
Bug Report Summarization: An Evaluation of
Ranking Techniques

Isabella Ferreira∗, Elder Cirilo†, Vinı́cius Vieira†, Fernando Mourão†∗ Informatics Department, PUC-Rio

Rio de Janeiro, Brazil

Email: isabellavieira57@gmail.com
† Department of Computer Science, Federal University of São João del-Rei

São João del-Rei, Brazil

Email: {elder, vfvieira, fhmourao}@ufsj.edu.br

Abstract—Bug reports are regularly consulted software ar-
tifacts, especially, because they contain valuable information
for many change management tasks. Developers consult them
whenever they need to know already reported problems or
have to investigate previous bug solutions. This activity, however,
consumes a substantial amount of time once bug reports content
might achieve dozens of comments and thousands of sentences.
One recommended and massively applied solution to prevent
developers to read the entire bug report is to summarize the
whole conversation in a few sentences. Summaries ideally give
to developers an overview of the current status of the bug and
the reasons, highlighting the result of each proposed solution, for
which environments, which solutions are most appropriated, and
the necessary information to reproduce the bug. This strategy
intends to minimize the time a developer would spend in mainte-
nance tasks. However, investigations demonstrate that summaries
do not meet the expectations of developers and, in practice,
they still read the entry line of discussion. To circumvent this
drawback, we propose a summary based on comments, instead
of the ones based on isolated sentences, as proposed by previous
works. We argue that a ranking of the most relevant comments
would enable developers to find more appropriate information.
Empirical results corroborate with our arguments and show
that summaries generated by traditional ranking algorithms are
accurate with respect to developers expected information when
compared to reference summaries created manually.

I. INTRODUCTION

A bug occurs as a result of an error, defect or mistake,

generating incorrect behavior in the software. In face of

unexpected software behavior, a developer or a user reports

it in appropriated software artifacts (e.g., bug reports). Bug

reports, over a period of time, accumulate valuable information

about the described problems, being frequently consulted by

developers. They refer to bug reports to see whether a similar

problem was resolved in the past and how, to detect duplicated

bug reports, to gather the necessary information to reproduce

the bug, and to consult stack traces and test cases.

Bug reports, however, are not built to be easily read [2].

They vary in quality of content [5] and in most cases, are

only informal conversation and opinions about the failure to

be fixed or about an issue to be resolved. In each bug report,

developers, and sometimes users, collaborate by posting their

contributions as comments. After every new comment, there

is a chance of the conversation to become more interlaced and

to go in many directions, forcing the readers to keep control

of additional contexts on their own. Therefore, since a large

number of bug reports can be opened, and each one might

contain tens of comments and thousands of sentences, keeping

track of the knowledge built on bug reports is not easy, and,

in general, consumes a substantial amount of time.

One recommended solution to prevent developers of reading

the entire bug report is to create what is known as Ex-

tractive Summaries – collection of sentences extracted from

the original bug report. Extractive summaries ideally give to

developers an overview of the current status of the bug and the

reasons, highlighting the result of each proposed solution, and

providing the necessary information to reproduce the bug. This

strategy intends to minimize the time a developer would spend

in maintenance tasks. In [3], extractive summaries are created

by trained classifiers via a corpus of reference bug reports.

The resulting summary is built by selecting the sentences

considered relevant. Since the quality of the resulting summary

depends on the quality of the corpus [2] [4], a common

weakness of supervised approaches, recently, in [2] [4], the

authors proposed unsupervised solutions to summarize bug

reports. These summarizers do not require initial setup and,

as demonstrated by [2], are more attractive because can be

successfully applied in any software development project,

specially in open source projects available in collaborative

platforms (eg. GitHub), like as jQuery, Angular.js and Boot-

strap.

Recent works demonstrate, however, that sentence-based

extractive summaries do not meet the expectations of general

readers and, in practice, they fail on reducing the software

maintenance workload. Lotufo et. al [2] recognize the limi-

tations of summaries based on chucked sentences, and argue

that they might not be the ideal solution, once developers are

not able to directly find the most appropriated information

[5]. To circumvent the missing information on bug report

summaries, we propose a novel summarization strategy based

on comments, instead of those based on isolated sentences, as

proposed by previous works [3] [2] [4]. We argue that ranking

the most relevant comments would enable developers to find

more appropriate information. So, considering the bug reported

as a query and the comments as a collection of documents,

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.17

101

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.17

101

2016 X Brazilian Symposium on Software Components, Architectures and Reuse

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.17

101

the problem of summarizing a bug report can be modeled as

a standard ranking task in Information Retrieval. We propose

to resolve the sentence summarization drawbacks as a ranking

problem, in which comments are mainly ranked with respect

to their relevance to a given bug report description.

In this paper, we apply four techniques: Cosine Similarity,

Euclidean Distance, PageRank and Louvain community de-

tection to the problem of delivering to developers the most

relevant comments. Through all evaluated projects, the results

show that Cosine Similarity and PageRank are able to produce

at least average summaries. These techniques achieved an

average Precision of 0.40. PageRank, a more sophisticated

technique, offers good results in general. However, it might

suffer to result in precise summaries for poor or small bug

reports. Cosine Similarity is a safer technique to use once

it performed uniformly along all projects. Euclidian Distance

and Louvain community detection, on the other hand, seems

to be not appropriate to be applied in the context of bug report

summarization. Based on the evaluation, we also observed

that the ranking of the most relevant comments would enable

developers to find more appropriate information than when

they consult sentence-based summaries. Euclidean Distance

technique, for example, generated summaries with almost

the same quality as pointed out by developers. Therefore,

empirical results corroborate with our arguments, and show

that summaries generated by traditional ranking algorithms are

accurate with respect to developers expected information.

The remaining of the paper is organized as follows. In

Section 2, we give a brief overview of the problem with

sentence-based summaries and related works. In Section 3, we

present how the problem of ranking comments was modeled.

Section 4 describes the experimental studies conducted and

discusses the results. In Section 5, we present some threats to

validity. Finally, Section 6 concludes the paper and presents

some directions for future works.

II. PROBLEMS WITH BUG REPORTS

Currently, there is a major direction for automatic summa-

rization of textual bug reports: to provide to developers an

Extractive Summary containing about 25% to 30% of sen-

tences from the original bug report. These sentences are further

consulted by developers to get an overview of: (i) current

status of the bug and the reasons; (ii) proposed solutions; (iii)

necessary steps to reproduce the bug.

In [3], the authors suggest the use of summarization tech-

niques based on classifiers to automatically reduce the effort of

reading and understanding bug reports. The authors mentioned

that there is a huge similarity between conversations in bug

reports and other types of conversation, such as email threads,

where supervised techniques have been applied successfully.

The authors also derived a bug report summary from a trained

classifier based on a corpus of bug reports summaries created

manually. The authors reported a precision of 63% when the

classifier was trained on bug report from the same subject.

When trained in a corpus of different subject, the classifier

achieved a 54% precision.

Since the quality of the resulting summary is dependent

on the quality of the corpus, Lotufo et al. [2] and Mani et

al. [4] proposed approaches where the relevant sentences are

chosen by unsupervised classifiers. The proposal of Lotufo

et al. [2], for example, do not require any initial setup and

manual creation of a basic corpus for the classifier training.

The summarization is based on a hypothetical model of how

one “in a hurry” reads a bug report. Therefore, the authors

indicate that the reader, in most cases, will focus only on the

most important decisions. To classify sentences as relevant

and not relevant, the authors suggest three hypotheses. The

most relevant sentences are: (i) the ones that have frequently

discussed topics, (ii) the ones evaluated by other sentences and

(iii) the ones that focus on the title and description of the bug

in question. Each sentence is classified by their probability

of being read, and finally, the summary consists of the most

likely, or the most relevant sentences.

Although the proposed works successfully generate sum-

maries, interviews conducted with developers [2] indicate that

40% of the sentences recognized as relevant by automatic

classifiers are considered irrelevant by developers. That is, the

summaries fail in abstract the most important kind of informa-

tion: (i) solutions to the bug; (ii) suggestions and evaluations

about the proposed solutions; (iii) steps to reproduce the bug.

These findings were corroborated by studies conducted by

Bettenburg et al. [5]. In a survey conducted with developers

and reporters about the content of bug reports, the steps to

reproduce the bug, observed and expected behavior, stack

traces and test cases were rated as the most important items

in a bug report, and such information usually is not present in

extractive summaries [2].

Therefore, summaries based on chucked sentences might

not be the best solution, and, yet 46% of developers prefer to

face the tedious reading of the entire bug report. To solve the

presented shortcomings, that is, in order to present information

that developers expect to find in the summaries, we pro-

pose summarization based on comments, instead of the ones

based on isolated sentences. A ranking of the most relevant

comments would enable developers to find more appropriate

information, such as, solutions to the bug suggestions and

evaluations about the proposed solutions, steps to reproduce

the bug, stack traces, code samples and so on. We propose and

evaluate the solution to resolve the sentence summarization

drawbacks as a ranking problem, in which comments are

mainly ranked with respect to their relevance to a given

bug report description. Next, we present how the problem of

ranking comments was modeled on four different techniques:

Cosine Similarity, Euclidean Distance, PageRank and Louvain

community detection; and discuss the results of each technique

regarding to the quality of the summaries produced.

III. SUMMARIZING BUG REPORTS

The bug report summarization process works as follows

(see Figure 1). For a collection of bug reports that need to

be summarized, we first pass it through a text preprocessing

step. Here, we represent the bug reports in a structured format

102102102

Fig. 1. Process to create bug reports’ summaries

that preserves the general characteristics of the text. Next,

each preprocessed comment is weighted. We apply 3 different

techniques for evaluating comments’ weight: cosine similarity;

euclidian distance; and comments’ conversation characteris-

tics. Finally, comments are ranked by relevance and the most

relevant comments are seleted to compose the summary. The

next sections present in details the summarization process.

A. Text Preprocessing

In order to rank comments, we need to preprocess the

bug reports. The preprocessing of texts aims to structure

a text suitable for knowledge extraction. There are several

processing techniques that select the most significant terms and

represent the text in a structured format that preserves the main

characteristics of the information [8]. We choose to proceed

by separating each comment of the bug report in terms (or

tokens). Next, we convert all characters to lowercase, eliminate

digits and punctuation marks, remove numbers, URLs, special

characters, stopwords, and therefore we stem the tokens by

using the Snowball stemmer [2].

B. Computation of Comments’ Weight

Bug reports are the result of a conversation or messages

of several people ordered in sequence, where each message

is composed of structured and unstructured information. In

general, bug reports have the following characteristics: (i) the

first comment is always the bug description; (ii) the subsequent

discussion is around how to solve the bug and it is usually

linked to previous experience of the developer; (iii) partici-

pants can aprove or disaprove (evaluates) the ideas on how

to solve the bug (represented by +1 or -1); (iv) “pointers” to

another bug report resolving similar problems can be included;

and (v) “pointer” to commits and/or pull-requests (usually

associated with the comment of a particular user) could also

exist; finally (vi) the discussion can also involves another

matter outside the scope of the bug in question. We chose

three different strategies to compute comments’ weight based

on the probability of a reader focuses his attention on that

conversation characteristics, as following:

• Cosine Similarity: calculates the cosine similarity be-

tween comments’ content and the title and bug report

description.

• Euclidian Distance: calculates the euclidean distance be-

tween comments’ content and the title and bug report

description.

• Conversation Characteristics: as cosine similarity and Eu-

clidian distance measures how much two comments share

a topic, here we also propose to quantify the relevance of

a comment according to the number of associated events

(number of evaluative comments, number of commits,

pull requests).

C. Selection of Comments using Ranking Techniques

In this section we give a brief overview of each of the

four ranking techniques we used in our study: Cosine Similar-

ity, Euclidian Distance, PageRank and Louvain’s Algorithm.

Cosine Similarity and Euclidian Distance are the most used

techniques in the literature to measure distance and similarity

among objects. PageRank is the state-of-art ranking algorithm,

and Louvain’s Algorithm is the state-of-art algorithm to find

communities in a graph [13].

1) Ranking as Distance and Similarity Measure: The

distance and similarity measure reflect the degree of closeness

or separation of the topic shared by target objects [9]. As we

consider the title and the description of the bug as reference

elements, we also consider the more relevant comments the

ones which has similar topics to the description and to the

title of the bug report.

To calculate Cosine Similarity and Euclidian Distance, we

first need to represent the bug report D as a m-dimensional

vector
−→
td . Being T = {t1, t2, ..., tm} a set of distinct terms

occurring in a comment d ∈ D = {d1, d2, ..., dn}; we have

that tf(d,t) denotes the frequency of term t in a comment d
[9]. Then, the vector representation of a comment d is:

−→
di = (tf(d, t1), tf(d, t2), ..., tf(d, tm)), (1)

Although more frequent words are assumed to be more

important, this is not usually the case. We use the tfidf
weighting (term frequency inverse document frequency) to

indeed emphasize the most important words. Thus, tfidf is

represented by:

tfidf(t, d) = nt,dlog
N

nt
(2)

where nt,d is the number of times the term t occurs in d,

N is the total number of comments and nt is the number of

comments that has the term t. After calculating the tfidf of

each term in a bug report, we apply the Non-negative matrix

103103103

factorization (NMF) method over tfidf in order to reduce its

dimensional space.

The NMF is a vector space method to obtain a represen-

tation of information using non-negativity constraints. These

constraints can lead to a parts-based representation because

they allow only additive, not subtractive, combination of the

original information [11]. NMF refers to the following compu-

tation. Given a m×n matrix A with only non-negative entries,

and given an integer parameter k such that k ≤ min(m,n),
find two matrices W ∈ R m × k and H ∈ R k × n such

that A ≈ WH , and such that W and H both have non-

negative entries [10] [19]. We chose to use NMF instead of

other methods for reducing dimensionality, such as Singular

Value Decomposition (SVD) and Principal Component Anal-

ysis (PCA), because the negative components contradict our

reality, since the term-frequencies are non-negative.

Now, we calculate the Cosine Similarity (Section III-C1)

and the Euclidean Distance (Section III-C1) among all com-

ments with the title and description of the bug. At the end, we

sort in descending order the values of the Cosine Similarity,

and in ascending order the values of Euclidian Distance.

Cosine Similarity: When comments are represented as term

vectors, the similarity of two comments corresponds to the

correlation between the vectors. This is quantified as the cosine

of the angle between vectors [9]. Cosine similarity, which has

shown consistent results in measuring the similarity of content

[2], can be defined as

cosine− similarity(di, dj) =
di · dj
| di || dj | , (3)

where di corresponds to the representation of a comment

indexed by i and dj corresponds to the representation of a

comment indexed by j.

When applied to the original term space, if the value of

cosine similarity is 0, the angle between di and dj is 90o, i.e.,

the comments do not share any term. On the other hand, if the

value of the cosine similarity is close to 1, the angle between

di and dj is close to 0o, indicating that comments share terms

and are similar.

Euclidean Distance: Euclidean distance is a standard metric

for geometrical problems. It is the ordinary distance between

two points and can be easily measured with a ruler in two-

or three-dimensional space [9]. Measuring distance among text

comments, given two comments di and dj represented by their

term vectors
−→
ti and

−→
tj , respectively, the Euclidian distance

between two comments can be defined as

euclidean− distance(di, dj) = (
m∑
t=1

|wt,i − wt,j |
2

)
1
2 (4)

where the term set is T = {t1, t2, ..., tm}, wt,i = tf −
idf(di, t) and wt,j = tf − idf(dj , t).

2) Ranking with PageRank: PageRank was developed to

rank Web pages by relevance [14]. The original algorithm

estimates the relevance of a Web page as the probability of a

user reaching that page surfing ramdonly on the Web following

hyperlinks from one page to another [2] [18]. Considering the

Web example, PageRank takes as input a graph G, where Web

pages are nodes and hyperlinks from one page to another are

directed edges. Then, PageRank calculates the Markov chain

for the random surfer model and outputs the probability of a

user eventually reaching the Web page i after a large number

of clicks [2] [17].

Mij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if i = j,

αcos similarity(si, s0) + β
∑

events/totalEvents if i = 0 ∨ j = 0,

γcos similarity(si, s0)+

δ
∑

cos similarity(si, sj)/
∑

similarities+

λ
∑

events/totalEvents otherwise.

(5)

As the random surfer model is similar to the way a user

reads a bug report [2], we propose to apply PageRank to

summarize bug reports by ranking the most important com-

ments. In our case, we have a graph G in which comments

are represented by nodes, and the links are represented by

weighted edges. The edges are weighted in accordance with

the Conversation Characteristics strategy. They are weighted

by the sum of the number of referenced commits, the number

of references to pull requests, commits and/or other events

(close, open) and the number of likes (+1) a bug report has,

as in equation 5. The graph is represented as a matrix M
n×n, where n is the number of comments of the bug report.

However, we do not have any guarantee that M is irreducible

and aperiodic. In order to guarantee the convergence of the

matrix M , we choose a threshold to turn the matrix into

a sparse matrix. We then transform the matrix M into a

column stochastic matrix, so that the convergence of the

stochastic matrix is guaranteed. Finally, we run PageRank and

find the probabilities for each comment. The comments that

have higher probability are considered as the most relevant

comments.

3) Ranking as Community Detection: To rank comments

by applying community detection algorithm, we first create a

graph G such as described in Section III-C2. In G, comments

are nodes and edges are also weighted in accordance with the

Conversation Characteristics strategy, that is, they are weighted

considering the sum of the number of referenced commits,

the number of references to pull requests, commits and/or

other events (close, open) and the number of likes (+1) a

bug report has, as decribed in equation 5. We represent the

graph as a matrix M of dimensions n × n, where n is the

number of comments of the bug report. Then, we apply the

NMF method to it, in order to reduce the dimensionality of the

matrix, creating a new matrix R of size n× k, where k is an

empirical number of columns of the new matrix. The matrix R
therefore is transformed into a sparse matrix and the Louvain

104104104

method (see next) is applied to detect communities in the

graph. Afterwards, we identify the most important comments

in the community in which the title and the description are

included. Finally, we calculate the eigenvector centrality (see

next) and select the most central comments as a result.

Louvain Method: As described in [13], Louvain method is

one of the state-of-art methods for modularity maximization

for detecting community structure in networks. The method is

simple, efficit and easy to implement and it is well-suited for

analyzing large weighted networks. Louvain method is based

on local information and seeks to optimize local communities

until the global modularity cannot be improved. It is based on

two simple steps: (i) each node is assigned to a community

chosen in order to maximize the local modularity Q; (ii) the

gain derived from moving a node i into a community C is

calculated and nodes are joined in order to belong to the same

community. A new network, in which the communities are

represented by nodes, is built and these steps are repeated

until the maximum modularity is achieved and a community

hierarchy is produced [13] [16].

Eigenvector Centrality: Eigenvector centrality gives high

importance to a vertex based on the relationship with its

neighbors, that is, if a vertex vi is connected only to another

vertex vj , neighbors of vj can be important, and therefore the

vertex vi will also be important, getting a high eigenvector

centrality [12]. The meaning of the eigenvector centrality as a

measure is because the eigenvector defines the most central

vertex which is connected to the other which in turn also

establish relations with vertices that are in central position,

and so on. The eigenvector centrality of a vertex is a linear

combination of the centrality of vertices connected with them

([12]). In general, the algorithm determines the eigenvalue of

the largest absolute value of a matrix and its corresponding

eigenvector.

IV. EVALUATION

In this section, we present an empirical evaluation of

the ranking techniques with respect to a reference summary

created manually by software developers based on a predefined

corpus. More specifically, we want to characterize ranking

techniques in the context of bug report summary production,

and answer the following research questions:

• RQ1 - Feasibility of ranking techniques for summariz-
ing: To what extent ranking techniques produce relevant

comment-based summaries?

• RQ2 - Quality of the produced summaries: How

good are the ranking techniques in suggesting comments

classified as Steps to reproduce the bug, Solution or

workarounds, Evaluations about the discussed topics.

A. Experimental Setup

1) Selection of Bug Reports: In order to evaluate the

four ranking techniques, we chose 50 bug reports from the

following open source projects mostly starred and forked on

GitHub: bootstrap1, angular.js2, and jquery 3.

The 50 bug reports were chosen considering that all of them

follow the criteria: (i) bug reports that contain mostly natural

conversation content with no structured information such as

patches, stack traces and source code; (ii) bug reports that

have more than 3 people participating on the conversation;

(iii) bug reports that have closed status; (iv) bug reports about

suggestion of implementation of new features or bugs; (v)

bug reports that have between 20 and 45 comments. From the

50 chosen bug reports, we picked, randomly, 15 bug reports.

With the chosen 15 bug reports, we asked some developers

to manually create 15 bug report summaries (5 bug reports

summary from each software project). Table I shows the mean

of words, sentences and comments for each dataset. Next, we

briefly describe each open source project.

a) Bootstrap: Bootstrap is a free and open-source collec-

tion of tools for creating websites and Web applications. It con-

tains HTML- and CSS-based design templates for typography,

forms, buttons, navigation and other interface components,

as well as optional JavaScript extensions. It aims to ease

the development of dynamic websites and web applications.

Bootstrap is the most starred project on GitHub with over 94k

stars and more than 40k forks.

b) AngularJS: AngularJS is an open-source web appli-

cation framework mainly maintained by Google and by a

community of individuals and corporations to address many

of the challenges encountered in developing single-page ap-

plications. It aims to simplify both the development and

the testing of such applications by providing a framework

for client-side model-view-controller (MVC) and model-view-

view-model (MVVM) architectures, along with components

commonly used in rich Internet applications. It has over 48k

stars and more than 22k forks on GitHub.

c) jQuery: jQuery is a cross-platform JavaScript library

designed to simplify the client-side scripting of HTML.

jQuery is the most popular JavaScript library in use today.

The project has over 38k stars and over 10k forks on GitHub.

TABLE I
MEAN OF WORDS, SENTENCES AND COMMENTS FOR EACH DATASET

Project #words #sentences #comments
Angular 2834 (±644.42) 110.6 (±31.97) 36.4 (±5.59)
jQuery 1829.4 (±472.51) 86 (±22.03) 30.4 (±8.90)

Bootstrap 1420.6 (±459.14) 75.4 (±23.9) 35 (±6.04)

2) Selection of Participants: We chose 9 participants, with

software development experience, who speak English fluently,

1https://github.com/twbs/bootstrap
2https://github.com/angular/angular.js
3https://github.com/jquery/jquery

105105105

to create manually 15 bug report summaries. Before proceed-

ing with the summarization task, each participant filled out a

form about previous experience in software development as

well as experience in the software projects. As a result, 75%

of the participants has experience with AngularJS, 87.5% has

experience with Bootstrap and 100% of the participants has

experience with jQuery. Further, 62.5% has experience with

software development in industry, 75% has experience with

research projects and 37.5% of the participants has experience

in industry and research projects. The participants also have

more than 4 years of experience in software development.

3) Oracle creation: We randomly assigned to each par-

ticipant 5 bug reports from 3 projects (Angular, jQuery and

Bootstrap). Each bug report has about 30 comments and

was evaluated by three different participants. To complete the

summarization task, firstly the participants were asked to read

the bug report in order to obtain a good understanding of what

the bug report is about. Then, they were asked to reread the bug

reports and rate each comment according to the importance of

the information contained therein. The importance levels were

defined according to the five-point Likert scale ranging from

(1) not important at all to (5) extremely important. We have

defined that a comment is important if the topic discussed

in that comment is similar to the topic of the title and the

description of the bug.

The material was distributed to participants as forms in

Google Forms. In the forms, each question represented one

comment from the bug report. And, associated to each ques-

tion, singular options where the participants could categorize

each comment in the scale listed above. Each participant had

4 days to generate the summaries. No one had contact with

the other participants, and no one knew which bug report each

participant was evaluating. In order to mitigate the problem of

having different evaluations for each comment, an odd number

of participants were assigned to each bug report. Therefore,

to define the final importance of each comment, we selected

the importance by prioritizing the rating that was assigned

more frequently. This is a technique called by Majority Vote.

Comments with different evaluations were discarded from the

comments’ list. Further, we sorted the comments from the

‘extremely important’ to ‘not important at all’. At the end,

to produce the reference summaries (i.e., the oracle used in

our evaluation), we picked the top 10 comments and asked

other 4 developers to order these comments from (1) most

important to (10) not important at all.

4) Measures of Summarization Effectiveness: In order to

evaluate the effectiveness of each ranking technique (Cosine

Similarity, Euclidian Distance, PageRank and Louvain), con-

sidering the Oracle created, we used the standard evaluation

measures of precision, recall and f-score. Precision measures

how accurate the predictions are [4] [20]. Recall measures

the ability of the algorithm to select the sentences of the

summary [4] [20]. As there is a tradeoff between precision and

recall, we used f-score to calculate the mean. Equations (6)

(7) and (8) describe the calculation of the measures, on which

#hits algorithm is the number of hits in the top 10 ranked

comments of the algorithm compared to the top 10 comments

of the oracle, #ranking is the number of comments in the

algorithm’s ranking and #oracle is the number of comments

in the oracle.

We used the Spearman’s rank correlation coefficient to

check the correlation between the ranking generated by each

evaluated technique and the Oracle ranking. Spearman correla-

tion computes agreement between two rankings. Two rankings

can be opposite (value -1), unrelated (value 0) or perfectly

matched (value 1) [5] [6]. Furthermore, we used the Modular-

ity to measure how well the data were distributed into clusters.

Precision =
#hits algorithm

#ranking
(6)

Recall =
#hits algorithm

#oracle
(7)

F − score = 2 · precision · recall
precision+ recall

(8)

B. Results and Discussion

We generated summaries for all bug reports by picking the

top 10 comments returned. Table II presents the average preci-

sion for Cosine Similarity, Euclidean Distance and PageRank.

Table III shows the precision, recall and f-score for Louvain

method. We did not calculate the recall and f-score for Cosine

Similarity, Euclidean Distance and PageRank because the size

of the oracle and the summary are both 10 comments. Thus,

the value of precision, recall and f-score would be the same.

For Louvain method we select all the comments in the cluster

in which the title and the description are included. In this

case, the summary, in some cases, does not contain exactly 10

comments, so we might observe a variance in precision, recall

and f-score. Accordingly, Tables IV, V and VI presents the

Sperarman’s Rank correlation results for all algorithms and

datasets.

TABLE II
AVERAGE PRECISION FOR COSINE SIMILARITY, EUCLIDEAN DISTANCE

AND PAGERANK

Project
Average Precision

Cosine Similarity Euclidian Distance PageRank
Angular 0.42 (±0.18) 0.20 (±0.07) 0.46 (±0.08)
jQuery 0.46 (±0.15) 0.38 (±0.22) 0.56 (±0.10)

Bootstrap 0.46 (±0.16) 0.30 (±0.14) 0.40 (±0.10)

TABLE III
AVERAGE PRECISION, RECALL AND F-SCORE FOR LOUVAIN

Project Precision Recall F-score
Angular 0.27 (±0.12) 0.26 (±0.13) 0.26 (±0.13)
jQuery 0.42 (±0.26) 0.32 (±0.26) 0.34 (±0.26)

Bootstrap 0.45 (±0.18) 0.36 (±0.08) 0.38 (±0.08)

106106106

TABLE IV
SPEARMAN’S RANK CORRELATION BETWEEN RANKED COMMENTS AND

ORACLE FOR ANGULAR

Spearman Correlation - Angular
Bug Report #2895 #734 #1412 #583 #5160

Cosine Similarity 0.27 -0.05 0.17 0.56 -0.16
Euclidian Distance 0.62 0.06 -0.15 0.28 0.39

PageRank 0.006 -0.10 -0.12 0.006 -0.66
Louvain 0.02 -0.006 0.18 -0.03 0.68

TABLE V
SPEARMAN’S RANK CORRELATION BETWEEN RANKED COMMENTS AND

ORACLE FOR JQUERY

Spearman Correlation - jQuery
Bug Report #2145 #2310 #2199 #1692 #2321

Cosine Similarity -0.03 0.006 0.35 -0.32 0.18
Euclidian Distance 0.15 -0.27 0.09 -0.56 0.30

PageRank -0.11 0.17 -0.05 0.33 0.2
Louvain 0.06 -1 -0.03 0.33 0.29

TABLE VI
SPEARMAN’S RANK CORRELATION BETWEEN RANKED COMMENTS AND

ORACLE FOR BOOSTRAP

Spearman Correlation - Bootstrap
Bug Report #341 #1235 #931 #1602 #1997

Cosine Similarity -0.32 -0.09 -0.11 -0.33 0.04
Euclidian Distance 0.24 -0.26 -0.46 0.23 0.28

PageRank -0.62 -0.6 -0.11 0.09 0.13
Louvain 0.10 0.16 0.03 0.054 0

1) Feasibility of Ranking Techniques for Summarizing: We

observe that Cosine Similarity presented, in general, more

consistent results than Euclidean Distance (average precsion

> 0.42), given that it only considers the relative frequencies

between the words that are important for all documents.

Euclidean Distance, in contrast, is influenced by the size of

the documents, which is shallow in the case o bug report

comments (see Table I). PageRank also presented consistenty

results (average precsion > 0.40). The PageRank modeling

metodology considers a number of factors that could have con-

tributed to increase the relevance judgment: (i) the similarity

of comments with the bug description; (ii) the frequency of

discussed topics; and (iii) the relationship with some events,

such as pull requests, commits and open discussions. Louvain

method do not presented good results due to the fact that

this technique depends on a calibrated threshold which, when

applied in a non-supervisioned way, produces clusters with

low similarity quality. Modularity results explain the low

similarity quality of the clusters, once Angular, jQuery and

Bootstrap projects had average modularity of 0.08, 0.13 and

0.14, respectively. We conclude from those results that the

data was not well distributed among clusters, resulting in low

precision. The non-parametric Kruskal-Wallis test, however,

supports that there is no statistical difference among the

techniques regarding to precision results with p-value < 0.05.

By analyzing the correlation results, we were able to gather

more interesting observations. First, although PageRank has

slightly more consistenty average precision than the remain

techniques, the generated rankings did not present good cor-

relation with the oracle. That is, the PageRank technique

considered just few comments in the same order as the oracle.

The non-parametric Kruskal-Wallis test, in this case, support

that there is statistical difference among the techniques with

p-value > 0.05.

The presented results show that most techniques produce

relevant summaries. Moreover, we observed that PageRank

offers good results in general, but it might suffer to offer

precise summaries when the bug report does not offer all

the expected information, that is, it is hard to infer the

similarity between each comments and the bug description,

there are more than one frequently discussed topics, and no

events were associated to comments. Cosine Similarity is a

safer technique to use once it performed uniformly along all

projects. Louvain and Euclidian Distance, on the other side,

seems to be not appropriate to be applied in the context of

bug report summarization as comments ranking. Based on

these results, we are able to answer our RQ1, and conclude

that ranking techniques are viable options to produce relevant

summaries as a ranking of the most relevant comments.

We also observed in all bug reports that many comments

discuss the same topic or provides very similar option about

the reported bug. This is another factor we consider impactful.

The precision results, like the ones < 0.20, could be achieved

because the techniques judge relevant some comments and the

developers judge others one, although, they are discussing the

same topic or providing the same option about the reported

bug. We mean that, even low precision summaries, could be

low qualities one. Therefore, next we discuss exactly this

point, the quality of the generated summaries.

2) Quality of the Produced Summaries: In order to check if

the summaries contain the information a user expect to see in

the bug reports summary (as explained in the Section II), we

asked two developers to categorized manually each comment

in the top 10 of the rankings. They associated each comment

to the following categories: (i) steps to reproduce the bug; (ii)

solutions or workarounds; (iii) evaluations about the discussed

topics (comments that agree with the purpose of the bug report

or emphasize the importance of another comment); and (iv)

others (status and reason for that status, comments that are

off topic). Table VII presents the percentage of comments in

each category out of 150 comments for the Cosine Similarity,

Euclidean Distance and PageRank, and 130 comments for the

Louvain algorithm.

As we can see from Table VII, Cosine Similarity provides

more information about steps to reproduce the bugs. Euclidean

Distance and Louvain provide more information about topics

out off the scope of the bug report. We could observe that

Louvain method and Euclidian Distance were not able to

differentiate most of the information presented in the bug

reports, mainly because comments that talked about off topics

were put together with the title and the bug description in

the same cluster, resulting in a high number of comments

107107107

TABLE VII
QUALITY OF THE SUMMARIES AND THE ORACLE BY CATEGORIES

Category Oracle Cosine Similarity Euclidean Distance PageRank Louvain
Steps to reproduce the bug 7.3% 11.33% 7.33% 10.6% 6.92%

Solution or workarounds to the bug 24.6% 20% 22% 20% 16.15%
Evaluation about the discussed topic 38% 33.33% 28% 34.6% 29.23%

Others 30% 35.3% 42.6% 34.6% 47.68%

categorized as others. These techniques categorized 47.68%

and 42.6% of the comments as Others, while in the Oracle,

about 30% of the comments is part of this category.

The results show that high accurate summarizer (high Preci-

sion and Spearman Correlation) has provided summaries with

more consistent quality than low accurate ones. The techniques

PageRank and Cosine Similarity, were the ones more consis-

tenty, and the ones which the highest number of comments

about Steps to Reproduce the Bug and Evaluation about

Discussed Topics. Louvain and Euclidian Distance techniques

presented the worse precision. So, as was expected, Louvain

hits only 6.92% out of 7.3% comments in the category of Steps

to Reproduce the Bug, 16.15% out of 24.6% in the category of

Solutions and Workarounds, and, 29.23% out of 38% in the

category Evaluations about Discussed Topics. These results

answer our RQ2. We might conclude that ranking techniques

are able to suggest comments that can be classified as Steps

to reproduce the bug, Solution or workarounds, Evaluations

about the discussed topics.

3) Summaries Size: In terms of size, we have on average

summaries: (i) 30% the length of the original bug report for

the Angular; (ii) 37% for the jQuery Project; and (iii) 43% for

the Bootstrap (see Table VIII). As our purpose is to provide

more information to developers in summaries giving to them

the 10 most relevant comments, inevitably, we have generated

bigger summaries in respect to the ones in the literature. In

[1] [2], the authors generate summaries by selecting sentences

until the summary reaches a length of around 25% to 30% in

the number of words of the original bug reports. However, as

we could observe, the ranking of the most relevant comments

would enable developers to find more appropriate information

than when they consult isolated sentences.

4) Bug Reports’ Quality: Based on a deeper observation

of all bug reports, we can state that the quality of summaries

depends, mainly, on the quality of the bug report. In the

Oracle, most of the information was categorized as evaluation

about the discussed topic, been only 24.6% of the information

classified as solution or workarounds and 7.3% as steps to

reproduce the bug. It means that it is almost impossible to

automatic summarize and collect the exact information that the

developers consider essential because most of the bug report

content is not about solutions, suggestions and evaluations or

about the steps to reproduce the bug. Even more, it is rarely

to find any stack trace or tips to reproduce the reported bug

[5].

V. THREATS TO VALIDITY

This section discuss the study constraints. For each

category, we list possible threats and the procedure we took

to mitigate their risk.

a) Conclusion Validity: The greatest risk is the lack

of knowledge about the projects evaluated here. To mitigate

this problem, we chose participants who have a more solid

knowledge in the area and we chose projects that are up to date

and probably participants have some knowledge about them.

Another threat is that bug reports are written in English. To

solve this problem, we chose participants who have advanced

knowledge in English. In addition, the size and the amount of

bug reports may be a threat to the conclusion of this study,

as this influences the participants’ engagement. To mitigate

this problem, we chose bug reports on average size (about 30

comments per bug report).

b) Construct Validity: A threat to the validity of con-

struction is the lack of knowledge of participants in the bug

reports for those projects, and there was no training session for

this. To minimize this problem, participants were asked to read

the entire bug report firstly to the understanding of what was

being discussed and after that, to categorize each comment. In

addition to that, participants’ questions were answered when

requested. To avoid a bias in the answers, questions about

the importance of the comments on the bug reports were not

answered. There was no interaction between the participants

and no participant knew which report the other ones were

evaluating.

c) Internal Validity: A threat to internal validity is the

choice of a threshold to increase the sparsity in the comment-

comment matrix, and also the number of components for the

non-matrix factorization method. Both thresholds are empiri-

cal, and there is no methodology to choose both. Both thresh-

olds affects directly the result of the algorithm. Another threat

is that bug reports can contain different types of structured

information, which are not being treated in our algorithms. To

mitigate this problem, there were selected reports that have

minimal amount and may be zero of structured information

and have mostly context of conversation between more than 3

participants.

d) External Validity: The number of participants and the

number of bug reports may not represent the amount of reports

and the size of comments that will be summarized in practice.

To reduce this risk, we have chosen the GitHub repository

that possesses the most important projects of nowadays and

108108108

TABLE VIII
AVERAGE OF #WORDS, #SENTENCES AND #COMMENTS FOR THE SUMMARY PRODUCED BY EACH TECHNIQUE

Project
Cosine Similarity Euclidean Distance

#words #sentences #comments #words #sentences #comments
Angular 919 (±211.13) 42.2 (±8.07) 10 572.4 (±396.32) 25.4 (±20.00) 10
jQuery 768.2 (±231.89) 35.8 (±13.00) 10 563.2 (±222.82) 27.4 (±8.01) 10

Bootstrap 681.8 (±301.55) 37 (±17.98) 10 297 (±174.12) 15.2 (±9.03) 10

Project
PageRank Louvain

#words #sentences #comments #words #sentences #comments
Angular 889.2 (±197.41) 39 (±8.71) 10 612 (±281.94) 29.2 (±1.78) 4.7 (±0.89)
jQuery 603.2 (±208.73) 34.2 (±11.14) 10 571.8 (±447.29) 27.2 (±20.77) 3.9 (±13.27)

Bootstrap 543.8 (±93.93) 30.2 (±6.68) 10 571.2 (±214.03) 31 (±15.57) 4.4 (±2.68)

we chose open source projects that has been widely used in

software development.

VI. CONCLUSION AND FUTURE WORK

When unexpected software behavior are observed, devel-

opers or users report it through bug reports, which over a

period of time, accumulate valuable information about the ob-

served problems. As a consequence, bug reports are regularly

consulted software artifacts, especially during many change

management tasks. Bug reports, however, are not built to be

easily read. They are characterized by informal conversation

and opinions about the failure to be fixed or about an issue to

be resolved. The reading activity, therefore, might consumes

a substantial amount of time. One recommended solution

to prevent developers of reading the entire bug report is to

create which is known as Extractive Summaries – defined as

collection of sentences extracted from the original bug report.

In this paper, we propose a novel approach where summaries

are based on comments, instead of the ones based on isolated

sentences, as proposed by previous works [3] [2] [4].

Empirical results corroborate with our arguments that rank-

ing the most relevant comments would enable developers to

find more appropriate information. We were able to observe

that summaries generated by traditional ranking algorithms

are accurate with respect to developers expected information,

when compared to reference summaries created manually,

offers relevant summaries in general.

One area of future work is to investigate opportunities

to improve the precision of ranking techniques, mainly for

those that presented the best performances (PageRank and

Cosine Similarity). Another direction for future work is to

evaluate the influence of the text preprocessing on the quality

of the generated ranking. Finally, appropriated classification

techniques could also be applied to enhance the quality of the

summaries by delivering to developers groups of comments

related to the following categories: (i) solutions to the bug;

(ii) suggestions and evaluations about the proposed solutions;

(iii) steps to reproduce the bug.

ACKNOWLEDGMENTS

This work is funded by CAPES/Procad (grant #

175956), CNPq (grants # 483425/2013-3, 309884/2012-8 and

460401/2014-9), FAPERJ (E26-102.166/2013) and Federal

University of São João del-Rei.

REFERENCES

[1] Rastkar, Sarah and Murphy, Gail C and Murray, Gabriel. Summarizing
software artifacts: a case study of bug reports. Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1.
2010.

[2] Lotufo, Roberto and Malik, Zaki and Czarnecki, Krzysztof. Modelling
the ‘hurried’ bug report reading process to summarize bug reports. 28th
IEEE International Conference on Software Maintenance (ICSM). 2012.

[3] Rastkar, Sarah and Murphy, Gail C and Murray, Glen. Automatic sum-
marization of bug reports. IEEE Transactions on Software Engineering.
Volume 40, Number 4, Pages 366–380, 2014.

[4] Mani, Senthil and Catherine, Rose and Sinha, Vibha Singhal and Dubey,
Avinava. Ausum: approach for unsupervised bug report summarization.
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. 2012.

[5] Bettenburg, Nicolas and Just, Sascha and Schröter, Adrian and Weiss,
Cathrin and Premraj, Rahul and Zimmermann, Thomas. What makes a
good bug report?. Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. 2008.

[6] Wasserman, Larry. All of statistics: a concise course in statistical infer-
ence. Springer Science & Business Media. 2013.

[7] Thung, Ferdian and Lo, David and Jiang, Lingxiao. Automatic defect cat-
egorization. 19th Working Conference on Reverse Engineering (WCRE).
2012

[8] Feldman, Ronen and Dagan, Ido. Knowledge Discovery in Textual
Databases (KDT). Volume 95, Pages 112–117, 1995.

[9] Huang, Anna. Similarity measures for text document clustering. Pro-
ceedings of the sixth new zealand computer science research student
conference (NZCSRSC2008). 2008

[10] Vavasis, Stephen A. Algorithms and Complexity for Nonnegative Matrix
Factorization. Householder Symposium XVII Book of Abstracts. Volume
401, 178, 2008.

[11] Pauca, V Paul and Shahnaz, Farial and Berry, Michael W and Plemmons,
Robert J. Text Mining Using Non-Negative Matrix Factorizations. Volume
4, Pages 452 – 456, 2004.

[12] Ruhnau, Britta. Eigenvector centrality - a node-centrality?. Social net-
works. Elsevier. Volume 22, Number 4,

[13] De Meo, Pasquale and Ferrara, Emilio and Fiumara, Giacomo and
Provetti, Alessandro. Generalized louvain method for community de-
tection in large networks. 11th International Conference on Intelligent
Systems Design and Applications (ISDA). 2011.

109109109

[14] Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd,
Terry. The PageRank citation ranking: bringing order to the web. Stanford
InfoLab. 1999.

[15] Langville, Amy N and Meyer, Carl D. Who’s# 1?: the science of rating
and ranking. Princeton University Press. 2012

[16] Ankolekar, Anupriya and Sycara, Katia and Herbsleb, James and Kraut,
Robert and Welty, Chris. Supporting online problem-solving communities
with the semantic web. Proceedings of the 15th international conference
on World Wide Web. 2006.

[17] Brin, Sergey and Page, Lawrence. Reprint of: The anatomy of a large-
scale hypertextual web search engine. Volume 56, Number 18, Pages
3825–3833. Computer Networks. Elsevier. 2012.

[18] Langville, Amy N and Meyer, Carl D. Google’s PageRank and beyond:
The science of search engine rankings. Princeton University Press. 2011

[19] Viana Bicalho, Paulo and de Oliveira Cunha, Tiago and Mourao, Jesus
and Henrique, Fernando and Lobo Pappa, Gisele and Meira, Wagner.
Generating Cohesive Semantic Topics from Latent Factors. Brazilian
Conference on Intelligent Systems (BRACIS). 2014.

[20] Jiang, H and Zhang, JX and Ma, HJ and others. Mining authorship
characteristics in bug repositories. Sci China Inf Sci. 2015.

110110110

