
On the Implementation of Dynamic Software
Product Lines: A Preliminary Study

Michelle Larissa Luciano Carvalho∗, Gecynalda Soares da Silva Gomes†, Matheus Lessa Gonçalves da Silva∗,
Ivan do Carmo Machado∗, Eduardo Santana de Almeida ∗

∗ Computer Science Department, Federal University of Bahia (UFBA), Salvador - BA, Brazil
† Statistic Department, Federal University of Bahia (UFBA), Salvador - BA, Brazil

Email: [michellellcarvalho, mlessadev]@gmail.com, gecynalda@yahoo.com, [ivanmachado, esa]@dcc.ufba.br

Abstract—Dynamic Software Product Lines (DSPL) engineer-
ing has emerged as a promising strategy to develop Software
Product Lines (SPL) that incorporate reusable and dynamically
reconfigurable artifacts. The central purpose of DSPL is to handle
adaptability at runtime through variability management, as well
as to maximize the reuse of components. Emerging domains
such as the mobile applications and software-intensive embedded
systems require changes and extensions to the design in terms of
both functionality and adaptation capabilities. DSPL should also
deal with the unavoidable changes, which reflect both user needs
and execution environments. However, the evolution capability in
DSPL so far has not been investigated in depth. In this paper, we
report on an exploratory study aimed at evaluating the object-
oriented and aspect-oriented solutions on DSPL evolutionary
scenarios. In this empirical evaluation, the aspect-oriented so-
lution yielded better results in terms of measurements such as
Weighted Operations per Component (WOC), Lines Of Code
(LOC), Lack of Cohesion Over Operations (LCOO), Coupling
between components (CBC), and Response For a Class (RFC).
The use of aspects indicates that it provides assets with lower
complexity, lower coupling, and higher cohesion.

Keywords—Dynamic Software Product Lines, Dynamic Vari-
ability, Self-adaptive Systems, Software Evolution, Exploratory
Study, Software Metrics

I. INTRODUCTION

The Dynamic Software Product Lines (DSPL) approach

aims to develop self-adaptive systems using the Software

Product Lines (SPL) engineering principles [19]. Researchers

have proposed this new approach as a promising strategy to

deal with reconfiguration at runtime.

The DSPL approach enables software engineers to identify

reusable and dynamically reconfigurable artifacts at develop-

ment time, which are explicitly modeled and developed as

dynamic variability. Dynamic variability occurs due to product

variations that appears in the execution environment. These

variations depend on the context variations [1]. In this sense,

the SPL models and variability management practices are used

in order to deal with the design and implementation of DSPL,

which propose to configure and reconfigure instances by the

variability customization at runtime [29].

The variability can be defined as the capability to change

or customize a system [24]. Variabilities are specified through

features. A feature consists of a prominent or distinctive user-

visible element, quality or characteristic of a system, which

can be classified as: (i) mandatory features represent the

common functionality that must be present in all products of

the family; (ii) or features group allows the selection of one

or more features of this group; (iii) alternative features

are model mutual-exclusive functionality; and (iv) optional
features represent a functionality that may be part of a product

[22].

The variability in DSPL can be represented through dynamic

features. These features can be activated, deactivated, or up-

dated at runtime. Thus, DSPL provides adaptable and highly

configurable features [3]. However, due to the lack of suitable

mechanisms and paradigms to support the development of

DSPL, its design is may become more complex [21]. In

addition, the inherent changes may significantly influence

DSPL settings, particularly in terms of existing components

and adaptation models [27]. In this sense, every new feature

added should be mapped to existing artifacts, thus minimizing

the ripple effects of changes.

Existing research usually focuses on modeling variability

[5, 20]. Nevertheless, to the best of our knowledge, there are

no publications reporting on empirical studies that quantita-

tively assess the impact of different solutions under software

quality in DSPL evolutionary scenarios. This is a particularly

important gap to bridge. Since some studies have demonstrated

the likely synergies between Aspect-Oriented Programming

(AOP) and DSPL [26, 33], we decided to investigate how

object-oriented (OO) and aspect-oriented (AO) solutions can

affect factors related to code quality in a DSPL project.

The analysis comprised the following measures: size, co-
hesion, coupling, design stability, and change propagation
impact. The results pointed out few differences between the

solutions. In general, the AO solution yielded better results in

measures such as size, cohesion, and coupling. In this effect,

there is an indication that AOP may be a feasible strategy for

DSPL implementation.

The remainder of this paper is organized as follows. Section

II discusses related work. Section III presents the exploratory

study definition. Section IV describes the exploratory study

planning. Section V describes the analysis and the interpre-

tation of the results. Section VI reports the lessons learned.

Section VII discusses the threats to validity. Section VIII draws

concluding remarks and points out future research directions.

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.13

21

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.13

21

2016 X Brazilian Symposium on Software Components, Architectures and Reuse

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.13

21



II. RELATED WORK

The evolution of DSPL regarding unexpected software

changes has received attention from researchers investigat-

ing variability management. However, only a few experience

reports present suitable mechanisms to implement dynamic

variability [4]. Moreover, several studies address variability

modelling [11], nevertheless, they have different focus since

they do not describe the implementation of a DSPL applica-

tion.
Evolution has been widely studied in the SPL field. Most

existing work has focused on the evolution of problem space
[31]. However, evolving a variability model may also affect

the solution space and vice versa. The problem space refers

to the system’s specifications established during the domain

analysis and requirements engineering phases, whereas the

solution space refers to the related assets created during the

architecture, design, and implementation phases [2].
In contrast, existing research only recently started to inves-

tigate evolution in the DSPL field, and especially its impact

on the running system. Evolving DSPL poses significant

challenges as both problem and solution spaces. The evolution

of problem or solution spaces can lead to inconsistencies

within the given space, between spaces, and with respect to

rules for the runtime adaptation of the system [27].
Talib et al. [32] present a classification of required oper-

ations for jointly evolving problem and solution space in a

DSPL. However, they use the general term variability model

to describe any model of the variability of a software system.

In addition, they analyzed the impact of evolution operations

on the consistency of the DSPL and an architecture of a tool-

supported approach that addresses some issues and supports

the evolution of DSPL.
They presented some requirements for DSPL and catego-

rized them in terms of dynamic reconfiguration and evolution.

However, these requirements do not take into consideration

design quality. The DSPL approach offers automated product

reconfiguration capabilities but are not evolvable in the sense

that they lack support for unanticipated change. In general, the

evolution in this context encompasses addition and update of

features or maintenance tasks. In this way, it is important to

investigate these issues in more detail. Thus, our work may

provide an important contribution to the DSPL engineering

field.
Some works use AOP to improve (i) the isolation of specific

features, (ii) increase the code quality, and (iii) reduce the

impact of using aspects in conventional SPL evolutionary

scenarios [14] and designs of single systems [17]. They

report quantitative assessment targeted at maintenance and

reuse scenarios and software design stability. However, they

did not assess OO and AO implementations by considering

crosscuting concerns and evolution scenarios in the DSPL

field.
Since dynamic adaptation is often a factor that crosscuts

the application logic, it is important to investigate the existing

paradigms that offer language abstractions to cope with cross-

cuting concerns. We believe that this assessment is essential to

achieve a higher degree of maintenance, reuse, and robustness

robustness DSPL demands.

III. EXPLORATORY STUDY DEFINITION

This section presents the exploratory study design. It was

conducted in an academic environment at Federal University

of Bahia, Brazil. In addition, the OO version of the DSPL

was developed from scratch. Then, we proceeded with the

modelling and the implementation of the AO version, based

on the former.

A. Objective

The study is aimed at analyzing the aspect-oriented and

object-oriented solutions to implement dynamic variability for
the purpose of evaluation of the source code with respect to

its size, cohesion, coupling, and instability from the point of
view of Software Engineers and researchers in the context of

an evolving DSPL.

B. Research Questions (RQs)

RQ1. How complex is the design of AO and OO solutions
in DSPL?

The software complexity is related to the required mainte-

nance effort as a result of modifications as well as understand-

ability issues. Large and highly complex components lead to

difficulties in terms of understanding and maintenance.

RQ2. How cohesive is the design of AO and OO solutions
in DSPL?

Cohesion refers to the degree that operations of a component

belong to another component, i.e., it measures the interde-

pendence of a component. High cohesion is generally used

in support of low coupling. High cohesion means that the

responsibilities of a given element (e.g., a software component)

are strongly related and highly focused [23]. The reuse,

maintenance, and extensibility are the advantages achieved

with highly cohesive components.

RQ3. How coupled is the design of AO and OO solutions
in DSPL?

Coupling describes the relationship or dependency between

two or more components. The more coupling between any

two components, more difficult it is for a programmer to

comprehend a given component. A system with high coupling

means there are strong interconnections between its modules.

As a consequence, high coupling may lead to difficulties in

terms of maintenance and reuse. Thus, the coupling factor can

directly impact the software maintenance activities.

RQ4. How different is the stability measurement when
comparing AO and OO solutions in DSPL?

It is possible to evaluate the design stability of a software

system by comparing and analyzing data from different ver-

sions of the system [14]. Whether the differences among its

quality measures are insignificant, then the software design is

stable.

RQ05. How different is the change propagation impact
measurement when comparing AO and OO solutions in
DSPL?

222222



Fig. 1: SHR Feature Model

Change is an inherent aspect of software development.

Changes are usually inevitable and thus controlling them is

the most important part of maintenance tasks. The design

stability is directly related to effects of the changes. The

variability mechanisms should provide support to extend the

system functionality.

C. Metrics

The metrics are described in terms of class, aspects, meth-

ods, and advices. Whereas the components encompass class,

interfaces, and aspects, the methods and advices are called

operations. Due to similarities among its constructions, class,

aspects, methods, and advices are treated and measured in the

same way during the assessment.

M1. Weighted Operation per Component (WOC): The

WOC metric was used to help answering the questions RQ1
and RQ4. This metric measures the complexity of a component

based on its operations [9].

M2. Number of Lines Of Code (LOC): The LOC metric

was used to help answering the questions RQ1 and RQ4. This

metric counts the number of lines of code, and it is a traditional

measure of size [12].

M3. Lack of Cohesion Over Operations (LCOO): The

LCOO metric was used to help answering the questions RQ2
and RQ4. This metric measures the lack of cohesion of a

component [28].

M4. Coupling Between Components (CBC): The CBC

metric was used to help answering the questions RQ3 and

RQ4. This metric counts the number of other components to

which it is coupled [28].

M5. Response For a Class (RFC): The RFC metric was

used to help answering the questions RQ3 and RQ4. The RFC

metric is a class coupling measure [9].

M6. Traditional change impact metrics: Considering dif-

ferent levels of granularity – components, operations, and lines

of code [17], these metrics were used to help answering the

questions RQ4 and RQ5. They measure the number of lines

of code, operations, and components added and removed.

IV. EXPLORATORY STUDY PLANNING

This section discusses the planning and procedures used to

perform the exploratory study.

A. Project

In this exploratory study, we used a self-adaptive and

context-aware system in the domain of smart homes, named

SmartHomeRiSE 1 (SHR). The SHR DSPL provides conve-

nience for users in terms of control the luminosity, tempera-

ture, and security based on its automation functions [30].

Figure 1 shows the variability model of the SHR project.

The project encompasses the two essential DSPL activities

[25]: monitoring the current situation for detecting events

that might require adaptation and controlling the adaptation

through the variability management. In addition, it encom-

passes the following set of non-functional properties: adapt-
ability, autonomy, context-sensitivity, and autonomic or self-
adaptive decision-making. A smart home provides its residents

with a more comfortable, safe, energy-efficient, and all-times-

convenient environment, which makes their lives easier.

A range of studies in DSPL engineering have employed

smart homes systems in their investigations, as they might

support a diversity of product configurations at runtime, thus

being suitable to represent the challenges this field faces

[6, 7, 8]. Methods and techniques to support smart homes

implementation have been proposed and investigated [10, 34],

but key issues such as reuse, evolution, and maintenance have

been left aside.

B. Quantitative Analysis Mechanisms

The exploratory study was organized in the following steps:

(i) identification and selection of suitable implementation

mechanisms to implement DSPL variability; (ii) definition

of the application domain, feature model, reference archi-

tecture, reconfiguration rules, and possible adaptations; (iii)
building a prototype which encompasses the scaling model

and devices (e.g. sensors, micro-controllers, and actuators);

(iv) development of the subject DSPL with complete releases;

(v) measurements and metrics calculation; and (vi) quantitative

analysis of the results.

Whether the binding time is clearly known, it is possible to

make recommendations about which variability mechanisms

to use. [15]. Since the dynamic variability is achieved at

1The SHR website is available at:
https://sites.google.com/site/smarthomerise/

232323



runtime, we decided to initially use the binding time as a

criterion to select the candidate mechanisms to implement the

DSPL application. In this way, the SHR was implemented by

using the following variability mechanisms: parameterization,

aggregation, reflection, and polymorphism [15, 18]. However,

the complete description and a more detailed discussion of the

data of this implementation are beyond the scope of this paper.

The SHR DSPL project was implemented in Java and

comprises 11 concrete features, including 9 packages. The

OO version of the project was implemented with 52 classes,

and 4059 lines of code. The AO version was implemented

with 52 classes, 3 aspects, and 4087 lines of code. The SHR

design aimed at modularizing user interface, core, and features.

These are layers in both OO and AO architectures. However,

the OO version fails to completely prevent code tangling and

scattering, since adaptation to the current context is often an

element that crosscuts the application logic.

Although in the AO design it is difficult to organize the

codebase so that it does not compromise the separation of

concerns, the AO implementation modularize some concerns

that were tangled and scattered in the OO decomposition coun-

terpart. In this design, the crosscutting elements concerning to

the business rules, features, and exception handling were mod-

ularized as aspects, namely HomeAspect, FeatureUIAspect,
and FeatureAspect. For instance, the hardware management

concern was removed from the core layer and encapsulated in

the HomeAspect. In addition, FeatureUIAspect encapsulates

some behavioral variations, which were scattered in the OO

design.

The complete releases correspond to respective scenario

changes and simulations of maintenance tasks and reuse.

Seven scenarios were considered in SHR, resulting in eight re-

leases. The scenarios encompass different types of changes in-

volving illumination, security, and temperature control sys-

tems and mandatory, or, optional, and alternative
features.

Table I shows the scenario changes of the SHR according

to the feature types. The filled circles represent an included

feature, and the blank ones represent features that are not

included. In both designs, release R01 contains the DSPL

core. All subsequent releases were designed to incorporate

the required changes in order to include the corresponding

optional, or, and alternative features. For instance,

in the release R02, two optional features were added. In

the release R07, the illumination feature was added, and in

the release R08, the temperature feature was added.

Conversely, from Table I it is possible to see that some fea-

tures were removed, from release to release. It was necessary

to meet the requirements concerning to the particular kinds of

features. For instance, in the releases R07, the security and

temperature features were removed. In the release R08, the

temperature feature was added and the illumination feature

was removed.

The quantitative assessment considered the measure: com-
plexity, cohesion, coupling, and change propagation impact.
These measures are predictor factors for external attributes as

TABLE I: Reuse and Maintenance Scenarios in SHR

Evolution

Feature Reuse
R01 R02 R03 R04 R05 R06 R07 R08

01 � � � � � � � �
02 � � � � � � � �
03 � � � � � � � �
04 � � � � � � � �
05 � � � � � � � �
06 � � � � � � � �
07 � � � � � � � �
08 � � � � � � � �
09 � � � � � � � �
10 � � � � � � � �
11 � � � � � � � �

(01): PresenceIllusion; (02): UserIllumination; (03): Alarm; (04): Panic-
Mode; (05): LockDoors; (06): ByPresence; (07): ByLuminosity; (08):
FromWindow(User); (09): FromAirConditioning(User);(10): FromWin-
dow(Automated); (11): FromAirConditioning(Automated); �: Included;�: Not included

reusability and maintenance [28]. In addition, it is possible to

evaluate the design stability of a software system by comparing

its versions.

The metrics were collected using the following tool: AOP-
Metrics2. For quantitative data, the analysis included de-

scriptive statistics, such as mean values, standard derivation

(StDev), variance, and boxplots aiming to explore gathered

data.

V. ANALYSIS AND INTERPRETATION

This subsection provides an in-depth analysis of the gath-

ered data. The evaluation was conducted through descriptive

statistics in order to get a general view of a data set and its

distribution.

A. Complexity analysis

This subsection presents a quantitative analysis to answer

RQ1 and RQ4. Figure 2 and Figure 3 show the complexity

criterion in each solution concerning two measures: Weighted

Operations per Component (WOC) and Lines Of Code (LOC),

respectively. A general interpretation of these measures is that

lower values indicate less complex solutions. We next provide

an in-depth descriptive analysis of each measure.

Weighted Operations per Component (WOC). For this

measure in AO, we counted advice blocks as operations

belonging to aspects. Table II shows the descriptive statistics

to WOC measure for every release. In general, concerning the

number of operations, the variation among the releases was

almost similar. Nonetheless, in releases R02, R03, R04, R05,

R06, and R07, the WOC value is increasing. The plot shows

that these releases have the upper whisker greater in the OO

scenario.

Additionally, we can see an outlier in all releases of both

OO and AO. This observation came from a fundamental class,

called HouseFacade, which is responsible for implementing

several crosscutting concerns. This class allows to access the

business collections, implemented in other core classes.

2AOPMetrics http://aopmetrics.tigris.org/

242424



0 
1 

2 

3 

4 

5 
6 

7 

8 

9 

10 
11 

12 

13 

14 

15 
16 

17 

18 

19 

20 
21 

22 

23 

24 

25 
26 

27 

28 

29 

30 

R01 R02 R03 R04 R05 R06 R07 R08 

(OO)

0 
1 

2 

3 

4 

5 
6 

7 

8 

9 

10 
11 

12 

13 

14 

15 
16 

17 

18 

19 

20 
21 

22 

23 

24 

25 
26 

27 

28 

29 

30 

R01 R02 R03 R04 R05 R06 R07 R08 

(AO)

Fig. 2: Weighted Operations per Component (WOC)

TABLE II: WOC Descriptive Statistics

Release Variable Components Mean StDev Variance

R01 OO 21 6,140 5,680 32,230
AO 23 5,960 5,760 33,130

R02 OO 27 6,070 5,530 30,610
AO 29 5,860 5,560 30,910

R03 OO 30 6,167 5,446 29,661
AO 32 5,969 5,480 30,031

R04 OO 39 6,282 5,301 28,103
AO 42 6,048 5,437 29,559

R05 OO 47 6,277 5,352 28,639
AO 50 5,960 5,580 31,141

R06 OO 52 6,558 5,345 28,565
AO 55 6,364 5,338 28,495

R07 OO 28 6,500 5,640 31,810
AO 31 6,030 5,690 32,370

R08 OO 30 6,700 5,440 29,597
AO 33 6,273 5,375 28,892

Although the AO implementation adds more pointcuts and

advices needed to modularize concerns, observing the mean
value for all releases we have considered that the OO imple-

mentation is more complex regarding the WOC measure.

Lines Of Code (LOC). In general, the variation of the data

set among both solutions was similar. In OO, the median value

among all releases was close and irregular. The same applies

with the releases in AO. However, the LOC mean value in OO

design is higher than in AO for all releases. Table III shows

the descriptive statistics to LOC measure for all releases.

In both solutions, the increase in maximum values until

release R06 resulted in the appearance of outliers, since new

features were included during the evolution task. The outliers

have occurred in the Main and HouseFacade classes due

to the insertion of or features ByPresence, ByLuminosity,

FromWindow, and FromAirConditioning (automated control),

besides the alternative features FromWindow and From-

0 

100 

200 

300 

400 

500 

R01 R02 R03 R04 R05 R06 R07 R08

(OO)

0 

100 

200 

300 

400 

500 

R01 R02 R03 R04 R05 R06 R07 R08 

(AO)

Fig. 3: Lines Of Code (LOC)

TABLE III: LOC Descriptive Statistics

Release Variable Components Mean StDev Variance

R01 OO 21 64,8 66,8 4461,4
AO 23 60,4 63,9 4085,5

R02 OO 27 67,9 69,3 4806,5
AO 29 63,7 65,4 4274,4

R03 OO 30 70,0 72,4 5247,9
AO 32 66,0 68,1 4634,8

R04 OO 39 71,5 80,0 6403,7
AO 42 67,1 74,2 5507,9

R05 OO 47 74,3 89,0 7915,2
AO 50 70,4 86,5 7483,6

R06 OO 52 78,1 95,2 9066,1
AO 55 74,3 86,0 7390,3

R07 OO 28 70,7 83,9 7044,7
AO 31 61,4 69,9 4892,2

R08 OO 30 73,3 81,9 6711,6
AO 33 66,0 74,2 5501,2

AirConditioning (user control). In this case, several concerns

and joint points to the user interface classes were implemented.

The upper whisker of the releases R06 and R08 was greater

in AO than OO. We have associated it with the occurrence of

or and alternative features in the same release. In this

case, new pointcuts and advices were included resulting in

more lines of code and increased complexity. On the other

hand, the median value to LOC measure showed that OO is

more complex than in AO, since the use of aspects reduce the

number of lines of code for all components.

As a general indicator for the size attribute, both OO and AO

presented similar variation, resulting in very similar stability

for evolution task and reuse.

B. Cohesion analysis

This subsection presents a quantitative analysis to answer

RQ2 and RQ4. Figure 4 shows the cohesion criterion in each

252525



0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

R01 R02 R03 R04 R05 R06 R07 R08 

(OO)

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

R01 R02 R03 R04 R05 R06 R07 R08 

(AO)

Fig. 4: Lack of Cohesion Over Operations (LCOO)

TABLE IV: LCOO Descriptive Statistics

Release Variable Components Mean StDev Variance

R01 OO 21 9,430 23,82 567,26
AO 23 4,130 7,630 58,210

R02 OO 27 9,740 25,57 653,58
AO 29 4,520 7,410 54,970

R03 OO 30 9,600 24,39 594,73
AO 32 4,880 7,680 58,950

R04 OO 39 9,380 21,99 483,66
AO 42 6,020 10,06 101,15

R05 OO 47 6,110 8,800 77,40
AO 50 6,120 10,97 120,35

R06 OO 52 6,870 9,260 85,810
AO 55 6,840 10,13 102,55

R07 OO 28 10,36 25,23 636,39
AO 31 5,770 10,85 117,78

R08 OO 30 6,030 8,940 79,900
AO 33 6,450 9,090 82,630

solution concerning to Lack of Cohesion Over Operations

(LCOO). A general interpretation of this measure is that a

lower value indicates a less cohesive solution. We next provide

a descriptive analysis of the measure.

Lack of Cohesion Over Operations (LCOO). The LCOO

variation presented similar behavior comparing both OO and

AO during evolution. Table IV shows the descriptive statistics

of the LCOO measure for every release. In general, AO yielded

better results, since the aspects filter out crosscutting behavior.

It means that AO is more cohesive than OO.

In OO, the releases R01, R02, R03, R04, and R07, the

LCOO measure to the HouseFacade component had a value

greater than one hundred resulting in an outlier. In contrast,

in the releases R05, R06, and R08, this same component

presented a value equal to zero. We have associated this sharp

variance with the inclusion of optional and or features.

The high value as well as the value equal zero indicates that

0 

10 

20 

30 

R01 R02 R03 R04 R05 R06 R07 R08 

(OO)

0 

10 

20 

30 

R01 R02 R03 R04 R05 R06 R07 R08 

(AO)

Fig. 5: Coupling Between components (CBC)

TABLE V: CBC Descriptive Statistics

Release Variable Components Mean StDev Variance

01 OO 21 3,100 4,610 21,290
AO 23 2,957 4,517 20,407

02 OO 27 3,593 5,139 26,405
AO 29 3,448 4,968 24,685

03 OO 30 3,870 5,490 30,120
AO 32 3,750 5,328 28,387

04 OO 39 4,026 5,728 32,815
AO 42 3,810 5,452 29,719

05 OO 47 4,255 6,212 38,586
AO 50 4,180 6,190 38,314

06 OO 52 4,404 6,350 40,324
AO 55 4,236 6,077 36,925

07 OO 28 3,710 5,860 34,290
AO 31 3,161 4,734 22,406

08 OO 30 3,833 5,325 28,351
AO 33 3,182 4,647 21,591

the component has low cohesion. Whereas a LCOO measure

of zero cannot support evidence that a component is cohesive

nor it holds a stable interface, the high LCOO indicates a

component that shall be considered for splitting it into several

components.

In summary, it indicates that AO is more stable than OO for

cohesion measurement. It can be seen that more scenarios in

OO were affected regarding cohesion. The only major change

for AO occurred in only one release, while in OO the major

change occurred in five of them.

C. Coupling analysis

This subsection presents a quantitative analysis to answer

RQ3 and RQ4. Figure 5 and Figure 6 show the coupling

criterion in each solution concerning two measures Coupling

Between components (CBC) and Response For a Class (RFC),

respectively. A general interpretation of these measures is that

262626



lower values indicate a less coupled solutions. We next provide

a descriptive analysis of each measure.

Coupling Between Components (CBC). Both solutions

presented a constant median among every release. The data

set had a similar behavior comparing both OO and AO

from releases R01 to R05. However, outliers are showed in

these releases. We consider the outliers in the components

that implement concerns related to features and hardware

management. In addition, the third quartile presented greater

value in OO than AO in the releases R01, R03, R06, R07,

and R08. It indicates that OO is more coupled than in AO.

Table V shows the descriptive statistics to CBC measure for

all releases.

In general, the presence of aspects is likely to decrease

the coupling between core classes and increase the coupling

between core class and aspects. This is because aspects are

new entities on which core classes depend upon. Decreasing

the coupling between core classes is a beneficial issue, and

increasing coupling between aspects and core classes in return

can be seen as a good trade-off. Given that a design might

involve coupling between classes, it would be better to have

this coupling occurring from classes-to-aspect, rather than

having it happening only from classes-to-classes.

Response For a Class (RFC). AO presented a growing

median value in the releases R04, R05, R06, R07, and

R08. It might have occurred due to the inclusion of or and

alternative features, since the components targeted at

implementing of these features had a high RFC value.

Table VI shows the descriptive statistics to RFC measure

for all releases. The variance of the data set was similar.

Nevertheless, the mean value is higher in OO than in AO

for all releases. It indicates that OO implementation is more

coupled regarding the RFC measure.

Additionally, the core-to-aspect invocations are counted

when calculating RFC. Thus, the RFC value increased in the

presence of aspects. It means that the number of entities that

a class communicates with has been increased, and thus, the

classes have to communicate with the aspects. However, we

have noticed that, by using aspects it is possible to encapsulate

the logic and the objects with which a class communicates in

a modular way.

In summary, for the coupling measures, the variation be-

tween the solutions was very similar. The CBC and RFC

graphs show that in both solutions these measures presented

more irregular values for releases, in which the or and

alternative features were included. However, the OO

solution presented more stable values for all releases.

D. Change Propagation Impact

This subsection presents a quantitative analysis to answer

RQ4 and RQ5. In particular, we aimed at knowing how the

different paradigms affect the evolution task and reuse in the

context of DSPL.

Change is a key element in software development, em-

bracing evolving requirements and improvements in existing

software artifacts. Change effects are directly related to design

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

R01 R02 R03 R04 R05 R06 R07 R08 

(OO)

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65

70 

75 

80 

R01 R02 R03 R04 R05 R06 R07 R08 

(AO)

Fig. 6: Response For a Class (RFC)

TABLE VI: RFC Descriptive Statistics

Release Variable Components Mean StDev Variance

01 OO 21 9,480 10,08 101,66
AO 23 8,870 10,37 107,48

02 OO 27 9,780 10,85 117,64
AO 29 9,140 10,76 115,77

03 OO 30 10,20 11,11 123,34
AO 32 9,560 10,96 120,06

04 OO 39 10,74 11,27 127,09
AO 42 10,10 11,49 131,94

05 OO 47 11,02 12,08 145,85
AO 50 10,42 12,20 148,78

06 OO 52 11,67 12,71 161,44
AO 55 11,33 12,73 162,00

07 OO 28 10,71 10,83 117,25
AO 31 9,710 11,00 120,95

08 OO 30 11,23 11,66 136,05
AO 33 10,39 11,49 132,00

stability. The same still holds true for DSPL engineering. In

DSPL engineering, evolution should be conducted through

non-intrusive and self-contained changes that favor insertions

and do not require deep modifications into existing compo-

nents.

In this current investigation, the considered changes mainly

comprised either the addition or removal of features. As a

result, it was possible to provide an additional indication

whether a specific paradigm could provide a better design

stability support for some types of change.

Variability management plays an important role in DSPL

evolution, as it is necessary to avoid inconsistent adaptations

at runtime. In this sense, the variability mechanism should

provide support to extend the system functionality, ensuring

the DSPL architecture stability, without decreasing modularity.

In this way, traditional change impact metrics were used

considering different levels of granularity: components, oper-

272727



TABLE VII: Summary of the SHR implementation

R01 R02 R03 R04 R05 R06 R07 R08

Absolute value

Lines Of Code OO 1361 1834 2100 2787 3490 4059 1980 2198

AO 1390 1846 2112 2819 3521 4087 1904 2177

Operations OO 129 164 185 245 295 341 182 201

AO 137 170 191 254 298 350 187 202

Components OO 19 24 27 36 43 48 26 28

AO 20 26 29 39 47 51 29 31

Lines Of Code
Added OO - 473 266 687 703 569 0 1042

AO - 456 266 707 702 566 0 1011

Removed OO - 0 0 0 0 0 2206 454

AO - 0 0 0 0 0 2183 463

Operations
Added OO - 35 21 60 50 46 0 45

AO - 33 21 63 44 52 0 42

Removed OO - 0 0 0 0 0 90 21

AO - 0 0 0 0 0 93 21

Components
Added OO - 6 2 2 7 5 0 13

AO - 6 2 2 9 5 0 13

Removed OO - 0 0 0 0 0 24 7

AO - 0 0 0 0 0 24 7

ations, and lines of code. A general interpretation of these

measures is that the lower the change impact measures the

more stable and resilient the design is to a specific change.

Table VII shows the summary of the SHR implementation

and change propagation metrics.

In general, removing the number of lines of code, opera-

tions, and components did not bring significant difference and

variation between the measures of OO and AO. In addition,

both solutions had similar change propagation values. How-

ever, AO generally require additional components, operations,

and lines of code to implement the changes during evolution

task and reuse.

By observing the absolute values in releases R02, R05,

R07, and R08, they indicate that OO solution required existing

components to be modified more extensively in order to imple-

ment the changes. This behavior was confirmed in the change

propagation metrics, since its values showed more extensive

changes in terms of added lines of code and operations.

Conversely, in R04 and R06, the same observation did not

show up, as the number of added lines of code and operations

were exceeded in AO. In addition, release R03 presented

similar values in both solutions.

The analysis of these scenarios through change propagation

metrics confirmed that the inclusion of the optional fea-

tures Alarm and PanicMode and the alternative features

FromWindow and FromAirConditioning (user control) have a

greater impact on the design stability in OO than in AO. Thus,

it is more effective the use of aspects to manage these type of

features in DSPL evolution. When considering the inclusion of

or-features, it indicates that the AO solution has greater design

stability impact. It means that aspects reduce the absorbing of

changes.

VI. LESSONS LEARNED

After concluding the exploratory study, there are some

aspects to consider. Such aspects may aid further replications

of the study, as they could be understood as limitations faced

in the present execution.

Paradigm. The transfer from AO solution to DSPL devel-

opment is largely dependent on the ability to understand the

paradigm specification and implementation. In this sense, a

complete and detailed planning should be defined by software

designers in order to cover the concerns to be modularized

into an aspect in the DSPL evolution.

Evolution. In the exploratory study, the evolution of DSPL

project was carried out manually. However, as the number

of new requirements increases, the inclusion of features may

become a complex task. Thus, an automatic inclusion of

features could facilitate the engineering work. In this sense, the

evolution at runtime should be investigated in order to identify

more flexible solutions in offering automatic configuration and

reconfiguration.

VII. THREATS TO VALIDITY

Construction validity. Complexity, cohesion, coupling, and

instability are difficult concepts to measure. For this study,

the metrics were selected based on the previously performed

studies [13, 14, 16, 17] which obtained relevant results using

them. In order to increase the reliability of measures, the

AOPMetrics tool was used to collect the data set that was

evaluated in this exploratory study.

282828



Internal validity. There are some threats that were con-

sidered in this exploratory study, such as the assessment of a

single domain, the variability mechanisms, and the number of

releases. In order to mitigate these threats, we aim to carry out

further empirical studies considering other domains, different

variability mechanisms, and new releases.

External validity. The project was developed from scratch,

since we did not find a DSPL application available for empiri-

cal evaluation purposes. Nonetheless, we understand that other

applications in a different domains could be used in order to

assess the solutions. It means that another exploratory study

following the same research issues can be more conclusive

stating which solution is more suitable to implement DSPL in

evolutionary scenarios.

The findings of the analysis can be used as baseline for

comparing other studies in the context of DSPL, since the

exploratory study protocol has been developed in detail and

reviewed by researchers. Thus, it reduces the threat to the

external validity of the exploratory study.

Conclusion validity. Since 3664 data points were collected,

the reliability of the measurement process might be an issue.

For this reason, an independent author who did not collect the

respective data applied statistical analysis.

Finally, the results of the study were described using De-
scriptive statistics, which deal with numerical processing and

presentation of a data set. It is the most suitable method

to describe the analysis and interpretation of this data type

collected.

VIII. CONCLUDING REMARKS

The central purpose of DSPL engineering is to deal with

adaptability at runtime, as well as to maximize the reuse

of components. For this reason, it is essential to identify a

suitable solution to implement DSPL applications aiming to

increase software quality by affecting internal attributes such

as size, cohesion, coupling, and instability. Identifying the

most suitable solution promotes benefits to the maintenance

activities and reuse of components of a DSPL application. As

a result, it can be possible to ensure continuous improvement

for implementing these systems.

An exploratory study was conducted with two subjects,

and the OO and AO solutions were compared among each

other. A set of metrics was used for both paradigms aiming

to meet the following requirements: (i) to measure quality

factors and (ii) to support the identification of advantages and

drawbacks from the use of aspects in the DSPL evolution

in comparison to OO design. In this exploratory study was

analyzed the possibility to implement components with lower

complexity, lower coupling, higher cohesion, and a more stable

design. Moreover, the assessment encompassed the change

propagation impact.

The main findings of the study showed that a solution fits

best in particular cases. In this sense, AO was pointed out as

a suitable solution for dealing with specifics situations. For

example, the use of aspects indicates that it provides assets

with lower complexity, lower coupling, higher cohesion, and

support lower change propagation impact.

Nonetheless, we believe that other domains should be used

in order to assess the application of the solutions to implement

DSPL evolution and cope with dynamic adaptation. Further

research actions should be taken in order to gather more

solid evidence about the findings. As future work, we plan to

conduct new studies in other domains, considering also other

paradigms and languages, such as Delta-oriented Programming

and Context-oriented Programming.

ACKNOWLEDGMENTS

This work was partially supported by the National Institute

of Science and Technology for Software Engineering (INES1),

funded by CNPq and FAPESB.

REFERENCES

[1] N. Bencomo, S. O. Hallsteinsen, and E. S. de Almeida.

A view of the dynamic software product line landscape.

IEEE Computer, pages 36–41, 2012.

[2] K. Berg, J. Bishop, and D. Muthig. Tracing software

product line variability: From problem to solution space.

In Proceedings of the 2005 Annual Research Conference
of the South African Institute of Computer Scientists and
Information Technologists on IT Research in Develop-
ing Countries, pages 182–191. South African Institute

for Computer Scientists and Information Technologists,

2005.

[3] J. Bosch and R. Capilla. Dynamic variability in software-

intensive embedded system families. IEEE Computer,

pages 28–35, 2012.

[4] V. A. Burégio, S. R. de Lemos Meira, and E. S.

de Almeida. Characterizing dynamic software product

lines - A preliminary mapping study. In Proceedings of
the 14th International Conference in Software Product
Lines (SPLC), pages 53–60, 2010.

[5] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and

M. Hinchey. An overview of dynamic software product

line architectures and techniques: Observations from re-

search and industry. Journal of Systems and Software,

pages 3–23, 2014.

[6] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Using

feature models for developing self-configuring smart

homes. In Fifth International Conference on Autonomic
and Autonomous Systems (ICAS), pages 179–188. IEEE

Computer Society, 2009.

[7] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Designing

and prototyping dynamic software product lines: Tech-

niques and guidelines. In Proceedings of the 14th Inter-
national Conference on Software Product Lines (SPLC),
pages 331–345. Springer-Verlag, 2010.

[8] C. Cetina, P. Trinidad, V. Pelechano, and A. Ruiz-Cortés.

An architectural discussion on dspl. In 2nd SPLC
Workshop on Dynamic Software Product Line (DSPL),

1http://www.ines.org.br

292929



pages 59–68. Irish Software Engineering Research Cen-

tre (Lero), September 2008.

[9] S. R. Chidamber and C. F. Kemerer. A metrics suite

for object oriented design. IEEE Transactions Software
Engineering, pages 476–493, 1994.

[10] D. Cook, M. Youngblood, I. Heierman, E.O., K. Gopal-

ratnam, S. Rao, A. Litvin, and F. Khawaja. MavHome:

an agent-based smart home. In Proceedings of the First
IEEE International Conference on Pervasive Computing
and Communications, pages 521–524, 2003.

[11] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini.

A dynamic software product line approach using aspect

models at runtime. In Proceedings of the 1st Workshop
on Composition and Variability. ACM, 2010.

[12] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing Co.,

2nd edition, 1998.

[13] G. C. S. Ferreira, F. N. Gaia, E. Figueiredo, and

M. de Almeida Maia. On the use of feature-oriented

programming for evolving software product lines - A

comparative study. Sci. Comput. Program., 93:65–85,

2014.

[14] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,

U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan,

F. Castor Filho, and F. Dantas. Evolving software product

lines with aspects: An empirical study on design stability.

In Proceedings of the 30th International Conference
on Software Engineering (ICSE), pages 261–270. ACM,

2008.

[15] C. Gacek and M. Anastasopoules. Implementing product

line variabilities. In Proceedings of the 2001 Symposium
on Software Reusability: Putting Software Reuse in Con-
text (SSR), pages 109–117. ACM, 2001.

[16] F. N. Gaia, G. C. S. Ferreira, E. Figueiredo, and

M. de Almeida Maia. A quantitative and qualitative

assessment of aspectual feature modules for evolving

software product lines. Science of Computer Program-
ming, pages 230–253, 2014.

[17] P. Greenwood, T. T. Bartolomei, E. Figueiredo, M. Dsea,

A. F. Garcia, N. Cacho, C. Sant’Anna, S. Soares,

P. Borba, U. Kulesza, and A. Rashid. On the impact

of aspectual decompositions on design stability: An em-

pirical study. In ECOOP–Object-Oriented Programming,

pages 176–200. Springer, 2007.

[18] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of

variability in software product lines. In Proceedings of
the Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), pages 45–54. IEEE Computer Society,

2001.

[19] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid.

Dynamic software product lines. IEEE Computer, pages

93–95, 2008.

[20] A. Helleboogh, D. Weyns, K. Schmid, T. Holvoet,

K. Schelfthout, and W. Van Betsbrugge. Adding variants

on-the-fly: Modeling meta-variability in dynamic soft-

ware product lines. In Proc. of the 3rd International

Workshop on Dynamic Software Product Lines (DSPL),
pages 18–27, 2009.

[21] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-

oriented programming. Journal of Object Technology,

pages 125–151, 2008.

[22] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and

A. S. Peterson. Feature-oriented domain analysis FODA

feasibility study. 1990.

[23] C. Larman. Applying UML and Patterns: An Introduction
to Object -Oriented Analysis and Design and the Unified
Process. Pretice Hall PTR, 2002.

[24] F. J. v. d. Linden, K. Schmid, and E. Rommes. Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2007.

[25] P. S. M. Hinchey and K. Schmid. Building dynamic

software product lines. IEEE Computer, pages 22–26,

2012.

[26] B. Morin, O. Barais, and J.-M. Jézéquel. K@RT:

An aspect-oriented and model-oriented framework for

dynamic software product lines. In Proceedings of
the 3rd International Workshop on Models@Runtime, at
MoDELS, 2008.

[27] C. Quinton, R. Rabiser, M. Vierhauser, P. Grünbacher,

and L. Baresi. Evolution in dynamic software product

lines: Challenges and perspectives. In Proceedings 19th
International Software Product Line Conference (SPL),
pages 126–130. ACM, 2015.

[28] C. SantAnna, A. Garcia, C. Chavez, C. Lucena, and

A. Von Staa. On the reuse and maintenance of aspect-

oriented software: An assessment framework. In Pro-
ceedings of Brazilian symposium on software engineer-
ing, pages 19–34, 2003.

[29] L. Shen, X. Peng, J. Liu, and W. Zhao. Towards feature-

oriented variability reconfiguration in dynamic software

product lines. In Top Productivity through Software
Reuse, pages 52–68. Springer, 2011.

[30] M. L. G. Silva, M. L. L. Carvalho, A. R. Santos, and

E. S. Almeida. SmartHomeRiSE: An DSPL to home

automation. Congresso Brasileiro de Software (CBSoft)
- Ferramentas, pages 32–39, 2015.

[31] M. Svahnberg and J. Bosch. Evolution in software

product lines. pages 391–422. Citeseer, 1999.

[32] M. A. Talib, T. Nguyen, A. W. Colman, and J. Han.

Requirements for evolvable dynamic software product

lines. In 14th International Conference on Software
Product Lines (SPLC), pages 43–46, 2010.

[33] K. F. Tom Dinkelaker, Ralf Mitschke and M. Mezini.

A dynamic software product line approach using aspect

models at runtime. In Proceedings of the 1st Workshop
on Composition and Variability. CEUR Workshop, 2010.

[34] C. Yang, B. Yuan, Y. Tian, Z. Feng, and W. Mao. A smart

home architecture based on resource name service. In

Proceedings of the 17th IEEE International Conference
on Computational Science and Engineering (CSE), pages

1915–1920. IEEE Computer Society, 2015.

303030


