
Measuring and Monitoring
Technical Debt
USP, 27 March 2013

Carolyn Seaman

cseaman@umbc.edu

University of Maryland Baltimore County

Fraunhofer Center for Experimental Software Engineering

Visiting Researcher – UFPE Center for Informatics

http://www.technicaldebt.umbc.edu/

mailto:cseaman@umbc.edu
http://www.technicaldebt.umbc.edu/
http://www.technicaldebt.umbc.edu/
http://www.umbc.edu/umbcstyle/images/horiz.jpg

© Carolyn Seaman, 2013

Outline

• Introduction to the Technical Debt metaphor

• Definitions in the literature and beyond

• Examples of everyday debt

• Technical Debt Framework

• Technical Debt properties: principal vs. interest

• Recording and communicating Technical Debt

• Identifying important Technical Debt

• Design debt: Code smells, Grime, ASA issues, Modularity violations

• Other types of Technical Debt

• Management strategies to pay down Technical Debt

• Open research questions

• Research and practice outlook
2

© Carolyn Seaman, 2013

What is Technical Debt?

• Context: Software Maintenance
• Large inventory of operational systems that need to be

maintained

• Fixed

• Enhanced

• Adapted

• Such systems need constant modification in order to remain
useful

• Most such systems are too expensive to replace, so considerable
resources go into their maintenance

• However, maintenance, even more than development, is
characterized by tight budget and time constraints

3

© Carolyn Seaman, 2013

Technical Debt

• Technical Debt is the gap between:

• Making a maintenance change
perfectly

• Preserving architectural design

• Employing good programming practices
and standards

• Updating the documentation

• Testing thoroughly

• And making the change work

• As quickly as possible

• With as few resources as possible

4

© Carolyn Seaman, 2013

Everyday Indicators of Technical Debt

“ToDo/FixMe: this should be fixed before release”

“I know if I touch that code everything else breaks!”

“The only one who can change this code is Carl”

“Does anybody know where we store the database access password?”

“It’s ok for now but we’ll refactor it later!”

“The release is coming up, so just get it done!”

“Let’s just copy and paste this part.”

“Let’s finish the testing in the next release.”

“Don’t worry about the documentation for now.”

5

© Carolyn Seaman, 2013

Technical Debt Metaphor

• A metaphor, NOT a theory or a scientific concept

• Definition
• Incomplete, immature, or inadequate artifact in the

software development lifecycle (Cunningham, 1992)

• Aspects of the software we know are wrong, but don’t
have time to fix now

• Tasks that were left undone, but that run a risk of causing
future problems if not completed

• Benefits
• Higher software productivity in the current release

• Lower cost of current release

• Costs
• “Interest” – increased maintenance costs

• Risk that the debt gets out of control
6

© Carolyn Seaman, 2013

Potential Payoffs of Explicitly
Managing TD
• Lowered maintenance costs

• Avoiding “interest payments”

• Avoiding unnecessary “perfecting” work

• Increased maintenance productivity

• Better prioritization of tasks in each release

• Maintenance always performed on code that is easier to work with

• Avoiding surprises

• Fewer components that fail without warning

• Fewer unexpectedly large over-budget maintenance tasks

• Better estimation of the costs and risks of postponing maintenance tasks

7

© Carolyn Seaman, 2013

Nothing new…
• Technical debt is not a new phenomenon

• Related to

• Software decay, software aging - Belady and Lehman

• Risk management – Boehm, etc.

• Software quality research

• The metaphor, however, provides:

• A way to apply years of research in

• Architecture

• Software metrics

• Software quality

• Software risk management

• A new way to talk about maintenance issues

• Intuitively appealing to practitioners

• Inspiration for a host of potential new solutions

• Finance is a mature domain with lots of tools to try

8

© Carolyn Seaman, 2013

An Initial Technical Debt
Management Framework

9

TD
List

TD
Identification

TD
Estimation

Decision
Making

© Carolyn Seaman, 2013

Technical Debt List
 A list of TD Items

 Tasks that were left undone, but that run a risk of causing future problems if
not completed.

 Examples: Components/modules/classes that need refactoring, testing that
needs to be done, etc.

 Content of TD Item

 Description – what, where, why?

 Principal – how much will it cost to do the work?

 Interest – what happens if we don’t do this work?
Amount – amount of extra work if this causes problems later

 Probability – probability that this will cause future problems

 TD List Update Policy

 The TD list should be reviewed after each release, when items should be
added as well as removed.

 10

© Carolyn Seaman, 2013

TD Item Example
ID 37

Date 3/31/2008 (Release 3.2)

Responsible Joe Developer

Type Design

Location Method m in Module X

Description In the last release, method m was added quickly

and is thread-unsafe.

Estimated principal Medium (medium level of effort to modify m)

Estimated interest amount: High (if we wait to modify m, there might be more

dependent modules that need to be modified)

Estimated interest probability Low (not likely to be adding simultaneous calls to

m)

11

© Carolyn Seaman, 2013

Identifying Technical Debt

12

TD
List

TD
Identification

TD
Estimation

Decision
Making

TD
List

TD
Identification

TD
Estimation

Decision
Making

© Carolyn Seaman, 2013

Types of Technical Debt

• Design/code debt – can be identified by examining source
code and/or related documentation

• Testing debt – planned tests that were not run, or known
deficiencies in the test suite (e.g. low code coverage)

• Documentation debt – missing or inadequate documentation
of any type

• Defect debt – known defects that are not fixed

• Infrastructure debt - delayed upgrade decisions

13

© Carolyn Seaman, 2013

Identifying Design Debt

• ASA issues
(line level)

• Code smells
(method and class level)

• Grime
(class interaction level)

• Modularity violations
(architecture level)

14

© Carolyn Seaman, 2013

ASA Issues

• ASA: Automatic Static (Code) Analysis
• Identify problems on line level:

• Inexpensive
• Point to the problem, suggest solution
• Downside: Many (thousands) issues identified

• Many are false positives, but interest is negligible

• Gaining significant traction in practice:
• Used by Google to identify problems
• Google Fixit Event

• Recent research results:
• Multithread correctness and Correctness issues are located in classes

with higher defect-proneness

15

1 Person person = aMap.get("bob");

2 if (person != null) {

3 person.updateAccessTime();

4 }

5 String name = person.getName();

Potential Null
Pointer Exception

Links: http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/

© Carolyn Seaman, 2013

Code Smells
• Methods and classes that violate the principles of good object

oriented design, e.g.:

• Clearly defined single responsibility

• Encapsulation

• Proper use of inheritance

• Like ASA warnings, Code Smells point to potential problems

• Set of 20 more or less formally defined Code Smells
• Tools and detection strategies available

• Research focus: God Classes (concept is easy to understand)
• God Classes are 5-7 times more change prone

• God Classes are 4-17 times more defect prone

• Baseline from our experience: most systems have 2%-8% God
Classes

• Dispersed Coupling code smell points to defect and
maintenance prone classes

16

© Carolyn Seaman, 2013

Design Patterns and Grime

• Design patterns promise code to be more maintainable and
less defect prone

• Describe how multiple classes work together

• Design patterns can decay over time as systems evolve

• Grime: accumulation of non-pattern code in classes following
a design pattern

• Rot: changes that break the integrity of a design pattern

• Early results show that grime has a noticeable effect on testability

• As grime builds up, more test cases break

• In turn affects productivity during the testing phase

• Leads to testing debt

• Grime is often related to increased coupling

17

© Carolyn Seaman, 2013

Modularity Violations

• Organization of software systems: inter-dependent modules

• Proper architecture leading to a clear structure of relationships
promotes reuse of modules and smaller ripple effects.

• Dependencies indicate how modules should change together:

• Example:
If the Model is changed, Controller A
and Controller B might require
changes.

• Modularity Violations: recurring
changes on classes within modules
that are not depending on each other:

• Example: Classes in View 1 and View 3
changing together 18

Model

Controller
A

View 1

View 2

Controller
B

View 3

© Carolyn Seaman, 2013

Modularity Violations Research

• Studies have shown that modularity violations are an excellent
indicator of defect prone classes and change prone classes.

• Tool: CLIO (Drexel University)

• When applied, with other TD detection approaches, to an
open source system, the results for predicting defects were:

• Also, modularity violations were highly correlated with
modules that developers later chose to refactor

19

Further reading: http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations

http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations
http://www.slideshare.net/miryung/icse-2011-research-paper-on-modularity-violations

© Carolyn Seaman, 2013

Manual TD Detection

• Asked developers to manually report TD items

• “If you had a week to do nothing but improve the maintainability of
the software product, what would you work on?”

• Ran ASA, code smell detection, and metrics tools

• Are developers concerned about the same sorts of technical debt
that is found and reported by tools?

• Answer: Yes and no
• Details

• Analysis tools found most of the modules that had developer-
identified defect debt and about half of the modules that had
developer-identified design debt.

• But the tools also found lots of problems in modules that the
developers did not care about

• Not surprisingly, the tools could not find testing or documentation
debt, although developers found these types of debt important

20

© Carolyn Seaman, 2013

Testing Debt

• Tests that were planned but:

• not implemented

• not executed

• or they got lost

• Inadequate tests

• Test cases not updated for
new/changed functionality

• Low coverage

• Can be detected by:

• Comparing test results with test
plans

• Code coverage tools

• Comparing requirements
changes with test suite changes

21

“There's no tests for buttons other

than <input type="submit"> yet. I'm

pretty sure also <input

type="button"> works if other

<input>s work, but <button

disabled="disabled">Text</button>

should be tested separately.”

http://code.google.com/p/robotframework-seleniumlibrary/issues/detail?id=163

“While updating the package of

html5lib to 0.90 in Debian I

realized that the unit tests are

gone. To ensure the keep the

package in a good working shape

while it transitions trough new

Python versions and new versions of

the modules it depends on, it would

be *very* appreciated if the unit

tests would be shipped in the

zipfile again.”

http://code.google.com/p/html5lib/issues/detail?id=134&colspec=ID%2
0Type%20Status%20Priority%20Milestone%20Owner%20Summary%20P
ort

http://code.google.com/p/robotframework-seleniumlibrary/issues/detail?id=163
http://code.google.com/p/robotframework-seleniumlibrary/issues/detail?id=163
http://code.google.com/p/robotframework-seleniumlibrary/issues/detail?id=163
http://code.google.com/p/html5lib/issues/detail?id=134&colspec=ID Type Status Priority Milestone Owner Summary Port
http://code.google.com/p/html5lib/issues/detail?id=134&colspec=ID Type Status Priority Milestone Owner Summary Port
http://code.google.com/p/html5lib/issues/detail?id=134&colspec=ID Type Status Priority Milestone Owner Summary Port

© Carolyn Seaman, 2013

Documentation Debt

• Documentation that is not
kept up-to-date, e.g.
• Installations and run

instructions

• Architecture
documentation

• Requirements and use case
documentation

• API documentation

• Can be detected by:
• Comparing code changes

with documentation
changes

• Comment density metrics

22

“Except there is no such class or

field in the SDK. It is outdated

documentation that definitely needs

to be updated.”

http://code.google.com/p/android/issues/detail?id=8483

“There is not much documentation

available regarding the format

of .xclangspec files. As a starting

point, see for instance the

outdated documentation at:

http://maxao.free.fr/xcode-plugin-

interface/specifications.html”

http://code.google.com/p/go/source/browse/misc/xcode/go.xclangspec
?r=30b0c392132645259e053a2ba8904383a55bab03

“This was apparently the old

behavior and it's changed now,

but the documentation doesn't so

say.”

http://code.google.com/p/redis/issues/detail?id=514

http://code.google.com/p/android/issues/detail?id=8483
http://code.google.com/p/go/source/browse/misc/xcode/go.xclangspec?r=30b0c392132645259e053a2ba8904383a55bab03
http://code.google.com/p/go/source/browse/misc/xcode/go.xclangspec?r=30b0c392132645259e053a2ba8904383a55bab03
http://code.google.com/p/redis/issues/detail?id=514

© Carolyn Seaman, 2013

Defect Debt

• Known defects that are not
yet fixed

• Low priority defects

• Low severity defects

• Manifest rarely

• Workarounds present

• Can be detected by:

• Examining defect
repositories

• Test results

23

“There are a couple of latent

bugs in the linux TLS

implementation. I'm filing a

single issue because they are

so small and easy to fix.”

http://code.google.com/p/dynamorio/issues/detail?id=358

http://code.google.com/p/dynamorio/issues/detail?id=358

© Carolyn Seaman, 2013

Bottom line for detecting TD

• Different techniques detect different instances and types of
technical debt

• No one approach is sufficient by itself

• No one approach is the right one for everyone

• The solution is a strategy based on

• Business and development goals

• Most painful types of debt

• A combination of approaches that focus on the most pain

• Don’t try to automate it all

• Some kinds of technical debt can only be detected by humans

• Most kinds of technical debt can only be interpreted by humans

• No substitute for talking about it 24

© Carolyn Seaman, 2013

Technical Debt in Decision
Making

25

TD
List

TD
Identification

TD
Estimation

Decision
Making

© Carolyn Seaman, 2013

Simple Cost/Benefit Approach

 Three attributes of a TD item
 Principal

 Interest probability

 Interest amount

 Start with a rough estimate of the attribute values
 High, Medium, Low

 Defer more precise estimation until absolutely necessary – use
historical data when possible:
 Fault detection ability and defect density => testing debt

 Cost of fixing a defect pre-release & post-release => defect debt

 Time and effort for updating documentation => documentation debt

• These are all hard to estimate with any certainty

• Historical data will help

• Any estimation is better than the current method – “gut feeling”

26

© Carolyn Seaman, 2013

Example Scenario

• Technical Debt item: One of your code modules is in need of
refactoring

• TD Principal: Refactoring the entire module will cost $10,000

• From historical data you have established that:

• This module is modified in 75% of all releases

• The cost of changing this module has gone up 10% each time it’s
been changed over its last 5 changes:

• 5 changes ago cost $10,000

• Last change cost almost $15,000

27

© Carolyn Seaman, 2013

Example Scenario (cont.)
• Technical Debt Computation

• For the next release

• Principal for paying off debt: refactoring the module costs $10,000
• Interest:

• Cost of the next change to the module

• If refactored first: $10,000

• If not refactored first: $16,000

• Extra cost if not refactored: about $6000

• Interest avoided = interest amount * interest probability

• $6,000 * .75 = $4500

28

Decision:
Ignore

Interest
$4500 >

Principal
$10,000

© Carolyn Seaman, 2013

Decision Making Scenario
• Question

• When and which technical debt items should be paid?

• Example

• Significant work is planned for component X in the next release, should
we pay down some debt on component X at the same time?

• Assumptions

• There is an up-to-date TD list that is sorted by component and has
high, medium, and low values for principal and interest estimates for
each item.

• Process

29

Select Re-evaluate Estimate Compare Add up

all TD items associated with component X
high/medium/low estimates for these items based on current

context
numerically principal and interest for all items with high interest

probability and high interest amount.
cost (principal) with benefit (interest probability * interest amount) and

ignore any item for which the benefit does not outweigh the cost.
principal for all remaining TD items related to component X

© Carolyn Seaman, 2013

Limitations of the simple
approach
• VERY simplistic

• Does not consider

• Non-financial considerations

• Relationships between TD items

• Relies on ability to estimate based on historical data

• Better estimates come from better data

• BUT even good guesses will work

• Good place to start

• Serves as a baseline from which more sophisticated solutions can
be derived

30

© Carolyn Seaman, 2013

Proposed approaches to TD
management and decision making
• Our proposed approach

• Simplistic cost-benefit analysis

• Models from finance and other domains

• Portfolio management

• Options

• AHP

• SQUALE

• Nugroho et al.

31

© Carolyn Seaman, 2013

Open Research Questions

32

How can source code analysis
tools be used to help estimate

principal and interest?

Should we rely on expert opinion
to determine which types of

technical debt are important? How aware are developers of the
technical debt in their software?

What context factors mediate the
relationship between the type of

technical debt and its impact?

Which types of technical debt
have the highest interest?

How precise do estimates of
principal and interest need to be

in order to effectively support
decision making?

How should technical debt
information be presented to

decision makers?

What other non-financial factors
should be taken into account

when deciding whether or not to
pay off technical debt?

How do developers and
managers view technical debt?

Do the source code analysis tools
we have all detect technical debt

in the same places?

Do the source code analysis tools
we have all detect similar sorts of

technical debt?

Which types of source code
anomalies actually lead to

increased maintenance costs?

Is it cost-effective to explicitly
manage technical debt, or is the

current implicit approach
sufficient?

How difficult and expensive is it
to explicitly document and

manage technical debt?

Can money be saved in the long
run by making better decisions

about paying off technical debt?

© Carolyn Seaman, 2013

Proposed study designs (1)
• Do different source code analysis techniques reveal the same

or different instances of technical debt?

• Procedure

• Apply two or more analysis techniques to the same code base

• Compare the outputs to see if the same modules are indicated as
anomalous by multiple techniques

• Optional: get feedback from the developers as to which tools did
a better job of detecting “important” anomalies

• Requires

• An industrial project willing to run tools on their code base and
share the output (and, optionally, access to developers) or OSS

• A student who can install, configure, and run the tools and run
statistical analysis on the outcomes 33

© Carolyn Seaman, 2013

Proposed study designs (2)
• How useful are source code analysis techniques in helping to

identify technical debt items and quantify their properties?

• Procedure
• Apply an analysis technique to a code base

• Focus group with developers:
• How would you use the output of the analysis to manage technical

debt? including
• How could you quantify the debt that is indicated by the analysis?

• How would you decide when (or if) to pay off the debt?

• What are the consequences of the debt likely to be?

• Requires
• An industrial project willing to run tools on their code base and

share the output, as well as access to developers for a focus
group

• A student who can install, configure, and run the tools and run a
focus group

34

© Carolyn Seaman, 2013

Proposed study designs (3)

• What are the concrete negative effects of technical debt on
software quality?

• Procedure
• Produce two versions of a software module, a “clean” version and

a version that contains some type of technical debt

• Two groups of subjects, one using the “clean” version and the
other using the debt-ridden version, perform the same
maintenance task

• Data is collected on maintenance effort, difficulty, predictability,
and resulting quality and compared between the two groups

• Requires
• A programming course instructor willing to use his/her class for

this study

• A student who can run the study and analyze the data 35

© Carolyn Seaman, 2013

Proposed study designs (4)
• Does explicitly considering technical debt in decision making have

an impact on maintenance cost?

• Procedure

• Collect detailed historical effort, change, defect, test, and release
planning data on several past releases of a software product

• Mine the data for instances of rework that could indicate technical
debt being paid off (e.g. refactoring effort)

• Simulate the effect of NOT carrying out that rework on future
maintenance

• Demonstrate the impact (or lack thereof) of paying off the debt.

• Interview developers to verify the constructed history of the
technical debt

• Requires

• An industrial project with extensive historical data they are willing to
share, and access to some developers

• A student who can collect and mine the historical data
36

© Carolyn Seaman, 2013

Proposed study designs (5)
• What is the best way for a development team to integrate

technical debt management into their process?
• Procedure

• Orient and train an existing development team that is maintaining a
product already in use in technical debt concepts, and in one of the
proposed technical debt management approaches (e.g. the simplistic
approach presented earlier)

• Monitor the team as they explicitly track and manage technical debt
over 3-4 sprints or releases

• Collect data on how long technical debt management activities take,
what decisions are made, and any problems encountered

• Interview decision makers after several releases to gather issues and
improvement suggestions and to ask if they want to continue
explicitly managing technical debt

• Requires
• An industrial project willing to try something new, and access to

some developers
• A student who can carry out all aspects of the case study

37

© Carolyn Seaman, 2013

Summary

• Technical Debt is a metaphor that describes a very real
phenomenon

• Provides a way to talk and reason about the difficulties of software
maintenance

• Technical Debt comes in a variety of forms, all of which can be
detected in different ways

• The ultimate aim of managing technical debt is to be able to
improve decision making

• The types of Technical Debt that are relevant for a particular
situation depends on past experience, organizational culture, and
business environment, i.e. an organization’s pain points.

• While the research is still early, it does provide some guidance as to
Technical Debt identification strategy.

• There are many open research questions

• There are lots of studies waiting to be done

38

© Carolyn Seaman, 2013

First steps towards tracking TD…

• Identify your pain points

• Decide what types of Technical Debt are relevant for you

• Choose a small set of tools and indicators

• Start a TD list – can use our template - probably some
developers already have one

• Track the history of the TD items revealed by the tools to see if
they are detecting “real” debt

• Refine release planning process to incorporate TD

• Track your success in reducing the “pain”

• Add new detection strategies to fill the gaps

• Call us if you need help

• Tell us how it’s going!
39

© Carolyn Seaman, 2013

Thank you!!

• To Graziela and Alfredo

• For inviting and hosting me

• To USP

• For sharing your work and your space with me

• To CNPq and the Brazilian taxpayers

• For funding my sabbatical

• To you

• For being a great audience!

40

© Carolyn Seaman, 2013

Questions?

• Carolyn Seaman

• cseaman@umbc.edu

• carolyn.seaman

41

mailto:cseaman@umbc.edu

