 2012.

[14] J. Freitag and N. da Fonseca, “WiMAX Module for the ns-2 Simulator,”
in Proceedings of the 18th IEEE PIMRC, 2007, pp. 1–6.

[15] A. Abu-Mahfouz and G. Hancke, “ns-2 Extension to Simulate Local-
ization System in Wireless Sensor Networks,” in Proceedings of the
AFRICON, 2011, pp. 1–7.

[16] S. Castillo and L. Ahumada, “On the Simulation of Fixed Wireless
Users in NS-2,” in Proceedings of the 15th IEEE CAMAD, 2010, pp.
16–20.

[17] S. Lee, K. Jin, D. Kang, S. An, and J. Cha, “Enhancement of 802.11
Modules in ns-2 for Wireless Access on Vehicular Environments and
Performance Evaluation,” in Proceedings of the 44th Annual Simulation
Symposium. Society for Computer Simulation International, 2011, pp.
198–204.

[18] Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Del-
grossi, and H. Hartenstein, “Overhaul of IEEE 802.11 Modeling and
Simulation in ns-2,” in Proceedings of the 10th ACM MSWiM, 2007,
pp. 159–168.

[19] V. Mhatre, “Enhanced Wireless Mesh Networking for ns-2 Simulator,”
SIGCOMM Comput. Commun. Rev., vol. 37, no. 3, pp. 69–72, Jul. 2007.

[20] R. P. B. Mota and D. Batista, “Um Mecanismo para Garantia de QoS
na ”Internet das Coisas” com RFID,” in Proceedings of the SBRC 2013

(Brazilian Symposium on Computer Networks and Distributed Systems),
2013, To be published.

[21] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer,
M. Balazinska, and G. Borriello, “Building the Internet of Things using
RFID: the RFID Ecosystem Experience,” IEEE Internet Computing,
vol. 13, no. 3, pp. 48–55, 2009.

[22] B. Li, Y. Yang, and J. Wang, “Anti-Collision Issue Analysis in
Gen2 Protocol,” Auto-ID Labs White Paper WP-HARDWARE-047,
vol. 3, 2009. [Online]. Available: http://www.autoidlabs.org/uploads/
media/AUTOIDLABS-WP-HARDWARE-047.pdf

[23] Z. Wang, D. Liu, X. Zhou, X. Tan, J. Wang, and H. Min, “Anti-
Collision Scheme Analysis of RFID System,” Auto-ID Labs White
Paper, 2007. [Online]. Available: http://www.autoidlabs.org/uploads/
media/AUTOIDLABS-WP-HARDWARE-045.pdf

[24] D. Klair, K.-W. Chin, and R. Raad, “On the Energy Consumption
of Pure and Slotted Aloha Based RFID Anti-Collision Protocols,”
Computer Communications, vol. 32, no. 5, pp. 961 – 973, 2009.

[25] W.-T. Chen, “A New RFID Anti-Collision Algorithms for the EPC-
global UHF Class-1 Generation-2 standard,” in Proceedings of the

9th International Conference on Ubiquitous Intelligence & Computing

and 9th International Conference on Autonomic & Trusted Computing
(UIC/ATC). IEEE COMPUTER SOC, 2012, pp. 811–815.

[26] L. D. Sanchez M and V. M. Ramos R, “Adding Randomness to the
EPC Class1 Gen2 Standard for RFID Networks,” in Proceedings of the
23rd IEEE PIMRC, 2012, pp. 609–614.

22702270

