
ObasCId: An Ontologically-Based Approach for
Concern Identification and Classification
Paulo Afonso Parreira Júnior

Department of Computer Science
Federal University of Lavras

Lavras/MG, Brazil
pauloa.junior@dcc.ufla.br

Rosângela Aparecida Dellosso Penteado
Department of Computer

Federal University of São Carlos
São Carlos/SP, Brazil

rosangela@dc.ufscar.br

Abstract —The Aspect-Oriented Requirements Engineering
(AORE) area intends to provide more appropriate strategies
for software concern identification, classification (as
crosscutting or non-crosscutting) and modularization, in the
early phases of software development cycle. A commonly
reported issue about the existing AORE approaches is the lack
of appropriate resources (guidelines, processes, catalogs,
among others) to support software engineers during the
concern identification and classification. This work aims to
mitigate this issue by proposing: (i) a reference ontology for the
software concerns domain, called O4C (Ontology for Concerns);
and (ii) an ontologically-based approach for AORE, called
ObasCId (Ontologically-based Concern Identification and
Classification), that suggests the usage of catalogs of software
concerns and a well-defined process for supporting software
engineers to perform these activities in a more systematic way.
An experimental study was performed on ObasCId and its
results indicated that this approach may positively contribute
for the concern identification and classification effectiveness
without harming its execution time.

Keywords - Crosscutting Concerns; Early-Aspects; Aspect-
Oriented Requirements Engineering; Concern Identification and
Classification

I. INTRODUCTION
In the context of Requirements Engineering (RE), a

concern can be understood as a set of software requirements
related the same purpose [9]. Two types of concerns are
functional concerns and non-functional concerns. The first
one refers to concerns that are related to functional features
of the software, such as “Payment” and “Order
Management”. The last one corresponds to concerns related
to non-functional features of the software, such as “Security”,
“Persistence”, and “Logging”. Several traditional RE
approaches, such as those based on viewpoints, goals, use
cases and scenarios have been developed in order to allow
the modularization of software concerns in an appropriate
way [27]. However, there are some types of concerns that
may not be easily modularized, even in the early phases of
software development cycle. These concerns are known as
CrossCutting Concerns or Early-Aspects and consist of
software concerns whose requirements are spread over
requirements of other software concerns [29]. For instance, a
security concern may contain requirements related to the
encryption and/or authorization properties. These
requirements, for instance, may affect some requirements
related to “Orders Management” concern.

The non-identification of the software concerns,
especially the crosscutting ones, may bring difficulties for the
software development and evolution processes, harming the
reasoning of the software engineer on the effects caused by
the inclusion, removal or update of a requirement over the
other ones [9]. The Aspect-Oriented Requirements
Engineering (AORE) area deals with software concerns

during the early phases of software development [8][27], in
order to identify, classify (as crosscutting or non-
crosscutting), modularize and compose these concerns in a
more appropriate way.

Some experimental studies performed on the main AORE
approaches [15][28] have pointed out concern identification
and classification as bottleneck activities. One of the possible
causes of this is the lack of understanding about the software
concerns domain: there are few studies designed to provide a
clear understanding about the software concern concepts,
aiming to answer questions such as “which are the main
properties of a concern?”, “how does a concern affect other
software concerns”, among others. The knowledge about
software concerns domain is spread in different studies,
sometimes in a divergent way, what may hind the
understanding of researchers and practitioners. Another
possible cause is the lack of appropriate resources
(guidelines, processes, catalogs, among others) to support
software engineers during the concern identification and
classification [23][24]: several AORE approaches rely only
either on the software engineers’ expertise or on the usage of
keywords for the correct identification of software concerns;
in our understanding, this may decrease the effectiveness of
these approaches. Section II presents more details about these
causes, taking the related works into consideration.

In this context, this work aims to improve the
effectiveness of the concern identification and classification
activities by dealing with the above mentioned causes. To do
this, we propose: (i) a reference ontology for the software
concerns domain, called O4C (Ontology for Concerns), that
aims to make clear and precise the description of the
concepts of this domain; and (ii) an ontologically-based
AORE approach, called ObasCId (Ontologically-based
Concern Identification and Classification), that provides
more appropriate resources (catalogs, heuristics, processes)
for supporting software engineers during the concern
identification and classification. The assessment performed
on the ObasCId approach provided results that lead us to
believe that the usage of this approach may improve the
recall of the concern identification and classification, without
negatively impacts on the precision and the execution time of
these activities.

This paper is organized as follows: Section II presents a
discussion about the related works; in Sections III and IV, the
O4C ontology and the ObasCId approach are, respectivey,
presented. A description of an experimental study performed
on the ObasCId approach is in Section V; and, finally,
Section VI highlights the final remarks and proposals for
future works of this paper.

II. RELATED WORKS
Several AORE approaches have been proposed in last

years, especially, for concern identification and classification
[23][24]. Several approaches [1][2][6][7][8][19][20][29]

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.10

141

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.10

141

2016 X Brazilian Symposium on Software Components, Architectures and Reuse

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.10

141

[31][33] suggest the usage of catalogs of Non-Functional
Requirements (NFR catalogs), such as those proposed by
Boehm and In [4], Chung and Leite [10] and Cysneiro [12],
for aiding software engineers while performing the concern
identification and classification activities.

The usage of NFR catalogs in the AORE context is not
totally appropriate, because these catalogs are not prepared
for the software concerns domain and fail to consider some
specific properties of this area. For example, they do not
contain information about functional requirements and their
relationships. According to Moreira et al. [29], functional
requirements also may cut-across other software
requirements, hence, it is important to consider them during
the concern identification and classification. Furthermore,
although these approaches suggest the usage of NFR
catalogs, they do not present guidelines or processes that
indicate how to use them in an appropriate way. In this case,
the quality of the results provided by these approaches are
widely dependent on the software engineers’ expertise.

In other approaches [3][11][27], none resources, such as
NFR catalogs, are provided to aid software engineers during
the concern identification and classification. Instead, they
only suggest the usage of keywords, previously identified by
the software engineer from the requirements document, as
inputs for the concern identification and classification
activities. The main drawback of this strategy is that it does
not consider the existence of implicit concerns, i.e., concerns
that emerge from the existence of other software concerns
and are not explicitly mentioned in the requirements
document, by means of keywords. For instance, if the
software requires a good performance to persist its data, a
possible strategy is using concurrency mechanisms, such as
connection pooling. Hence, as mentioned in the work of
Sampaio et al. [28], “Concurrency” is an implicit concern,
observed from the existence of two other concerns in the
same software: “Persistence” and “Performance”.

As stated in the introduction of this paper, the knowledge
about software concerns domain is spread in different
studies, sometimes in a divergent way. Most of the existing
AORE approaches represents the knowledge about software
concerns in XML files (templates), developed by the authors
of these approaches. These templates are usually presented
without the meta-model that describe them and do not share
the main concepts and relationships existing in the software
concern domain. For instance, the template proposed by
Moreira et al. [19] does not provide information about the
source(s) from which a concern was described, such as a
stakeholder, a business document, among others. However,
this information can be found in templates of other AORE
approaches [1][6][31].

This work differs to those above mentioned, because it:
(i) proposes a conceptual model (O4C ontology) for the
software concerns domain, aiming to make clear and precise
the description of the concepts of this domain; (i) proposes
the usage of software concerns catalogs as inputs for the
concern identification and classification activities, aiming to
provide more useful information for aiding the software
engineers to perform these activities; (ii) provides a set of
activities and heuristics to guide software engineers while
using the software concern catalogs; and (iii) suggests that
the existing relationships among software concerns and
requirements may be used, along with the keywords, to
improve the effectiveness of the concern identification and
classification activities, especially, for the implicit concerns.

Regarding to the usage of ontologies in the RE area, a
systematic mapping conducted by the authors of this paper
[26] presented that there are several ontology-based
approaches for this area. However, none was specific to the
context of AORE. One of the closest works related to this
paper is that one proposed by López et al. [17]. In this work,
the authors presented an ontology for sharing and reusing
NFR and design decisions. The proposed ontology aims to
store the knowledge related to the NFR and design decisions,
based on the description of NFR catalogs. Hence, the
researcher may create instances from this ontology that
address the NFR and design decisions of his/her interest.

The work of López et al. is different from the proposal
of this paper, because: (i) their work is not related to the
AORE area, therefore, it does not address specific properties
of the software concern domain, such as the classification of
a concern as non-functional or functional one, the
relationships between concerns and their keywords, the
decomposition of concerns into sub-concerns, among others;
(ii) their work does not present a set of activities or
guidelines that helps software engineers on how to use the
proposed ontology instances; and (iii) the work does not
present any type of an experimental study on the proposal.

III. ONTOLOGY FOR CONCERNS (O4C)
Software concerns are the focus of the AORE area,

hence, it is important to understand: (i) which are the main
concepts regarding to this subject?; (ii) which are the
relationships between these concepts?, among others.
Providing answers to these questions may minimize the
negative impacts of the issue discussed in the introduction of
this paper. A well-defined understanding of the software
concerns domain may also allow the researchers and
practitioners to build AORE methods, techniques and tools
that may be widely used, since they are based on shared
definitions of this domain.

To do this, a reference ontology for the software concern
domain, called O4C (Ontology for Concerns) was proposed.
Reference ontology is a special kind of conceptual model,
which aims to make clear and precise the description of a
domain with the purpose of communication, learning and
problem solving [14]. The development of O4C considered:
(i) the existing works regarding to AORE, gathered by the
authors of this paper from a systematic mapping of literature
[23][24]; and (ii) the expertise of two researchers that have
worked with AORE for 12 (twelve) years. Moreover, the
O4C ontology was developed in accordance with: (i) the
approach for ontology development, called SABiO
(Systematic Approach for Building Ontologies) [14]; and (ii)
an UML profile for ontology modelling, called OntoUML
[15]. A preliminary version of this ontology was proposed in
[21][22]; in this paper, the final version of O4C is formalized
and described according to SABiO and OntoUML.

The graphical model of O4C ontology is presented in
Figure 1 and its concepts and relationships are commented in
this section.
A. Concern, FunctionalConcern and

NonFunctionalConcern
The “Concern” concept represents individuals that meet

the properties of a software concern (these properties are
discussed in this section). Two subtypes of this concept are
“FunctionalConcern” and “NonFunctionalConcern”.
“FunctionalConcern”, as mentioned in the section of this
paper.

142142142

The “Concern” class is stereotyped with «Kind» and their
subclasses have the «Subkind» stereotype. In accordance to
OntoUML [15], these stereotypes correspond to rigid
concepts, which means that instances of these concepts will
continue to be so as long as they exist. For example,
“Person” is a rigid concept because if “John” is an instance
of “Person”, then it always will be as long as it exists. The
difference between the “Kind” and “Subkind” concepts is
that the first one provides the principle of identity to its
instances and the second one only inherits the principle of
another concept. For example, considering the fingerprint as
the principle of identity provided by the “Person” concept to
its instances, then “Man” and “Woman” are “Subkinds”
concepts, because they inherit the identity principle of
“Person”.

Figure 1. Ontology for Concerns (O4C)

The “Concern”, “FunctionalConcern” and
“NonFunctionalConcern” concepts are well-known in the
AORE community and are reported in several studies [1][2]
[3][6][7][8][11] [20][27][29][31][33].
B. Keyword and Source

The “Keyword” concept appears in some AORE
approaches [3][11][27], however, none of the analyzed works
presented the idea of store these keywords in order to use
them in other projects. In the O4C ontology, this concept was
created aiming to store the keywords commonly used to
identify a particular concern. For example, “save”, “update”
and “persist” may be used to provide indications of the
existence of the “Persistence” concern.

The idea represented by “Source” class, its “st” attribute
and the “SourceType” enumerated class, refers to the
possible sources from which the description of a software
concern may be extracted. A software concern may be
related to several sources and they are important in the
concern identification and classification process, because
they can help the software engineer to identify who or what
need to be consulted when a particular concern is not being
correctly identified.

According to Agostinho et al. [1], Brito and Moreira [6]
and Whittle and Araújo [31], the possible source types are:
(i) stakeholders, for example, a project manager, an expert in
security, among others; (ii) NFR catalogs, such as those
proposed by Boehm and In [4], Chung and Leite [10],
Cysneiro [12], among others; or (iii) business documents,
such as a security protocol of a company.
C. Contribution, Dependency and Composition

The possible types of concern relationships are
represented by the “Contribution”, “Dependency” and
“Composition” concepts (sub-concepts of “Relationship”).
These classes were stereotyped with «Relator». In OntoUML,

“Relators” are mediator elements, i.e., elements that mediate
the relationship among other ones, making it real. In Figure
1, it is possible to notice a relationship, called “isRelatedTo”,
stereotyped with «Material». “Material” relationships are
applied to relations that depend on a mediator element to
exist. For example, the “married to” relationship is only valid
while a “marriage” (relator) exists. In the same way, the
“isRelatedTo” relationship is only valid while a
“Relatioship” (relator) between two concerns exists.

It is also important to highlight the two relationships
stereotyped with «Mediation», called “source” and “target”.
According to OntoUML, “Mediation” is a type of
relationship that binds the “Relator” to the elements whose
relationship is mediated by it. In this case, these relationships
describe what are the source and the target of a concern
relationship.

The type of relationship addressed by the concept
“Composition” describes the idea of decomposition of a
concern into sub-concerns. This concept is important,
because a given concern may be too wide and reducing its
granularity may facilitate the reasoning of the software
engineer on which concerns are really present in the software
and which are the appropriate strategies for modularizing
them. For instance, the “Security” concern can be
decomposed into sub-concerns such as “Authorization”,
“Encryption”, among others. There may be the
“Authorization” sub-concern in a specific software, but not
the “Encryption” sub-concern.

“Dependency” class defines a dependency relationship
between two concerns. This means if an “A” concern
(source) depends on “B” (target) and “A” appears in the
software requirements document, then “B” need to be there
too. This type of information is important because: (i) it
allows the software engineer to explore other concerns,
before unrecognized by him/her, i.e., by saying that “A”
depends on “B”, he/she should also look for keywords
related to “B” concern in the requirements document; and (ii)
it allows the software engineer to verify inconsistencies in
the requirements document, i.e., if a concern “A” depends on
“B” and “B” is not described in the software requirements,
then the requirements document may be inconsistent.

“Contribution” class represents a mutual influence
between different concerns. A contribution can be
“Negative” or “Positive”, as defined by the
“ContributionType” enumeration and the “ct” attribute of the
“Contribution” class. An example of contribution is that
existing among “Concurrency”, “Performance” and “Cost”
concerns. The implementation of concurrency mechanisms in
the software can positively contribute to the software
performance, but not to the project cost.

The “Contribution”, “Composition” and “Dependency”
concepts are presented quite divergently in the related works.
The idea represented by the “Contribution” concept is
reported in the approaches proposed by Moreira et al. [19]
and Soeiro et al. [29]. However, in both approaches, the
usage of this concept is limited to the project under analysis
and there are no guidelines clearly indicated by the authors
about how to reuse this knowledge in other projects. The
approach proposed by Moreira et al. [19] also provides a
XML file (template) responsible for specifying the
relationships among different concerns, however, this
template does not differentiate the types of possible
relationships, such as dependency, composition, among
others. The “Dependency” concept was found only in the

143143143

approach proposed by Soeiro et al. [29] and the
“Composition” concept was not found in the analyzed works.

In all cases discussed above, the mentioned approaches do
not report how the information on the concern relationships
may be useful in the process of concern identification and
classification. Hence, the adequate application of this
information is highly dependent on software engineers’
expertise.

IV. OBASCID APPROACH
ObasCId is an ontologically-based AORE approach that

proposes a set of activities and heuristics for concern
identification and classification from software requirements.
The “ontologically-based” expression refers to the fact that
ObasCId takes the concepts of the O4C ontology into
account in its conception. The ObasCId approach consists of
the following phases: (i) Preparing the Catalog of Software
Concerns; (ii) Preparing the Requirements Document; and
(iii) Performing Concern Identification and Classification.
A. Preparing the Catalog of Software Concerns

This phase has the responsibility of obtaining, preparing
or updating a catalog of software concerns to be used in other
phases of ObasCId approach. By using the concepts defined
in the O4C ontology, it is possible to store the existing
knowledge about specific types of concerns, generating
catalogs of software concerns. For example, O4C ontology
describes the “NonFunctionalConcern” concept, hence, in an
O4C-based catalog, there will be instances of non-functional
concerns, such as “Security”, “Persistence”, “Logging”,
among others.

Catalogs of software concerns may be generated from:
(i) NFR catalogs, such as those proposed by Boehm and In
[4], Chung and Leite [10] and Cysneiro [12]; (ii) the
knowledge of experts on AORE; (iii) business documents,
such as security and privacy protocols, pattern language,
such as the language for Business Resource Management [5],
among others; or (iii) historical data of previous projects.

Figure 2 and Figure 3 present two examples of O4C-
based catalogs. In the catalogs, the stereotypes refer to O4C
concepts and the classes represent instances of these
concepts. Figure 2 shows a part of the catalog generated from
historical data of the software Health Watcher [13]. Health
Watcher is an information system that aims to record
complaints regarding to health area. The concerns of this
software were identified and classified by experts in AORE
and health domains.

The proposed catalog presents seven non-functional
concerns, related to twenty-eight keywords, and three
functional concerns, related to six keywords. In addition,
there are two contribution relationships (a positive
contribution between “Concurrency” and “Performance” and
a negative contribution between “Security” and
“Performance”) and two composition relationships, between
“Complaint” and “AnimalComplaint” and “Complaint” and
“FoodComplaint”. The idea is this catalog may be used for
the identification and classification of non-functional
concerns in other software projects.

The catalog of Figure 3, in turn, was built from the
concepts represented in a pattern language, called Business
Resource Management [5]. This pattern language was
designed to assist the development of information systems in
the business resource management domain. This catalog has
seven functional concerns, seventeen keywords and five
relationships: (i) three compositions between the concerns
“Transaction” and “Rental”, “Transaction” and

“Commercialization” and “Transaction” and “Reservation”;
and (ii) two dependencies between the concerns “Payment”
and “Transaction” and “Delivery” and “Payment”.

By combining the non-functional concerns of the catalog
presented in Figure 2 with all concerns of the catalog of
Figure 3, it is possible to generate a broader catalog that may
be used to identify both functional and non-functional
concerns of information systems related to business resource
management domain. This strategy was used in the
experimental study presented in Section V. Section IV.C of
this paper present how to use a software concern catalog,
such as those previously presented, in order to identify and
classify software concerns from requirements documents.
B. Preparing the Requirements Document

This phase allows the software engineer to
obtain/prepare/update the requirements document on which
will occur the concern identification and classification. The
template used to represent the software requirements in the
ObasCId approach is based on a list of software requirements
that contains (for each requirement): (i) the requirement
identifier; (ii) the requirement type (functional or non-
functional); (iii) a plain-text description; and (iv) a list of
other requirements on which it depends. All these
information are needed to improve the quality of the concern
identification and classification results, as may be explained
later in this paper.

Table 1 illustrates a part of the requirements document of
Health Watcher [13], according to the model described
above. In this example, there are two non-functional
requirements (“NFR-01” and “NFR-02”) and one functional
requirement (“FR-01”). In addition, the functional
requirement depends on the other two requirements. The full
requirements document of Health Watcher can be found in
[13].

Table 1. Part of the Health Watcher requirements
document.

Identifier Type Requirement Description Depends on

FR-01 FR
It allows the state of a complaint to be
updated. The complaint must be
registered and have the OPENED state.

NFR-01,
NFR-02

NFR-01 NFR

The system should have an easy to use
GUI, as any person who has access to the
internet should be able to use the system.
The system should have an on-line HELP
to be consulted by any person that uses it.

-

NFR-02 NFR The response time must not exceed 5
seconds. -

Legend: Functional Requirement (FR); Non-functional Requirement (NFR)

C. Performing Concern Identification and Classification
This phase aims to identify and classify the existing

concerns of the software from the catalog and the
requirements document prepared in the previous phases. This
phase is divided into (Figure 4): (i) Identifying concerns from
keywords; (ii) Identifying concerns from the interdependence
among software requirements; (iii) Specifying main
concerns; (iv) Verifying the results of concern identification;
and (v) Classifying concerns.

1) Identifying concerns from keywords
This activity aims to identify the software concerns from

the software requirements document. This is done by
searching for the keywords of each concern presented in the
catalog on the description of the software requirements. If
any keyword (it is important to take into consideration the
grammatical variations of the keyword, such as plural forms,
verb conjugation, among others) of a particular concern is in
the description of a software requirement, it is stated that this
concern is related to the requirement in analysis.

144144144

Figure 2. Part of a catalog generated from historical data.

Figure 3. Part of a catalog generated from a pattern language.

Legend: Activity; Artifact.

Figure 4. Overview of the “Performing Concern
Identification and Classification” phase

As may be seen in Figure 4, this activity takes the catalog
of software concerns and the requirements document as
inputs and generates a list of requirements and related

concerns as an output, i.e., a list in which, for each
requirement there is a set of concerns identified for it.

By taking the requirements of Table 1 and the catalog of
Figure 2 as inputs, after executing this activity, it is generated
the list of requirements and related concerns presented in
Table 2.

Table 2. List of requirements and related concerns.
Requirement FR-01 Concerns

It allows the state of a complaint to be updated. The
complaint must be registered and have the OPENED state.

Persistence
Complaint

Requirement NFR-02 Concerns
The system should have an easy to use GUI, as any person
who has access to the internet should be able to use the
system. The system should have an on-line HELP to be
consulted by any person that uses it.

Usability

Requirement NFR-03 Concerns
The response time must not exceed 5 seconds. Performance
Legend: the keywords used in the concern identification were underlined.

2) Identifying concerns from the interdependence among
software requirements

145145145

In this activity, the software engineer has the responsibility
of identifying other software concerns, which could not be
identified only using keywords. To do this, the dependency
relationships among software requirements and the list of
requirements and related concerns are used. As results, the
list of requirements and related concerns may be updated,
including new concerns, if necessary.

To exemplify a situation for which this activity is
relevant, consider the requirements presented in Table 1. It
may be noticed that the requirement “FR-01” depends on the
requirement “NFR-01”, which was written aiming to specify
the performance behavior of the software. This dependency
exists because in the description of the requirement “NFR-
01” is clear that the performance attribute must be applied to
other functions of the software. Once the requirement “FR-
01” depends on the requirement “NFR-01”, related to
“Performance” concern, then we may assume that “FR-01” is
related to this concern too.

After executing this activity, the list of requirements and
related concerns is updated, as can be seen in Table 3. The
requirement “FR-01” now is related to “Performance” and
“Usability” concerns. The reasons for the inclusion of
“Usability” are similar to those presented for “Performance”
concern. The “Main Concern” column will be explained later
in this paper.

Table 3. List of requirements and related concerns
updated.

Requirement FR-01 Concerns Main
Concern

It allows the state of a complaint to be updated. The
complaint must be registered and have the OPENED
state.

Persistence
Complaint X
Usability

Performance
Requirement NFR-02 Concerns Main

Concern
The system should have an easy to use GUI, as any
person who has access to the internet should be able
to use the system. The system should have an on-line
HELP to be consulted by any person that uses it.

Usability X

Requirement NFR-03 Concerns Main
Concern

The response time must not exceed 5 seconds. Performance X

3) Specifying main concerns
In this activity, the software engineer must inform what is

the main concern of each software requirement. This concern
represents the main purpose for which the requirement was
written. The result of this activity is the updating of the list of
requirements and related concerns; the specification of main
concerns is important for the concern classification, as will
be presented in the next sections.

In the example of Table 3, the requirements “NFR-01”
and “NFR-02” are related to only one concern, which is their
main concern. The requirement “FR-01”, in turn, is related to
four distinct software concerns: “Persistence”, “Complaint”,
“Performance” and “Usability”. By considering the
description of this requirement, it is possible to notice that it
was written in order to specify the feature related to
complaint updates. Hence, “Complaint” must be considered
the main concern of this requirement.

If there is a requirement for which is difficult to decide
which is its main concern, the software engineer may
consider rewriting this requirement. It is also important to
state that “a requirement with only one concern” does not
mean that this concern is the main concern of the
requirement. This is possible because the identified concern
may be a false positive. Hence, it is important that the
software engineer check the requirements with only one
concern as well.

4) Verifying the results of concern identification
In this activity, the software engineer has the

responsibility of verifying the list of requirements and related
concerns, aiming to find potential problems with the concern
identification process. This must be done before performing
the next activities of the approach.

This activity takes the list of requirements and related
concerns and the catalog of software concerns as inputs and
may generate a list of occurrences regarding to concern
identification process. To produce this list, the software
engineer must apply a set of four heuristics, as presented in
Table 4. This table presents the description of each heuristic,
as well as the reason for the existence of it.

When a heuristic is not satisfied, an occurrence is
generated and then it must be analyzed by the software
engineer. For instance, one of the proposed heuristics state
that each software requirement must be related to its main
concern. If a particular requirement “r” is not addressed by
any software concern, an occurrence will be generated for
this requirement. It is important to notice that not all
occurrences represent an error. Hence, the software engineer
must check the need to resolve or not each generated
occurrence.

Table 4. Heuristics for the verification of the concern

identification process.
Heuristic #1

Description: each software requirement is related to its main concern.
Justification: each software requirement must be related to a main concern, because
each requirement is written with one purpose.

Heuristic #2
Description: if there is a “positive contribution” relationship “rel” that binds the
concerns “A” (source) and “B” (target), and “B” was found in the software
requirements, then “A” or any of its sub-concerns was identified too.
Justification: the fact that “A” contributes positively to “B” provides evidences that
if “B” was identified, “A” (or any of its sub-concerns) should also be. However, this
is not an error. More than one concern can contribute positively to “B” and the
software engineer could choose just one option. For example, “Performance” and
“Standardization” contribute positively to “Usability”, but only one of them may be
addressed in the software. However, it is necessary to generate a warning
occurrence, since it may indicate concerns that the software engineer had not
previously considered.

Heuristic #3
Description: if there is a “dependency” relationship “rel” that binds the concerns
“A” (source) and “B” (target), and “A” was found in the software requirements, then
“B” or any of its sub-concerns was identified too.
Justification: the fact that “A” depends on “B” means that for that “A” exists, “B”
(or any of its sub-concerns) must exist too. For example, the catalog of Figure 3
presents a dependency relationship between “Payment” and “Transaction”. Then, for
that “Payment” exists, “Transaction” must exist too.

Heuristic #4
Description: if a non-functional concern “A” was found in the software
requirements, then “A” (or any of its sub-concerns) is related to one or more
functional requirements.
Justification: it is well known in the scientific community that non-functional
concerns commonly presents a crosscutting behavior, such as “Logging”,
“Persistence”, “Distribution”, “Security”, among others (Sampaio et al. [28]). Thus,
at the end of the concern identification process, if there are non-functional concerns
identified in the software that do not affect any functional requirements, the
crosscutting behavior of this concern is being omitted. This is not an error
occurrence, but is a warning that needs to be checked by the software engineer.

ObasCId approach also provides, for each heuristic, a set
of suggestions for solving the occurrence generated by this
heuristic. The goal is to help the ObasCId users, especially
the non-experts, to take more appropriate decisions on how
to deal with these occurrences. Due to space limitation, only
the suggestions for the heuristic #3 are presented below. The
suggestions of remain heuristics must be found in [25]:

• Check the spelling of the keywords related to “B”
concern (and its sub-concerns), as well as those
related to the software requirements;

• Check the possibility of adding new keywords to the
“B” concern (or its sub-concerns); or

146146146

• Check the possibility of rewriting the description of
some software requirements.

By performing this activity on the list of requirements and
related concerns presented in Table 3, taking as input the
catalog of Figure 2, it will be generated an occurrence
derived of heuristic #2, because the “Concurrency” concern
contributes positively to “Performance” (according to the
catalog of software concerns), but “Concurrency” was not
identified in the software requirements. In this case, we
considered that this is not a problem and we ignored this
occurrence.

If needed, the software engineer may back to the initial
phases of the approach, such as “Preparing the Catalog of
Software Concerns” or “Preparing the Requirements
Document”, aiming to solve the occurrences produced by this
activity.

5) Classifying concerns
This activity uses the list of requirements and related

concerns to build a crosscutting matrix that represents the
crosscutting relationships among different software
concerns. Crosscutting matrix is a “Main Concern vs.
CrossCuttting Concern” matrix; when a cell “[C1, C2]” is
highlighted, this indicates that “C2” cut-across “C1”.

In this activity, we can assume that each software
requirement has a main concern “MC” and a set of zero or
more related concerns {“C1”, “C2”, … “Cn”). In the
ObasCId approach, we consider that all concerns “C1”,
“C2”, … “Cn” cut-across the main concern, “MC”. Hence,
all cells “[MC, C1]”, “[MC, C2]”, … “[MC, Cn]”, must be
highlighted. If a requirement is related only to its main
concern, none cell of the row “MC” will be highlighted.

From the list of requirements and related concerns of
Table 3, it is possible to generate the crosscutting matrix
presented in Table 5.

Table 5. Example of a crosscutting matrix.
� Main Concerns/CCC � 1:

Persist.
2:

Compl.
3:

Usab.
4:

Perf.
1: Persistence
2: Complaint X X X

3: Usability
4: Performance

It is possible to notice that the “FR-01” requirement,
whose main concern is “Complaint”, is related to other
concerns, such as “Persistence”, “Usability” and
“Performance”. Hence, the cells “[Complaint, Persistence]”,
“[Complaint, Usability]” and “[Complaint, Performance]”
were marked with a “X”.

By keeping the focus on the columns of a crosscutting
matrix, the software engineer will have an overview on
which concerns cut-across the behavior of other concerns.
The more a concern “A” affects other software concerns, the
higher is the likely of “A” be a crosscutting concern. To
know which requirements are affected by a specific concern,
the list of requirements and related concerns may be used.

In an ideal scenario, each concern “A” should only affect
requirements for which it is its main concern. In other
words, the column related to “A” concern should contain
only empty cells. Hence, in the ObasCId approach, all
columns with at least a “X” value refer to crosscutting
concerns candidates. In the case of Table 5, all concerns,
except the “Complaint” (column 2), are considered
crosscutting concerns candidates.

The crosscutting matrix proposed in this paper is similar
to that presented in the approach proposed by Rashid et al.
[27]. However, the matrix proposed by Rashid et al. is a
“Non-functional Concerns vs. Viewpoints” matrix. Hence,
only the influence of non-functional concerns over
functional concerns (called viewpoints in the authors’
proposal) may be studied. The advantage of the crosscutting
matrix proposed in this paper is that the crosscutting
behavior existing among functional concerns on other
software concerns can also be analyzed. This is important,
because it is well-known that functional concerns also can
cut-across other software concerns [19].

Based on the results of the concern identification and
classification process, the software engineer may back to the
initial phases of the approach, aiming to
include/remove/update elements of the catalog or
requirements document that will improve the quality of
these results.

V. EXPERIMENTAL STUDY
For the assessment of the ObasCId approach, the

following GQM-based goal [32] was proposed: to analyze
the usage of the ObasCId approach, in order to evaluate, with
respect to its effectiveness (recall and precision) and
efficiency (time of execution), from the point of view of
software engineers, in the context of a group of
undergraduate and graduate in Computer Science.

Aiming to achieve this goal, a group of participants was
asked to identify and classify the concerns of two software
using as support the ObasCId and Theme/Doc approaches
[3][11].
A. Theme/Doc Overview

The Theme/Doc [3][11] approach is based on three main
activities: “Identifying key-actions”, “Building an action-
view” and “Classifying actions as base or crosscutting ones”.
Identifying concerns with Theme/Doc requires that the
software engineer provides: (i) a list of key-actions, i.e.,
verbs identified from the software requirements (“Identifying
key-actions” activity); and (ii) a set of software requirements.
Based on these inputs, the software engineer performs an
analysis of the requirements document and generates an
action-view artifact (“Building an action-view” activity). An
action-view represents the relationships among requirements
and key-actions.

The classification of these actions as base or
crosscutting ones may be performed by mean of the
“Classifying actions as base or crosscutting ones” activity,
that requires as inputs the action-view and the set of
software requirements. The software engineer initially must
examine the requirements that refer to more than one key-
action and determine what is the primary action (more
important action) of these requirements. Once defined the
primary action of a requirement, we say that all other actions
of it are affected by the behavior of the primary action. The
idea is to separate and isolate actions and requirements into
two groups: (i) the “base” group, that is self-contained, i.e.,
the requirements of this group do not refer to actions of the
other group; and (ii) the “crosscutting” group, whose
requirements can refer to actions of the base group.

The primary actions and the process of action
classification are similar to the concepts of main concern
and concern classification activity in ObasCId approch.
However, ObasCId takes into consideration the relationships

147147147

between requirements and concerns to improve the
effectiveness the concern identification and classification
process. Furthermore, ObasCId provides resources to
represent and reuse the knowledge about concern domain in
other projects, such as, concern catalogs, heuristics, among
others.

Theme/Doc was chosen to be compared to ObasCId
because: (i) it is based on the usage of keywords; (ii) unlike
other approaches [8], Theme/Doc does not depend on
computational tools for its execution; (iii) it is simple and
easy to use; (iv) the authors of this paper had some previous
experience on the usage of Theme/Doc; and (v) it is a robust
approach that has been evaluated in recent experimental
studies [15].
B. Planning

The planning of this experimental study was defined
according to the Wohlin’s proposal [32] and involves the
following steps: (i) context selection; (ii) hypotheses
formulation; (iii) variables selection; (iv) participants
selection; and (v) design and execution of the experimental
study.

a) Context selection. This experimental study was
conducted with fourteen undergraduate and graduate students
in Computer Science from two Federal Universities from
Brazil. The requirements documents of Health Watcher [13]
and of an information system for DVD rental (LocaDVD)
[30] were used in this study. As already stated in this paper,
Health Watcher is a well-known application in the AORE
area and was chosen because it has a suitable requirements
document for concern identification and classification.
LocaDVD, in turn, was chosen because it is a business
resource management application, suitable for be used with
catalogs for software concerns created from the pattern
language proposed by Braga et al. [5], such as the catalog of
Figure 3.

b) Hypotheses formulation. An important part of the
hypotheses formulation step is the specification of the
metrics that will be used in the experimental study. Based on
these metrics, the researcher may establish hypotheses and
draw conclusions from the results of the experiment. In this
work, three metrics were used: (i) Recall (Re) - the
proportion of the amount of correctly identified and classified
concerns on the amount of existing concerns; (ii) Precision
(Pr) - the proportion of the amount of correctly identified and
classified concerns on the amount of identified concern; and
(iii) Execution Time (T) - time (in minutes) spent for
performing the activities proposed in the experimental study.

Based on these metrics, six hypotheses were developed,
two related to recall, two for the precision and two for the
execution time (Table 6).

Table 6. Hypotheses of the experimental study.
Hypotheses for Recall

H0Re
There is no difference of using ObasCId or Theme/Doc, regarding
to the recall, that is, H0Re: ReObasCId = ReTheme/Doc

H1Re
There is difference of using ObasCId or Theme/Doc, regarding to
the recall, that is, H1Re: ReObasCId � ReTheme/Doc

Hypotheses for Precision

H0Pr
There is no difference of using ObasCId or Theme/Doc, regarding
to the precision, that is, H0Pr: PrObasCId = PrTheme/Doc

H1Pr
There is difference of using ObasCId or Theme/Doc, regarding to
the precision, that is, H1Pr: PrObasCId � PrTheme/Doc

Hypotheses for Execution Time

H0T There is no difference of using ObasCId or Theme/Doc, regarding
to the execution time, that is, H0T: TObasCId = TTheme/Doc

H1T There is difference of using ObasCId or Theme/Doc, regarding to
the execution time, that is, H1T: TObasCId � TTheme/Doc

c) Variables and participants selection. Independent
variables are those manipulated and controlled during the
experimental study. In this study, the only independent
variable is the approach for concern identification and
classification (ObasCId and Theme/Doc). The dependent
variables are those under evaluation and whose variations
must be observed. In this experiment, the recall, precision
and execution time metrics are dependent variables. The
participants of this study were selected through a non-
probability for convenience sampling.

d) Design and execution of the experimental study.
The distribution of the participants was performed aiming to
form two homogeneous groups, regarding to the participants’
expertise. Each group had seven participants and their
expertise was verified by the application of a profile
characterization questionnaire. This questionnaire took into
account the knowledge of the participants about the AORE
area and the approaches used in the experiment.

The experimental study was planned in phases to
minimize the effect of participants’ knowledge of the
dependent variables. Before starting the experiment, a
training was conducted, in order to homogenize the
knowledge of participants on AORE and on Theme/Doc and
ObasCId approaches. During the training, it was not
informed to the participants what approach was developed by
the authors of this paper.

The execution of the experimental study occurred in two
phases. In the first phase, participants should identify the
non-functional concerns present in the requirements
document of the Health Watcher and classify them as
crosscutting or non-crosscutting. To do this, the Group 1
used the Theme/Doc approach and Group 2, the ObasCId. In
the second phase, participants should identify the functional
and non-functional concerns of the LocaDVD and also
classify them as crosscutting or non-crosscutting. To do this,
the Group 1 used the ObasCId approach and Group 2,
Theme/Doc. The participants had to perform all activities
proposed by Theme/Doc. In the case of ObasCId, the
participants had to perform the activities presented in Figure
4, i.e., only the activities of the “Performing Concern
Identification and Classification” phase.

The part of the Health Watcher requirements document
analyzed by the participants had six types of non-functional
crosscutting concerns: “Security”, “Concurrency”,
“Usability”, “Performance”, “Availability” and
“Persistence”. Functional concerns were not considered,
because it was not found a source that could be used to
generate a catalog of functional concerns regarding to the
health complaint domain. For the LocaDVD software, the
requirements document had four functional concerns
(“Payment”, “Transaction”, “Resource” and “Destination”)
and two non-functional concerns (“Logging” and
“Persistence”); three of these six concerns were crosscutting
ones (“Logging”, “Persistence” and “Transaction”). The size
of requirements documents of both software was similar. To
calculate the values of the recall and precision metrics, it was
considered the amount of concern correctly identified and
classified by each participant, individually.

In the first phase of the experiment, the participants of
the Group 2 also received a catalog of non-functional
concerns, created by the authors of this paper from the NFR
catalogs proposed by Boehm and In [4], Chung and Leite
[10] and Cysneiro [12]. In the second phase of the
experiment, along with the requirements document of
LocaDVD, the participants of Group 1 received the catalog

148148148

of non-functional concerns used in the first phase of the
experiment and a catalog of functional concerns generated
from the patterns of the Business Resource Management
language [5].
C. Results and Discussion

Table 7 presents the results obtained by both groups of
participants, regarding to the Health Watcher software (first
phase). Taking into account the values for recall, the
participants who used the ObasCId approach had, on
average, more promising results than those who used the
Theme/Doc. It is also possible to notice that there is no
relevant difference between the two approaches, regarding to
the precision. Table 7 still presents that the execution time
provided by ObasCId (46 min) was higher than that one
provided by Theme/Doc approach (41 min). This is due to the
participants who used ObasCId had other artifacts to be
analyzed, i.e., the catalogs of software concerns, as well as
some new activities to perform. However, we noted that the
difference between the two values (5 minutes) is not
significant. Although the participants who used the ObasCId
approach had to perform additional tasks, the usage of the
catalogs and the proposed process may have led the
participants to perform the concern identification and
classification activities in a more focused way. This may
have minimized the impact on the execution time provided
by ObasCId approach.

Table 7. Experimental results - first phase.
Theme/Doc (Group 1) ObasCId (Group 2)

Partic. Recall
(Re)

Precision
(Pr)

Time
(min) Partic. Recall

(Re)
Precision

(Pr)
Time
(min)

P1 42,85 75,00 43 P8 71,42 71,00 62
P2 42,85 100,00 48 P9 85,71 100,00 39
P3 42,85 100,00 49 P10 85,71 100,00 54
P4 28,57 66,00 48 P11 71,42 100,00 37
P5 57,14 80,00 36 P12 57,14 75,00 43
P6 42,85 100,00 31 P13 71,42 80,00 42
P7 28,57 100,00 34 P14 71,42 100,00 42

Avg. 40,81 88,71 41,28 Avg. 73,46 89,42 45,57

To improve the discussion about the recall values, Table
8 presents: (i) the list of concerns of Health Watcher - first
column; (ii) the concerns identified by each participant who
used the Theme/Doc approach - from second to eighth
columns; (iii) the percentage of participants who identified
each concern - ninth column; and (iv) the same information
previously described to the ObasCId approach – from tenth
to the eighteenth column.

Table 8. Health Watcher concern identification.
Participants Theme/Doc % Participants ObasCId % 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 X X 28 X X X X X 57
2 X X X X X X X 100 X X X X X X X 100
3 X 14 X X X X X 71
4 X X X X 57 X X X X X X 85
5 X X X 43 X X X X X 71
6 X X X 43 X X X X X 71

Average 47,5 Average 75,8
Legend: (1) Persistence; (2) Security; (3) Concurrency; (4) Usability; (5)
Performance; (6) Availability.

Based on this table, it is possible to notice that only one
of the participants who used the Theme/Doc approach was
able to identify the “Concurrency” concern; “Concurrency”
was an implicit concern of the Health Watcher requirements
document, i.e., a concern not explicitly mentioned by means
of keywords. Regarding to the participants who used
ObasCId approach, just two participants did not identify this
concern. We believe this happens due to the usage of
dependency relationships among software concerns during
the concern identification and classification activities, as

proposed by ObasCId approach. For all concerns, the
percentage of participants who identified them is always
higher for ObasCId approach than for the Theme/Doc.
Consequently, on average, the percentage of participants who
identified any concern using ObasCId approach (75,8%) is
higher than that one who used Theme/Doc (47,5%).

The same type of information presented for the Health
Watcher are also presented for LocaDVD (second phase), as
can be seen in Table 9.

Table 9. Experimental results - second phase.
ObasCId (Group 1) Theme/Doc (Group 2)

Partic. Recall
(Re)

Precision
(Pr)

Time
(min) Partic. Recall

(Re)
Precision

(Pr)
Time
(min)

P1 83,00 83,00 32 P8 33,00 66,00 18
P2 83,00 71,00 22 P9 66,00 80,00 29
P3 100,00 75,00 18 P10 66,00 80,00 15
P4 66,00 100,00 42 P11 33,00 100,00 32
P5 66,00 80,00 37 P12 71,00 71,00 13
P6 100,00 86,00 22 P13 50,00 60,00 18
P7 83,00 71,00 25 P14 50,00 75,00 21

Avg. 83,00 80,85 28,28 Avg. 52,71 76,00 20,85

Some important facts about the results of Table 9 are: (i)

Sampaio et al. [28] stated the precision of AORE approaches
is satisfactory, but the recall not. This situation was observed
in the case of Theme/Doc approach, but not for the ObasCId
approach. The recall provided by ObasCId is quite similar to
the precision. This may be due to the support provided by
ObasCId approach for the software engineers to perform the
concern identification and classification;

(ii) the execution time provided by both approaches
reduced when it is compared to the execution time needed to
identify and classify the concerns of the Health Watcher
software; however, the difference between the ObasCId and
Theme/Doc approaches continues, i.e., less time was needed
for the execution of Theme/Doc approach. The reduction may
be explained by the features of the software used. Although
both software contain a similar number of concerns and
requirements, the domain of the LocaDVD software is more
common than the domain of Health Watcher. This could
have facilitated the process of reading and understanding the
requirements document of LocaDVD; and

(iii) the recall provided by ObasCId approach is still
higher than the recall provided by Theme/Doc, even using
different software and participants; the precision provided by
ObasCId approach remains higher than that provided by the
Theme/Doc; however, the difference was not significant.
D. Hypothesis tests

To verify the hypotheses defined in Table 8, the t-test
was applied [18]. Regarding to the Health Watcher software,
comparing the average values for recall provided by the
approaches Theme/Doc (average = 40,81) and ObasCId
(average = 73,46), the H0Re null hypothesis may be rejected
with significance level of 99,9% (p-value = 0,0004). This
situation also happens for the LocaDVD software, regarding
to the recall. Regarding to the average time spent by the
participants to perform the activities of the Theme/Doc and
ObasCId, it was not possible to obtain statistical evidences,
with significance level equal or higher than 95%, to state that
these values are different. For both software, we obtained the
same situation for precision values.
E. Threats to validity

The main threats to validity of this study are: 1)
Conclusion validity. This type of threat refers to issues that
affect the ability to draw correct conclusions about the
experimental results. An example of this type of threat is the

149149149

choice of the statistical methods for data analysis. In this
study, the t-test was used, which requires normally
distributed data. To verify if the data is normally distributed,
we have applied a test known as Shapiro-Wilk test [18] and
the values for recall, precision and time metrics were
considered normalized with a significance level of 99,9%.

2) Internal validity. It refers to issues that may affect
the ability to ensure that the results were, in fact, obtained
from the treatments (i.e. the AORE approaches: ObasCId and
Theme/Doc) and not by coincidence. A threat of this type can
be related to the strategy used to select and group the
participants of the experimental study. To mitigate this threat,
we did not demonstrate expectations for any approach during
the training phase. In addition, the participants were grouped
according to their levels of experience.

3) External validity. This type of threat refers to issues
that affect the ability to generalize the results of an
experiment to a wider context. In this case, the relevant
factors that could have influenced the results of this study
are: (i) the size of the applications used in the study; (ii) the
quality of the resources (software concerns catalogs and the
requirements documents) presented to the participants; (iii)
the amount of participants of the study; and (iv) the usage of
undergraduate and graduate students in Computer Science. In
order to mitigate these potential threats, we intend to
replicate this experiment with other groups of participants
and different applications.

VI. FINAL REMARKS
This paper presented an ontology for concerns (O4C) and

ontologically-based AORE approach (ObasCId). The main
innovation of ObasCId approach are the catalogs built from
O4C concepts and the set of activities to support the software
engineers during the concern identification and classification.
An experimental study performed on ObasCId showed
evidences that the usage of this approach may improve the
values for recall, without negatively impact on the execution
time and precision.

The main limitation of this approach is that the quality of
the results provided by it is influenced by: (i) the existence of
good catalogs of software concerns; (ii) the expertise of the
software engineers in performing some activities of ObasCId
approach, such as “Specifying main concerns”; and (iii) the
lack of computational tools for supporting the execution of
ObasCId in medium and high scale software.

Aiming to mitigate these limitations, as future work
proposals, we intend to: (i) register other types of concerns as
catalogs of the O4C ontology; (ii) create a computational tool
for concern identification and classification, based on the
ObasCId approach; and (iii) propose heuristics that aid
software engineers to find the main concern of a requirement.
Furthermore, we intent to introduce ObasCId in a real
professional environment, aiming to figure out how
easy/hard is to understand and effectively use the approach in
a software organization.

REFERENCES
[1] Agostinho, S. et al. Metadata-driven approach for aspect-oriented

requirements analysis. 10th International Conference on Enterprise
Information Systems. Barcelona, Spain, 2008.

[2] Alencar, F. et al. Towards modular i* models, ACM Symposium on
Applied Computing, 2010.

[3] Baniassad, E.; Clarke, S. Theme: An approach for aspect-oriented
analysis and design. 26th ICSE. Washington, 2004.

[4] Boehm, B; In, H. Identifying Quality-Requirement Conflicts. IEEE
Software v. 13(2), 1996.

[5] Braga, R. T. V.; Germano, Fernão Stella Rodrigues ; Masiero, Paulo
Cesar . A Pattern Language for Business Resource Management. 6th
PLoP, 1999.

[6] Brito, I.; Moreira A. Towards a Composition Process for Aspect-
Oriented Requirements. EA Work. at AOSD. Boston, USA, 2003.

[7] Chernak, Y. Requirements Composition Table Explained. In: 20th RE
Conference. Chicago, Illinois, USA, 2012.

[8] Chitchyan, R.; Sampaio, A.; Rashid, A.; Rayson, P. A tool suite for
aspect-oriented requirements engineering. Int. Work. on Early-
Aspects at ICSE. New York, USA, 2006.

[9] Chitchyan, R.et al. A. Report synthesizing state-of-the-art in aspect-
oriented requirements engineering, architectures and design.
Technical Report. Lancaster University: Lancaster, 259 p., 2005.

[10] Chung, L.; Leite, J. S. P. Non-Functional Requirements in Software
Engineering: Springer, 441 p., 2000.

[11] Clarke, S.; Baniassad, E. Aspect-Oriented Analysis and Design: The
Theme Approach. Addison-Wesley, 2005.

[12] Cysneiro, L. M. Catalogues on Non-Functional Requirements.
Available at: http://www.math.yorku.ca/~cysneiro/nfrs/nfrs.htm. Last
access: July, 2016.

[13] Health Watcher. Available at: http://www.cin.ufpe.br/
~scbs/testbed/requirements /aore/. Last access: July, 2016.

[14] Falbo, R. A. SABiO: Systematic Approach for Building Ontologies.
2011. Available at: http://www.inf.ufes.br/~falbo/files/SABiO.pdf.
Last access: July, 2016.

[15] Guizzardi, G. Ontological Foundations for Structural Conceptual
Models. PhD. thesis. Univeristy of Twente, 2005.

[16] Herrera, J. et al. Revealing Crosscutting Concerns in Textual
Requirements Documents: An Exploratory Study with Industry
Systems. 26th SBES. Natal, RN, 2012.

[17] López, C.; Cysneiro, L. M.; Astudillo, H. NFR Ontology: Sharing and
Reusing NFR and Design Rationale Knowledge. Int. Workshop on
Managing Requirements Knowledge. USA, 2008.

[18] Montgomery, D. C. Design and Analysis of Experiments, 5ª ed.,
Wiley, 2000.

[19] Moreira, A.; Rashid, A.; Araújo, J. Multi-Dimensional Separation of
Concerns in Requirements Engineering. 13th RE. Paris, 2005.

[20] Mussbacher, G.; Amyot, D.; Araújo, J.; Moreira, A. Requirements
modeling with the aspect-oriented user requirements notation
(AoURN): A case study. Transactions on aspect-oriented software
development. Springer-Verlag, Berlin, Heidelberg, p. 23-68, 2010.

[21] Parreira Júnior, P. A.; Penteado, R. A. D. Crosscutting Concerns
Identification Supported by Ontologies: A Preliminary Study. LBIP.
Springer International Publishing, 2015.

[22] Parreira Júnior, P. A.; Penteado, R. A. D. OnTheme/Doc: An
Ontology-Based Approach for Crosscutting Concern Identification
from Software Requirements. XVII ICEIS. Barcelona, Espanha, 2015.

[23] Parreira Júnior, P. A.; Penteado, R. A. D. An Overview on Aspect-
Oriented Requirements Engineering Area. LBIP. 16ed.: Springer
International Publishing, 2015, v. 227, p. 244-264.

[24] Parreira Júnior, P. A.; Penteado, R. A. D. Aspect-Oriented
Requirements Engineering: A Systematic Mapping. XVI ICEIS.
Lisboa, Portugal, 2014.

[25] Parreira Júnior, P. A. ObasCId: uma Abordagem Ontologicamente
Fundamentada para EROA. Doctorade Thesis. 2015. UFSCar/São
Carlos/SP. 197p (in portuguese).

[26] Parreira Júnior, P. A.; Penteado, R. A. D. Domain Ontologies in the
Context of Requirements Engineering: A Systematic Mapping. XII
ACS/IEEE. Marrakech, Morocco, 2015.

[27] Rashid, A.; Moreira, A.; Araújo, J. Modularisation and composition of
aspectual requirements. 2nd AOSD. New York, USA, 2003.

[28] Sampaio, A.; Greenwood P.; Garcia, A. F.; Rashid, A. A Comparative
Study of Aspect-Oriented Requirements Engineering Approaches. I
Int. Symp. on Empirical SE and Measurement. Madrid, Spain, 2007.

[29] Soeiro E.; Brito, I. S; Moreira, A. An XML-Based Language for
Specification and Composition of Aspectual Concerns. 8th Int. Conf.
on Enterprise Information Systems. Paphos, Cyprus, 2006.

[30] Viana, M. C. Building the Graphical User Interface Layer and a
Wizard for the GRENJ Framework. Master dissertation, UFSCar, São
Carlos, 2009 (in portuguese).

[31] Whittle J.; Araújo, J. Scenario Modeling with Aspects. In: IEEE
Software, v. 151(4), p. 157-172, 2004.

[32] Wohlin, C.; Runeson, P.; Höst, M.; Regnell, B.; Wesslén, A.
Experiment. in SE. Springer-Verlag Berlin Heidelberg. 236p. 2012.

[33] Zheng, X.; Liu, X.; Liu, S. Use case and non-functional scenario
template-based approach to identify aspects. 2nd Int. Conf. on
Computer Eng. and Applications. Bali Island, Indonesia, 2010.

150150150

