2016 X Brazilian Symposium on Software Components, Architectures and Reuse

Identifying Code Smells with Collaborative
Practices: A Controlled Experiment

Roberto Oliveiral, Bernardo Estdcio?, Alessandro Garcial,
Sabrina Marczak?, Rafael Prikladnicki2, Marcos Kalinowski®, Carlos Lucenal,

1
1

1PUC-Rio, Rio de Janeiro, Brazil, 2PUCRS, Porto Alegre, Brazil, 3UFF, Niter6i, Brazil
{rfelicio, afgarcia, lucena} @inf.puc-rio.br, {bernardo.estacio, sabrina.marczak,
rafaelp} @pucrs.br, kalinowski@ic.uff.br

Abstract—Code smells are often considered as key indicators
of software quality degradation. If code smells are not system-
atically removed from a program, its continuous degradation
may lead to either major maintenance effort or the complete
redesign of the system. For several reasons, software developers
introduce smells in their code as soon as they start to learn
programming. If novice developers are ought to become either
proficient programmers or skilled code reviewers, they should
be early prepared to effectively identify code smells in existing
programs. However, effective identification of code smells is often
not a non-trivial task in particular to a novice developer working
in isolation. Thus, the use of collaborative practices may have the
potential to support developers in improving their effectiveness
on this task at their early stages of their careers. These practices
offer the opportunity for two or more developers analyzing the
source code together and collaboratively reason about potential
smells prevailing on it. Pair Programming (PP) and Coding
Dojo Randori (CDR) are two increasingly adopted practices
for improving the effectiveness of developers with limited or
no knowledge in software engineering tasks, including code
review tasks. However, there is no broad understanding about
the impact of these collaborative practices on the effectiveness
of code smell identification. This paper presents a controlled
experiment involving 28 novice developers, aimed at assessing
the effectiveness of collaborative practices in the identification of
code smells. We compared PP and CDR with solo programming
in order to better distinguish their impact on the effective
identification of code smells. Our study is also the first in the
literature to observe how novice developers work individually and
together to identify smells. Our results suggest that collaborative
practices contribute to the effectiveness on the identification of
a wide range of code smells. Our findings can also be used in
practice to guide educators, researchers or teams on improving
detection and training on code smell identification.

Keywords—Code Smells; Collaborative Practices; Controlled
Experiment; Program Comprehension; Software Degradation

I. INTRODUCTION

As software systems evolve over time, they invariably
undergo changes that can lead to software degradation. Code
smells are often considered as key indicators of software
quality degradation [8]. They affect different code units, such
as classes and methods. Hence, if these code smells are not
systematically removed, the software degradation may reach
a level that requires either major maintenance effort or the
complete redesign of the system. In order to avoid these
problems, code smells should be identified and removed as
soon as possible. In reality, novice developers introduce smells

978-1-5090-5086-4/16 $31.00 © 2016 IEEE
DOI 10.1109/SBCARS.2016.18

61

in their code as soon as they start learning programming or
contributing in a software project [6][9]. If novice developers
are ought to become either proficient programmers or skilled
code reviewers, they should be early prepared to effectively
identify code smells in existing programs.

The challenge is that the identification of code smells is
not a trivial task in particular to novice developers working in
isolation [9]. This task often requires subjective code analysis
from the developer, which makes it an error-prone activity
[5]. In spite of the extensive tool support for smell detection
available nowadays (e.g. [13]), developers still need to analyze
each code smell for confirmation purposes. Accordingly, this
confirmation might require the knowledge of various program
modules (e.g. classes or packages), which may have been
developed by someone else with different programming styles.
These several complexities imply that the identification of code
smells is often hard to be conducted and understood by a single
novice developer.

Novices become skilled in non-trivial software engineering
tasks, such as smell identification, only if they are trained to
effectively do so in early stages in their careers [3]. There
is a need for investigating whether novice developers using
collaborative practices are more effective than solo developers
on the identification of code smells. Collaborative practices
consist of at least two developers working together on the
same software development activity (i.e. editing or reviewing
the source code). They mainly differ in the way that two or
more participants are allocated to the software development
activity. While some of them encourage work in pairs [19],
others promote work in groups [20]. Pair Programming (PP)
is a typical representative of the former, while Coding Dojo
(CD) is an emerging practice for group-based work. There
are several variants of CD and one of them is called Coding
Dojo Randori (CDR) [20]. Section II-B presents the dynamics
of these practices in detail. Over the years, collaborative
practices have also been used in software companies, such as
Microsoft Corporation [1], Siemens [12] and ThoughtWorks
[7] for improving the effectiveness of developers with limited
or no knowledge in software engineering tasks. Through the
use of collaborative practices, novice developers can exchange
information, share their knowledge, learn specific tasks, and
analyze the source code with more confidence.

Although collaborative practices seem promising to support
novices on code smell identification, there is no empirical evi-
dence about the (dis)advantages of such practices on improving

TABLE 1.

CODE SMELLS

Class Smell Type D
Intra-Class | Long Method Method characterized by being long and excessively complex.
Unused Field A variable that is created but it is never used in the code.
Duplicated Code' The same code structure appears in more than one place in the same class.
Inter-Class Data Class Classes that have only fields as well as getting and setting methods, and nothing else.
Feature Envy A method is more interested in methods of another than in its own class.
Lazy Class The Lazy Class is a class that does not do enough and its members should be placed in other class.
. . When a method is tied to many other scattered methods in the system, whereby provider
Intensive Coupling . o - A .
operations are dispersed only into one or a few classes.

the effectiveness of this task. Even though analyzing how a
novice deal with code smells has been a recent trend (e.g.
[9]), there is no investigation on the impact of collaborative
practices in this context. We performed a controlled experi-
ment in order to investigate the impact of novice developers
using collaborative practices when identifying code smells.
We selected PP and CDR as representatives of pair-based
and group-based practices, respectively. We compared these
practices with solo programming in order to better distinguish
their impact on the effective identification of code smells. As
we are comparing different practices for identification of code
smells, we consider a practice to be effective if the developers,
using the practice, correctly identify more code smells within
time constraints than when they use another practice. During
the study, we also qualitatively investigated the way novices
individually and collaboratively perform the identification of
code smells.

Our comparative analysis of the collaborative practices
is intended to be relevant to: (i) novice learners (and their
educators) that plan to acquire (teach) skills on code smell
identification, and (ii) training of project teams with limited
or no experience, in which they collaborate to learn together
without the availability of more experienced developers (e.g.
Kazan project by ThoughtWorks [7]). Therefore, all the sub-
jects taking part in our experiment were novice developers.
They were classified according to two levels of experiences:
(1) novice developers without experience in industrial software
projects, and (ii) novice developers who worked in at least one
industrial software project (Section IV-B). Our results suggest
that collaborative practices contribute to the effectiveness on
the identification of a wide range of code smells. We char-
acterized which smells benefit from collaborative practices
(w.r.t. identification effectiveness) in the aforementioned set-
tings. Therefore, our results can be used in practice to guide
educators, researchers and teams on improving detection and
training on code smells.

The remaining sections of this paper are structured as
follows. Section II introduces basic terminology. Section III
discusses related work. Section IV shows the experimental de-
sign. Section V presents results. Section VI presents potential
threats to validity. Section VII shows our conclusions.

II. BACKGROUND

Our study aims at evaluating the effectiveness of collabora-
tive practices in the identification of code smells (Section II-A).
To this end, we choose PP and CDR as representatives of pair-
based and group-based practices, respectively (Section II-B).
This section discusses these concepts underlying our study.

' Depending of the context, Duplicated Code can be classified as intra-class
or inter-class [8]. In our study, we classified it as an intra-class instances.

62

A. Code Smells

Code smells are often considered as key indicators of
software degradation. They can be classified in two categories
according to the granularity (or scope) of their structure
[8]: intra-class and inter-class smells. Intra-class smells are
anomalous structures that are located within a particular class
and, therefore, their definitions refer to inner elements of
a particular class. An example of intra-class smell is Long
Method [8]. This code smell occurs whenever a method is
long and excessively complex. On the other hand, inter-class
smells are those that affect the structure of two or more classes.
Therefore, their definitions refer to elements scattered in two
or more classes. An example of inter-class smell is Feature
Envy [8], which occurs whenever a method of a class is more
interested in the methods of another class excessively. Table
I presents the definitions (last column) and the classifications
(second column) of smells selected for this study as defined
by Fowler [8]. We selected all these types of code smells
as we needed various representatives of both intra-class and
inter-class smells for our study. Section IV-D presents further
justification for the selection of each smell.

The identification of code smells is important because with-
out this step it is not possible to know where refactoring ac-
tions are needed. Refactoring represents basic clean-up actions
required to improve software longevity [8][15]. Unfortunately,
several recent studies involving industry software projects have
reported how hard the process of identifying code smells is
due to various factors. First, there are several types of code
smells catalogued [8][10]. Therefore, a single developer may
not be able to effectively identify occurrences of all types
of code smell even based on state-of-practice tool support
[13]. Second, in spite of the extensive tool support for smell
detection available nowadays (e.g. [13]), this task still has to be
manually performed by developers. For example, the metrics
and thresholds used in smell detection need to be tailored
for each project or component of a system. In addition, after
smell candidates are identified by an existing tool, developers
still need to analyze each smell for confirmation purposes.
Third, reasoning about a smell often requires a non-local
comprehension of various program modules (e.g. classes or
packages) somehow related to that smell. Therefore, such
program structures may be better understood by multiple
developers.

Thus, given the need for global reasoning, information
exchange among two or more developers may help to better
identify certain smells. The limited knowledge of a single
developer may not suffice to fully detect the occurrence of a
smell. Thus, the number of developers involved in smell iden-
tification may affect the task effectiveness. In particular, the
use of collaborative practices may help developers to perform
specific actions that contribute to improve effectiveness on the

identification of code smells.

B. Collaborative Practices

Collaboration plays an important role in the context of
acquiring skills in software engineering tasks, through ex-
changing information and sharing knowledge among develop-
ers. Thus, collaborative practices have been recently used to
address limitations in software engineering tasks performed by
individuals. In addition, software companies are increasingly
adopting collaborative practices for improving the effective-
ness of developers with limited or no knowledge in software
engineering tasks, including code review tasks (e.g., [2][4]).
Collaborative practices mainly differ in the way that two or
more participants are allocated to the same software develop-
ment activity. In this context, we selected Pair Programming
and Coding Dojo Randori as representatives of collaborative
practices, in which the former is a pair-based practice and the
latter is a group-based practice.

Pair Programming (PP) consists of, as the name sug-
gests, two developers working collaboratively on the same
development-related activity, such as: designing an algorithm,
editing the code, reviewing code or analyzing and testing a
system [1]. In a PP session, one of the developers acts as
the driver of the activity, controlling the keyboard and mouse.
The other developer acts as the navigator (or observer), being
responsible for supporting the target activity, such as code
reviews. During the session, the pairs can switch the roles
in specific time boxes. On the other hand, in case of purely
analytical activities (e.g. code review), pairs act simultaneously
on code analysis [6] - i.e. the two individuals act as observers.

Coding Dojo (CD) consists in a collaborative prac-
tice in which a group of developers working on the same
development-related activity. There are several types of CD,
and one of the variants is called Coding Dojo Randori (CDR)
[20]. In a CDR session, a group of participants works together
with the following dynamics: (i) one participant acts as the
driver, (ii) another one acts the navigator, and (iii) the remain-
ing participants act as the audience, which stays most of the
time in silence, paying attention to the pairs. However, the
entire audience is able to participate in a coordinated way when
certain events occur; for instance, if the unit tests are passed
[20]. The roles of individuals are changed in rounds. When
a round ends, the driver moves to the audience, the navigator
turns into the driver and someone of the audience starts to act
as a navigator [20]. Every participant acts at least once as the
driver and once as the navigator. In the context of our study,
the CDR practice is also called as Group Programming (GP).

III. RELATED WORK

Pair Programming (PP) is one of the best-documented
and most popular collaborative practices, and it has been
the subject of a considerable number of empirical studies
[2][4] involving developers with different knowledge levels
and professional experience. In order to identify the benefits
of PP, Visaggio [21] conducted an experiment with a group
of undergraduate students. The study assessed (i) productivity,
(i1) reduction of coding errors, and (iii) knowledge transfer
between students. The results pointed out the use of PP
improve developer productivity and promotes the transference
of knowledge between developers.

63

Unlike the studies involving the use of PP, only a few
studies explore empirical evidence about Coding Dojo Randori
(CDR). According to Rooksby et al. [18], there is a lack
of studies that evaluate the CDR effectiveness in different
tasks of software development. In addition, a few studies have
made comparative analysis of use of different collaborative
practices. For instance, the study conducted by Estdcio et al.
[7] evaluated the use of CDR and PP in the teaching of mockup
developments. The authors concluded the use of PP presented
positive results in learning, motivation and user experience
between the students, while CDR showed good results only in
the learning. However, these studies did not evaluate whether
CDR supports improving the accuracy of the developers in the
identification of code smells.

In our previous effort, we empirically evaluate CDR and
PP practices, aiming to analyze the impact of different type of
collaboration in relation to acquiring programming skills [6].
According to the results PP had good results in learning and
motivation, whereas, CDR had good results in the learning
of algorithm concepts. Furthermore, CDR presented some
challenges on motivation and lower rate of code quality com-
paring to PP. These findings provide important directions in the
research of the impact of different types of collaboration on the
identification of code smells. To the best of our knowledge, the
study reported in this paper was the first attempt addressing
the gap of evaluating different collaborative practices in the
context of identifying code smells.

IV. STUDY SETTINGS
A. Goal

The goal of our study is to investigate the use of
collaborative practices on the identification of code smells.
From this goal, we derived the following two research
questions (RQs).

RQ1: Do collaborative practices improve the effectiveness
of novice developers on the identification of code smells when
compared to the solo programming?

One of the most important criteria for choosing a prac-
tice for identifying code smells is its effectiveness [14]. As
mentioned in Section I, we consider a practice to be effective
if the developers, using the practice, correctly identify more
code smells within time constraints than when they use an-
other practice. In order to address this research question, we
analyzed both qualitative and quantitative data (Section V-C).
The following null and alternative hypotheses were formulated
for this RQ:

e HO The use of collaborative practices does not affect
the effectiveness on the identification of code smells.

e HAIL.1 Novice developers using pair programming
identify more code smells within time constraints than
novice developers using solo programming.

e HAI1.2 Novice developers using group programming
identify more code smells within time constraints than
novice developers using solo programming.

RQ2: How do novice developers individually and
collaboratively perform the identification of code smells?

During the study, we also investigated qualitatively the way
that developers individually and collaboratively perform the
identification of code smells. We collected the data through
the answers provided in a post-experiment questionnaire, the
screen-shots, the audio and video records. These data were
transcribed and the transcriptions were validated by 1st and 3rd
authors to eliminate misunderstandings. After that, we adopted
a content analysis technique [17] to coding the transcription.
Then, we generate our information network and reveal a set
of features of our collaborative strategy (Section V-B). In
addition, from this analysis, we transcript some segments of
the collected data in Section V-A and Section V-C.

B. Participants

Software developers begin a transition from novice to
expert at least twice in their careers — once in their first
year in university, and second when they about to start their
first industry project [3]. Experienced developers are never
available in the former, and might not be available in training
courses in the second transition like projects run by companies,
such as ThoughtWorks/Kazan [7]. Hence, we consider these
two settings in our study.

The study was conducted with 28 novice developers. They
were classified according to two levels of experience: (i)
novice developers without experience in industrial software
projects and (ii) novice developers who worked in at least one
industrial software project. They were selected either from an
undergraduate course in computer science or from an Agile
Software Development course, called Software Kaizen [7].
This course provides undergraduate Computer Science students
an immersion of four months in industrial software projects.
In order to participate in the study, all the developers signed
a consent form. They also filled out a characterization form
with objective questions about their knowledge in the topics
related to the study: (a) programming; (b) Java; (c) PP; and
(d) GP (i.e., CDR).

We collected the data from the characterization form from
each participant and ranked their knowledge into: none (N),
low (L), medium (M), and high (H) for each expertise topic.
For instance, regarding Java programming, the knowledge of
the subject was characterized as: (a) None, if she never had
contact with the Java; (b) Low, if she had contact with Java
only in the classes or reading some support material; (c)
Medium, if she had contact with Java only in the context of
an academic project; or (d) High, if she had worked with Java
in at least one industrial software project.

Table II summarizes the knowledge that participants
claimed to have in each topic. In addition, we highlighted
with grey-tone the participants that look like having richer
(higher”) knowledge on the subjects. To be considered as
having better knowledge on thus subjects, a novice developer
must have medium knowledge in at least two of the four
expertise topic of evaluation. In general, we have observed that:
(1) 78.57% of the participants have medium to high knowledge
in Programming Concepts and Java Programming; (ii) 89.28%
of the participants have low to medium knowledge in PP and

64

TABLE II. EXPERTISE PER PARTICIPANT IN EACH GROUP

Novice developers who worked
in at least one industrial software projects
Participant | Programming | Java PP

Group GP

Novice developers without experience
in industrial software projects
[Programming | Java
Low

Group [Participant [PP

Medium

[GP
None

Low

Low Low Medium None
19 Medium Low Low Low
1 20 Low Low Medium Low

3 | |

GP; and (iii) 14.28% of the participants have no knowledge in
any of the four topics.

After characterizing the participants’ knowledge, we ap-
plied the principles of balancing, blocking and random as-
signment [22] to mitigate threats to validity concerning the
distribution of participants between the groups. For balancing,
we tried equally-sized groups. However, we had to create
one of the groups with 6 participants because we aimed to
evaluate the interaction of developers within a large group
programming session. Concerning blocking, we avoided that
one team had more participants with more knowledge than the
other. We performed it in order to avoid biased results of a team
performing better in the assigned tasks. Finally, participants of
similar experience were randomly assigned to the groups.

C. Experiment Design

We planned our experiment design to include one factor
with three treatments: (i) solo programming, (ii) pair pro-
gramming (PP), and (iii) group programming (GP). We also
included three tasks: identifying code smells in three different
programs with several code smells. We adopted a crossed
design in order to enable all the treatments to be similarly
applied to all the tasks. This helped to mitigate threats to
validity of our experiment concerning: (i) the influence of
the learning curve over the results, and (ii) the fact that one
task could favor a specific treatment. It is noteworthy that the
principles applied to distribute the participants between the
groups in the crossed design still enable comparing the results
for each individual exercise. The crossed design is shown in
Table III.

Concerning the configuration of the crossed design, in the

TABLE III. CONFIGURATION OF THE CROSSED DESIGN

Program A Program B Program C
-step one- -step two- -step three-
Participants Participants | Participants

1to6 7 to 10 11 to 14

Solo Programming 15 to 20 21 to 24 25 to 28
Participants Participants Participants

1 and 2

11 and 12 3 and 4 7 and 8

13 and 14 5 and 6 9 and 10

. . 25and26 | DO o) a2
Pair Programming 27 and 28 17 and 18 23 and 24

19 and 20
Participants Participants Participants
7 to 10 11 to 14 1to6
Group Programming 21 to 24 25 a 28 15 to 20

first step of the experiment, we can verify, for instance, that
participants from 1 to 6 analyzed program A with the solo
programming treatment. Then in the second step, these same
participants analyzed the program B with the PP treatment.
Finally, in the third step they analyzed the program C with the
group programming treatment. Figure 1 shows how the phases
and activities of the experiment were organized.

Activity 1: To apply the questionnaire for participants’
characterization: As previously mentioned in Section IV-B,
a questionnaire was designed in order to gather participant’s
information on several aspects. For example, it involved ques-
tions about programming languages already used by them,
their affinity with programming and their notion about the
concepts of pair programming and coding dojo. The responses
obtained through this questionnaire allowed us to identify some
key characteristics of each participant.

Activity 2: To train the participants: This step aimed to
train participants through a presentation that explained the vari-
ous concepts, along with examples. Specially, the presentation
addressed concepts associated with the following topics: (i)
Pair Programming, (ii) Coding Dojo, and (iii) Code Smells. As
far as code smells are concerned, we also made their particular
definitions explicit, introduced examples and discussed the
relevance of identifying the smells selected for our experiment.
The first author performed the same training for both samples,
i.e. novice developers with no experience in industry and
novice developers with experience in industry. The training
was organized in 2 parts: the first aimed the explanation of the
concepts and took 25 minutes and the second aimed to provide
room for discussion about the concepts and lasted 10 minutes.

Activity 3: To execute the identification tasks: Partici-
pants identified the occurrences of seven (7) different types of
smells in three different programs (they will be explained in
Section IV-D) according to the configuration of the presented
crossed design (Table III). The data related to the identification
of code smells were transcribed into a list. The formation
of the pairs in PP sessions within each group was similar
to how it was performed by Braught et al. [4], pairing an
experienced participant with a less experienced one. In the
group programming session, the sequence of the pairs was
determined by the convenience of the participants. The study
was conducted online, i.e. simultaneously and observed by
researchers. The duration of each step was one hour for each
group. They worked on their tasks simultaneously in different

65

Apply the questionnaire for
participants' characterization

Phase 1 . i
[Training

Solo Programminé“\‘
oM

Phase 2
@
.

v

.‘i—»-»:[Execute the identification tasks

Pair P ing R

Group Programming

Phase 3 @(
{© camtasia

st~ | Questionnaries L’n{ﬂ List of smells identified by programmers

Participants and practice:

Quantitative and qualitative data

Apply post-experiment
questionnaire

j_ _________________________

ok R2bbit. Plug-in Rabbit ’0?. Video and audio records

Fig. 1. The experimental design

rooms. We also performed a qualitative analysis through the
logs generated by the plug-in Rabbit>. The screenshots came
through Camtasia®, and the audio and video records form our
set up environment. This setting helped us to explore how the
participants make decisions on confirmation of the smells when
they work individually and collaboratively.

Activity 4: To apply post-experiment questionnaire:
The participants were asked about their general perception on
using the individual and collaborative practices for the smell
detection tasks. The questionnaire also asked participants to
particularly assess the usefulness of each practice to identify
smells. These questions were made in order to enable us
to reveal a set of features for an idealized collaborative
strategy. This idealized collaborative strategy is intended to
improve effectiveness on the collaborative identification of
smell (Section V-B). Also, the questions were made in order to
extract complementary qualitative data concerning our research
question.

D. Smell Reference List

We used the same procedure and materials in each group
(Section IV-B). The experiment involved the identification
of code smells using solo programming and collaborative
practices. We applied these techniques on different programs
that contained seven types of code smells, classified in two
categories: inter-class and intra-class smells (Section II-A).
We selected these smells because they cover both categories,
and previous studies have reported them as the most frequent
types of code smells in software projects [8][23]. For instance,
Yamashita and Moonen [23] reported that duplicate code is the
smell most frequently mentioned by developers in software
projects. Other smells also often mentioned by developers is
Long Method [23]. An additional reason for the selection of
these smells is that they affect different program structures,
such as instructions, attributes, methods and classes [8]. Con-
sequently, they may impose different levels of difficulty to
the identification process. Finally, that these smells require the
analysis of different characteristics of a program, such as size,
coupling, cohesion, complexity and many others [8].

2In: https://marketplace.eclipse.org/content/rabbit
3In: https://www.techsmith.com/camtasia.html

TABLE IV. AVERAGE AMOUNT OF CODE SMELLS IDENTIFIED PER

HOUR
Program A | Program B Program C
Solo Programming 3.33 1.38 6.88
Pair Programming 7.25 5 14
Group Programming 6 3 5

Prior to the beginning of the experiment, we defined an
oracle consisting of a reference list of code smells. This
reference list can be found on our website [16]. We selected
three programs existing in our repository of software projects.
The choice of these programs was based on the fact that they
had similar types of smells in them. In addition, the oracle’s
smells present in those programs were detected, inspected
and evaluated by applying two complementary strategies for
the identification of code smells: (i) manual inspection, and
(ii) inspection with the aid of a tool for semi-automatic
identification of smells. The result of the intersection of these
two strategies determined the similarity in the list of existing
smells in those three programs, setting the oracle required for
each program.

V. RESULTS
A. Collaborative Effectiveness

The average code smell identification effectiveness (num-
ber of code smells found) per hour by each treatment per
program is shown in Table IV. To test the hypotheses defined
in Section IV-A statistical analyses were carried out with
support of the R tool. Given our small samples for each
exercise, we avoided assumptions on the data (e.g., normal
distribution and homocedasticity) and decided to apply non-
parametric statistical tests. Since the experiment has three
treatments, a first step was applying Kruskal Wallis (K-W)
to identify if there were significant differences between the
samples. Thereafter we used Mann-Whitney as a post-hoc test
comparing the groups pairwise according to the hypotheses to
be tested. To handle the fact that we had three possible pairwise
comparisons, the very conservative Bonferroni correction was
applied when using the obtained p-values aiming at confirming
our hypotheses.

Concerning the overall number of code smells identified
per treatments, K-W clearly showed differences among the
groups for all three programs (p-values 0.0006, 0.0064 and
0.0009 for programs A, B and C, respectively), which encour-
aged us to conduct post-hoc tests to discover if the differences
were related to the assumptions described in our alternative
hypotheses.

Regarding Hypothesis HA1.1, novice developers using PP
found a significantly higher amount of code smells in all three
programs (p-values 0.0001, 0.0015, 0.0059). Given these p-
values, even with the Bonferroni correction (dividing the alpha
value by 3 - the number of possible pairwise comparisons -
before comparing it to the p-values), this hypothesis can be
confirmed with significance level of 5% for all three programs.

With respect to Hypothesis HA1.2, novice developers us-
ing GP found a significantly higher amount of code smells for
two of the three programs (p-values 0.0004, 0.0029, 0.8520).
Given these p-values, this hypothesis can be confirmed with

66

(Bonferroni corrected) significance level of 5% only for pro-
grams A and B. Actually, for program C the average number
of code smells identified per hour by solo programmers was
higher. It is noteworthy that in program C the GP treatment
had more participants than for programs A and B. Hence, it
seems that a large amount of participants in a group does not
contribute to code smell identification. In fact, our qualitative
analysis indicated that the process for converging opinions
can be time consuming. However, this could also be due to
particularities of the program C, which reinforces the value
of our experiment design with independent trials on different
programs.

Drilling the analysis down to the types of code smells it
was possible to observe that the average number of identified
code smells was higher when the participants were working
collaboratively than when working individually for nearly
all types. Figure 2 presents the average number of smells
identified within time constraints by the participants in three
different programs. The light gray bars represent the results of
solo programming, the black bars represent the results of pairs,
and dark gray bars represent the results of groups. The values
were calculated based on the number of identified code smells
divided by average hours spent during the identification task.
This figure represents only the results in which the average of
identified code smells was equal or higher than 1.0 for at least
one of the practices.

Additionally, we also performed the same analysis in each
one of the samples individually, i.e., novice developers with
and without experience in industrial software projects. Interest-
ingly, we verified that the developers working collaboratively
were better than when they were working individually in
both samples. This result is more significant in the sample
related to the more experienced novices, i.e. novices who have
experience in an industrial software project.

We observed that developers working collaboratively
clearly achieved more success in the identification of inter-
class smells. As we explained in section II-A, inter-class smells
are those that affect the structure of at least one class, and their
definitions refer to elements scattered in two or more classes,
such as Feature Envy, and Lazy Class. For several inter-class
smells, the average of identified code smells by pairs or groups
were over 40% higher than the corresponding average by
individuals. We could confirm through our qualitative analysis
that this superiority is due to the inherent complexity of
the smells that involve several classes or methods, which
require more knowledge to grasp the anomalous structure. We
observed that each developer has a peculiar way to identify
inter-class smells. During our experiment, the opinion of only
one developer was not enough to identify inter-class smells
precisely. When developers worked together, they were more
precise in the identification of inter-class smells by considering
each other’s opinions. This observation is reinforced by the
opinion of the developers: 89.28% of developers reported that
they were more confident on the identification of inter-class
smells when they were working collaboratively than when they
were working alone.

We also observed that, for some of these smells (e.g.
Feature Envy and Lazy Class), when the developers were
working in pairs, they identified a higher number than when
they were working in groups. We can attribute this finding to

Average of code smells identified in one hour

Program A Program B " Program ¢
53
2,0 20
28
1 515 38
1,010 15 15
1,013%
I- N B il
Dunhcme Feawre Lazv Class Unused fild Data Class Feature Envy Long Method Duplicate Code Feature Envy Unused field
Code

Solo Programming

Fig. 2. Comparison between practices

at least two reasons. First, the use of groups in the detection
of code smells may be ineffective for more complex code
smells due to the existence of differing opinions on the smell
validation activity (Section V-B will further elaborate on this
matter). Second, converging opinions can be costly in terms
of time. The several developers of a group have to share their
time. The larger the group, the less average time per person
is available and the fewer opportunities each member will
likely have to contribute to the discussion. This observation
is reinforced by the opinion of the participants in our post-
experiment questionnaire. For example, participant P4 said:
“When we had many contradicting views regarding a code
smell, the work in group may lead to considerable difficulties
in the decision-making process”.

Moreover, we observed that whenever developers work in
collaboration, they avoid making mistakes (i.e., false positives
in the reported list of code smells). Furthermore, we found that
they follow a less optimistic approach on guessing where the
smells are located in the program. They also tend to define
together more elaborate detection strategies than when they
work individually. For example, a participant (P1) marked a
piece of a method structure as hosting a Feature Envy smell.
However, the other participant (P2) in the pair did not agree
with the decision. According to the second participant, “..that
part of the source code does not have a Feature Envy because
the suspect method (marked as containing the code smell) is
not calling other methods several times”. In order to show that
method does not contain a Feature Envy, he asked to the first
participant to run through the classes thereby explaining to him
why the other classes are not contributing to the code smell.
After that, both participants agreed that there was no Feature
Envy in that method after all. This collaborative behavior
avoided developers to report false positives. Therefore, the
collaborative analysis of the source code allows developers
to discuss and share ideas about the severity of an anomalous
structure, thus complementing the knowledge of each other.
Consequently, this behavior of pair developers tends to increase
the rate of success in identifying smells.

B. Individual vs. Collaborative Strategies

In order to address our second research question (Section
IV-A), we qualitatively analyzed how developers worked indi-
vidually and collaboratively during the identification of code
smells. This analysis also allowed us to infer which activities
performed by developers contributed (or not) to the effective
identification of code smells.

Figure 3 summarizes the results of such qualitative analyses
based on a feature model notation [12]. The figure shows all

= Pair Programming

67

= Group Programming

the activities performed by developers, either individually or
collaboratively. Each feature (rectangle) in Figure 3 represents
a specific activity and a different number is attached to it.
These numbers are mentioned in parentheses throughout this
section in order to refer to specific activities represented in
Figure 3. The style of the rectangle border indicates whether
the activity was performed individually or collaboratively,
either in pairs or in groups (see the legend). Certain activities
were performed by all subjects, i.e. individuals, pairs or groups.
These omnipresent activities are represented by rectangles with
thick borders. Figure 3 only represents an activity whenever
it was performed by the majority of the subjects who used
the corresponding practice(s) expressed in that feature. We
only represent such activities as we want to capture those
activities that consistently contributed to improve or decrease
the effectiveness on code smell identification. By ‘majority” we
mean two-thirds (66.67%) of the subjects. For instance, more
than 80% of the subjects working individually used a checklist
of examples (activity 4.2 in Figure 3) in order to detect code
smells. The specific percentage of subjects performing each
activity is not shown in in Figure 3, but some percentages are
mentioned throughout this section.

Figure 3 shows that all subjects, independently from the
employed practice, have performed six mandatory activities for
smell identification. These general activities are named phases
and they are presented by the top-level features in Figure 3.
These six phases are: (1) Smell selection, (2) Metrics selection,
(3) Navigation through the program classes, (4) Detection
of smell candidate, (5) Smell validation, and (6) Decision
making. The developers pass over sequentially in each phase.
In the context of each phase, alternative activities may exist.
They are represented in Figure 3 through OR and XOR
relations based on the feature model notation. For instance,
the subjects perform the smell selection (phase 1) using one
of the two approaches: randomly (1.1) or a knowledge-based
(1.2) approach. Two or more alternatives (sub-activities) may
be used together in order to realize a more complex activity.
For example, pairs or groups in phase 5 may carry out two
or three sub-activities (5.1, 5,2 or 5.3) in order to realize the
validation of smell candidates. For each sub-activity, Figure
3 indicates whether it contributes to improve (+) or decrease
(-) the effectiveness of the smell identification task. We now
describe and discuss each phase individually in the following
paragraphs.

The first phase corresponds to the selection of types of
code smells to be identified in the source code. During the
experiment, the developers performed the selection of code
smells using random selection (1.1) or a knowledge-based
(1.2) approach. A random selection occurs when the developers

Navigation
through the
program classes

Detection of
smell
candidate

Smell
selection

Metrics
selection

ﬁ
i 1 ity '
! 1 | Knowledge ‘ Oriver ! Checklistof |
' Random , " ' '
s S ™ M!_fﬁ’f‘f"f“_ =

Legend

[au practices + Effective
Individuals - Ineffective
1 Groups A Or-feature 5444
T Investigation
Pairs and groups ,4\ Alternative feature of the neighboring
i components +

Fig. 3. Collaborative Strategy

simply follow the list of smells presented during the training
activity (Section IV-C), without determining a less obvious
but important criterion. The knowledge-based selection occurs
when the developers select types of code smells in a particular
order. In this selection approach, they were encouraged to use
their previous experience and knowledge to select the smell
types. We observed that the random selection was used by
71.4% of developers when they were working individually.
This demonstrates that developers working individually often
do not prioritize wisely the types of code smells to be iden-
tified. Furthermore, by observing the questionnaire answers
and the videos, we concluded the random selection is less
effective than the knowledge-based selection. There are three
key reasons that explain this phenomenon: (i) the developers
spend too much time searching for smells which they do not
have much knowledge, consequently, (ii) they feel discouraged
to perform the smell identification, and (iii) they start to
work on identifying relevant smells too late. We also found
that 78.5% of pairs and 66.67% of the groups implemented
the knowledge-based selection. Therefore, pair programming
encouraged more the use of knowledge-based selection than
group programming.

In the second and third phases, we did not observe
recurring alternative approaches used by pairs or groups that
contributed to improve their effectiveness. Still, we make some
observations on how they used collaborative practices to mini-
mize (or not) the burden of the corresponding activities in those
phases. The second phase concerns the selection of metrics or
indicators. These metrics or indicators are used as criteria to
support the identification of code smells of a particular type.
For instance, some of the subjects used the metric lines of
code (LOC) for supporting the detection of occurrences of
certain smell types (e.g. Long Method and Lazy Class). We
observed that developers worked collaboratively to minimize
the burden of certain aspects of this task. For instance, they
benefited of the knowledge of their peers to choose more
wisely the appropriate metrics for each smell type. Pairs and
groups also systematically defined how to interpret the results
of each metric when identifying a particular smell type. They
also identified and discussed potential false positives generated
by the use of particular metrics. Finally, the teams covered a
higher number of metrics than individuals.

The third phase corresponds to the way that developers run

Smell -k
validation Dacislon

Making

1= 63

Amumentation || Reeoeiiaton || searcning or || Driver's Mostatthe | | Converg
members 4| views 4| S@mPeS dedsion _|{ members || "of opinion
;__fﬂ_.k»_» 53.2

Arguments [

| e | e

method iy - ples o

113
Programmer's
IDE ge H

68

through the modules (e.g. classes and methods) during the code
review process. We found that most developers, regardless of
working individually or collaboratively, navigate through the
modules sequentially: one by one. We observed that either in-
dividual or teams failed to determine a prioritization approach
on how to navigate through program modules effectively. In
the feedback form, the subjects mentioned that this activity
could be more effective if all group members could navigate
through classes independently. Group programming requires
that only two members effectively work on the code analysis.

The fourth phase comprises the approach used by de-
velopers to perform the detection of code smell candidates.
These candidates represent code smells that have not been
confirmed (validated) by the individual or team yet. In this
phase, we noticed two main approaches used by developers to
support the activities: driver argumentation (4.1) and checklist
of examples (4.2). Individuals often use the latter, while pairs
or groups often employ the former. When developers worked
collaboratively, they selected one smell candidate and, then, the
driver argued about it thoughtfully with the other members of
the team. They also exposed their certainties and uncertainties
about each smell candidate. When the team members were
mostly uncertainly about it, they ended up not confirming
a particular candidate as an actual smell. According to the
subjects’ feedback in the questionnaire, the fact that collab-
orative practices (either PP or Group programming) impose
the selection of a driver contributed to further improve the
activity effectiveness. According to them, the presence of a
driver helped to streamline the discussions. On the other hand,
when developers were working individually, they tended to
just check the existence of code smells comparing with a
checklist of examples. These examples are randomly selected
by each individual based on his personal experience and clearly
influenced the occurrence of several false positives. The reason
is that the examples often had no semantic equivalence to the
smell candidates in the experiment.

The fifth phase is associated with the smell validation
activity. This activity consists of confirming or discarding code
smell candidates identified in the fourth phase. When this
activity is carried out collaboratively, the other members often
require arguments in favor or against to a viewpoint expressed
by one of the team members (5.1). This process contributes
to the confirmation or refutation of a code smell candidate.

Each developer uses one or more methods to elaborate their
arguments: (i) the driver runs through neighboring modules of
the project (5.1.1.1) in order to better understand the context
of a particular smell candidate, (ii) using various IDE features
(5.1.1.2), and (iii) developer’s knowledge (5.1.1.3) gathered in
previous projects. Amongst the three argumentation methods,
we found that only the use of IDE features did not contribute
to improve the subjects’ effectiveness, except for the Unused
Field smell. In the post-experiment questionnaire, one of the
participants (P23) made the following comment “... the IDE
helped me find only smell Unused Field” .

Contradictory opinions might occur once all the arguments
are brought to the discussion with respect to the confirmation
of a smell candidate. Then, there was a need for an agreement
among developers (5.2) and drivers needed to reconcile those
different views. Another form to validate the existence of the
code smell is through queries of examples in the project or in
the Web (5.3). This form was used by most developers when
working individually. We found that such random queries are
often conducted (5.3.1) in general-purpose search engines (e.g.,
Google). On the other hand, the developers when working
collaboratively often performed their queries of examples in
the project under analysis (5.3.2). Most of the solo developers
who adopted random selection did not perform the correct
identification of code smells. This fact was observed from the
comparison of the screenshots and the list of smells identified
by programmers. The random selection on websites did not
contribute to the success rate (i.e., correctly identify code
smells) mainly because the examples were often different
from the context in which the classes and methods were
represented in the experiment design. Therefore, we noticed
that the returned examples were not helpful to support solo
developers in correctly validating their smell candidates.

The sixth phase involves the decision-making process to
make a final verdict about each code smell. When developers
work collaboratively, they can make decisions based on the
Driver’s decision (6.1). However, this activity is usually not
effective as one of the developers can see it as a sign of
authoritarianism. On the other hand, activities based on the
opinion of the majority of the members (6.2) and according
to the agreement amongst developers (6.3) were usually more
effective. These activities were more effective because devel-
opers, using them, solved teams’ uncertainties in a smoother
way.

Given the aforementioned analyses of certain collaborative
activities, the strategy (summarized in Figure 3) can be used
in practice to guide: (i) either teams or educators on improving
training on code smells, and (ii) researchers that need to inves-
tigate how to improve support for (collaborative) identification
of code smells.

C. Overall Discussion

After answering our two research questions, we realized
that identification of inter-class code smells (Section V-A)
tends to be an inherently social activity. Developers naturally
need to make several decisions (Section V-B) in order to
effectively detect these more complex code smells. Moreover,
the process of defining the detection strategies, such as, select-
ing metrics and thresholds, is inherently a social task, which

69

emerges from the opinion of every team member. Teamwork
was important to select proper metrics and thresholds. For
example, in order to validate a Long Method, the participants
used different thresholds for the number of lines of code (LOC)
when employing each practice. For instance, when the partic-
ipant P18 was working individually, he considered LOC > 80
for Program B as threshold. This choice was decisive to result
in several false positives. However, when participants P19 and
P20 were working in pairs they considered as threshold a LOC
> 150 for Program B, which resulted in no false positive. We
also observed that the smell candidates suggested by a single
individual tend to be rejected by another developers, even if
the detection strategy was somehow defined and evaluated in
their previous experiences [11].

Another fact that illustrates the importance of collaboration
concerns the validation of smell candidates. This activity was
clearly the one that benefited the most from collaborative
practices. A scenario involving Data Class instances help to
illustrate this point. For instance, when the participant P6 has
worked alone, he only searched the Internet to decide about
actual occurrences of Data Class. On the other hand, before
deciding about the Data Class, the participant P25, working
in a group, used other classes in the project to convince the
other participants of the group about the existence of the
Data Class. To convince the group, P25 said, “...this class
is a Data Class because it contains only getters and setters
(methods)”. Moreover, the participant P28 added, “... this class
contains data that is only used by other classes”. In this case,
P28 had to run among the other classes before making the
comment. Using both comments, the group marked the class as
a Data Class correctly. Therefore, the developers obtained more
easily the knowledge to reason about code smells when they
worked collaboratively than when they worked individually.
Consequently, they spent less effort to perform the smell
identification with higher accuracy.

VI. THREATS TO VALIDITY

Construct validity: Regarding the experimental planning,
we considered the following threats: (i) the set of analyzed
code smells, (ii) the generation of the smell reference list, and
(iii) the absence of a static analysis tools. Regarding the first
threat, we tried to mitigate it by using systems that suffered
from the same set of code smells. Thus, we restricted our
research to discussing only seven types of code smells. To
mitigate the second threat, a smell reference list had to be
created in order to support the experimental task and to provide
means to calculate the number of identified code smells, while
doing so, several precautions were taken (explained in Section
IV-D). Regarding the absence of a static analysis tools, we
highlight that our goal was not to investigate the impact of
a specific tool on smell identification tasks; instead, our goal
was to investigate how the developers collaborative identify
code smells. Nevertheless, if we had used a tool during the
experiment, the results could be completely dependent on the
intricacies of this particular tool. In other words, the use of a
tool would introduce significant bias to the experiment.

Internal validity: We considered the following threats to
the internal validity: (i) communication among the participants,
(ii) different knowledge levels among the participants, and (iii)
differences among experimental tasks. To mitigate the first

threat, we made an effort to minimize communication among
the participants. Moreover, we explained the experimental
tasks to avoid misguidance of the participants. Concerning the
second threat, we applied the design principles of balancing,
blocking and random assignment, as suggested by Wohlin et
al. [22]. Finally, regarding the third threat, we applied the
control action of using a crossed design, in which independent
groups applied all treatments to all tasks, leading us to three
independent trials. This design also helped to isolate the
learning effect, given that each group applied the practices
in a different sequence.

External validity: Our study interviewed a small sample
of developers and was conducted on a specific set of programs,
which represent threats to the external validity. Therefore, we
cannot generalize our conclusions. The sample was comprised
by 28 novice developers who worked or not in real projects
in the industry. The data extracted from this study presents
important results related to identification of code smells. But,
as an initial study on this subject, we do not raise any
external validity claims and ask for replications to allow further
generalizing the results.

Conclusion validity: This threats concerns the confidence
in the relation between the treatment and the outcome. Regard-
ing the quantitative analyses, we tested our hypotheses using
non-parametric tests. This decision was taken considering
our limited amount of data points and to avoid violating
assumptions on their distribution. Concerning the qualitative
analyses, we tried improve the conclusion validity conducting
our analyses based on different sources of qualitative data
obtained from Camtasia, videos, and questionnaires.

VII. CONCLUSION

In this paper, we compared PP and CDR with solo pro-
gramming in order to better distinguish their impact on the
effective identification of code smells. In fact, our study is the
first in the literature to observe how novice developers work
individually and together to identify smells. Our results suggest
that collaborative practices increase the effectiveness on the
identification of inter-class code smells. Teams and educators
can now focus on exploring the use of collaborative practices
only for these smells. In fact, for nearly all types of inter-
class smells, the average of smells identified by novice pairs
or groups outperformed at least in 40% of the corresponding
average of smells identified by individuals. Novices often do
not question the possibility of being wrong when working in
isolation. As a consequence, they leave various (inter-class)
code smells go unnoticed. The use of collaborative practices
seems to reduce this kind of undesirable behavior. Thus,
collaborative practices tend to increase the rate of success in
identifying more complex smells.

We also identified a list of activities performed by pairs
or groups that contributed to improve the effectiveness on
code smell identification. In general, our results suggest that
novice developers are not yet properly equipped with practices
to conduct effective smell identification activities. Hence, the
collaborative strategy, which was identified in our study, can
be used in practice to guide educators, researchers or teams on
improving detection and training on code smell. Future steps in
this work involve the planning and execution of new empirical

70

studies in order to refine elements of the collaborative strategy
while supporting novices in the smell identification process.

ACKNOWLEDGMENT

This work is funded by CAPES/PGCI (No. 060/15),
CAPES/Procad (grant # 175956), CNPq (grants #
483425/2013-3, 309884/2012-8 and 312127/2015-4), FAPERJ
(E26-102.166/2013) and the research agreement between
PUCRS and ThoughtWorks.

REFERENCES

[1] K. Beck and C. Andres. Extreme Programming Explained: Embrace

Change (2Nd Edition). Addison-Wesley Professional, 2004.

A. Begel and N. Nagappan. Pair programming: what’s in it for me? In
ESEM 08, pages 120-128, 2008.

A. Begel and B. Simon. Novice software developers, all over again.
In Proceedings of the Fourth International Workshop on Computing
Education Research, ICER "08, pages 3—14, New York, NY, USA, 2008.

G. Braught, J. MacCormick, and T. Wahls. The benefits of pairing by
ability. In In. SIGCSE 10, pages 249-253, 2010.

S. Bryton, FE. Brito, Abreu, and M. P. Monteiro. Reducing subjectivity
in code smells detection: Experimenting with the long method. In
QUATIC’10, pages 337-342, 2010.

B. Estacio, R. Oliveira, S. Marczak, M. Kalinowski, A. Garcia, R. Prik-
ladnicki, and C. Lucena. Evaluating collaborative practices in acquiring
programming skills: Findings of a controlled experiment. In SBES’15.

B. Estédcio, R. Prikladnicki, M. da Costa Méra, G. Notari, P. Caroli,
and A. Olchik. Software kaizen: Using agile to form high-perfomance
software development teams. In AGILE’08, pages 1-10, 2014.

M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

F. Hermans and E. Aivaloglou. Do code smells hamper novice
programming: A controlled experiment on scratch programs? In ICPC
’16, Austin, Texas, USA, 2016.

M. V. Mantyla, J. Vanhanen, and C. Lassenius. Bad smells - humans as
code critics. In Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on, pages 399—-408, 2004.

[5]

[6]

[7]

[10]

[11]

R. Marinescu. Measurement and quality in objectoriented design.
Technical report, 2005.

K. Michael, J. Prashant, C. Angelo, and L. David. Distributed extreme
programming. In International conference on eXtreme Programming
and Agile Processes in Software Engineering, pages 6671, 2001.

E. Murphy-Hill and A. P. Black. Seven habits of a highly effective
smell detector. In RSSE’08, pages 3640, New York, NY, USA, 2008.
E. R. Murphy-Hill and A. P. Black. Why don’t people use refactoring
tools? In WRT, pages 60-61, 2007.

W. F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis,
Champaign, IL, USA, 1992. UMI Order No. GAX93-05645.
Open-Archives. Website. In http://migre.me/ufioB, 2016.

M. Philipp. Qualitative content analysis. FQS°00, 2000.

J. Rooksby, J. Hunt, and X. Wang. Agile Processes in Software Engi-
neering and Extreme Programming, chapter The Theory and Practice of
Randori Coding Dojos, pages 251-259. Springer International, 2014.

[12]

[13]
[14]
[15]

[16]
[17]
[18]

[19] N. Salleh, E. Mendes, and J. C. Grundy. Empirical studies of pair
programming for cs/se teaching in higher education: A systematic

literature review. IEEE Trans. Software Eng., 37:509-525, 2011.

D. Sato, H. Corbucci, and M. Bravo. Coding dojo: An environment
for learning and sharing agile practices. In Agile, 2008. AGILE ’08.
Conference, pages 459-464, 2008.

C. Visaggio. Empirical validation of pair programming. page 654, 2005.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, 2012.

A. Yamashita and L. Moonen. Do developers care about code smells?

an exploratory survey. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 242-251, 2013.

[20]

[21]
[22]

[23]

