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Abstract—Architectural problems constantly affect evolving
software projects. When not properly addressed, those problems
can hinder the longevity of a software system. Studies have
revealed that a range of architectural problems are reflected in
source code through two or more code smells. However, a software
project often contains thousands of code smells and many of them
have no relation to architectural problems. Thus, developers may
feel discouraged to identify architectural problems if they are not
equiped with means to focus their attention in a reduced set of
locations in their system to start with. However, state-of-the-art
techniques fall short in assisting developers in the prioritization
of code smells that are likely to indicate architectural problems
in a program. As a consequence, developers struggle to effectively
focus on (groups of) smells that are architecturally relevant, i.e.,
smells that contribute to a critical design problem. This work
presents and evaluates a suite of criteria for prioritizing groups
of code smells as indicators of architectural problems in evolving
systems. These criteria are supported by a tool called JSpIRIT.
We have assessed the prioritization criteria in the context of more
than 23 versions of 4 systems, analyzing their effectiveness for
spoting locations of architectural problems in the source code. The
results provide evidence that one of the proposed criteria helped
to correctly prioritize more than 80 (locations of) architectural
problems, alleviating tedious manual inspections of the source
code vis-a-vis with the architecture. This prioritization criteria
would have helped developers to discard at least 500 code smells
having no relation to architectural problems in the analyzed
systems.

I. INTRODUCTION

Software systems usually suffer from architectural prob-
lems introduced either during development or along their
evolution. Several systems have been restructured with high
costs or even discontinued due to the constant occurrence of ar-
chitectural problems [1], [2], [3]. Many architectural problems
occur when one or more components of a system are violating
design principles or rules [2]. These violations negatively affect
the maintainability and other quality attributes of a system
[2], [4]. Typical examples of architectural problems are Fat
Interface and Unwanted Dependency between components [5],
[1]. The former violates the principle of separation of concerns
[2], while the latter violates a dependency rule in the system’s
architecture [1]. Both of them often negatively affect software
maintainability and performance [2].

Unfortunately, the identification of locations in a system
that likely indicate architectural problems is time-consuming

and cumbersome for several reasons. This task generally
requires the analysis of both architectural documentation and
the realization of architecture decisions in source code. It is
hard for a developer to effectively explore these two types
of information altogether in order to uncover possible spots
of architectural problems. Architecture documentation is often
not well documented and scarce. Even when architecture
information is available, it is often not detailed enough to
help developers to reveal architectural problems[2], [4], [6].
Thus, developers need to resort to hints in the source code that
indicate the presence of architectural problems. An ocurrence
of certain types of well-known code anomalies (i.e. code
smells) [7] may provide helpful, albeit partial, hints of the
location of architecture problems in a system [4] (Section
II). Classical examples of code smell types often related
to architectural problems are Long Method, God Class and
Feature Envy [7].

A wide range of architectural problems are often realized
by a subgroup of code smells scattered in the source code,
which makes their location even more challenging [4], [6].
Even for small systems, developers would need to analyze
hundreds of smells and infer their likelihood of indicating the
manifestation of an architectural problem. As those systems
evolve, the number of smells tend to grow across system
versions, thereby further obscuring the location of architectural
problems in a program. In such situations, developers do not
know where to focus on, i.e. which few groups of code smells
can be used a starting point for locating architectural problems
in the source code. We argue that a practical strategy here is to
prioritize groups of code smells according to their criticality
to the system architecture, that is, their ability to point out
architectural problems. Unfortunately, existing work (Section
II) does not support developers on automatically prioritizing
code smells to reveal architectural problems, thereby discour-
aging them to locate such symptoms in their programs. In
particular, they do not establish any criteria to guide developers
on locating a first set of architectural problems in their program
structure.

In this context, we propose and implement a suite of three
scoring criteria for prioritizing code smells (Section IV). The
goal is to constrain the search of developers by reducing the
amount of candidates of program locations possibly contain-
ing architectural problems in their systems. Our criteria are
centered on the notion of agglomerations of code smells,
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a concept proposed and defined in our previous work [4],
[6]. Agglomerations are groups of inter-related code smells
(e.g., syntactically-related code smells within a component)
that likely indicate together the presence of an architectural
problem (Section III). However, our previous work [4], [6]
did not address the key challenge of prioritizing smell ag-
glomerations that indicate architectural problems. In fact, many
smell agglomerations are not related to architectural problems
[4], [6]. In order to rank smell agglomerations according
to their impact on the architecture, the criteria proposed in
this article consider both the implementation and architectural
information that is available, including the version history
of a system (Section IV). The goal is to assist developers
in: (i) encountering agglomerations that more likely indicate
architectural problems, and (ii) for each architectural problem,
identifying its full extent in the source code by inspecting the
group of smells comprising a prioritized agglomeration, while
discarding irrelevant smells.

We assess how each of our three proposed criteria helps
developers to locate symptoms of architectural problems in
source code, while keeping aside irrelevant (agglomerated and
non-agglomerated) code smells. Our study considered more
than 23 versions of 4 Java systems (Section V). Furthermore,
one of the systems had a very large size (1400 classes and 1800
code smells) so as to test the scalability of our approach. Our
results (Section VI) suggest that the use of one of the criteria
can consistently and accurately indicate several architectural
problems. They helped to correctly locate more than 80
architectural problems in our top-7 rankings of the 4 systems,
alleviating tedious manual inspections of the source code vis-a-
vis with the architecture. Moreover, this prioritization criterion
would have also helped developers to discard at least 500
code smells having no relation to architectural problems in the
analyzed systems. At the end, we reflect upon these findings
and present concluding remarks (Section VII).

II. RELATED WORK

As far as we are aware of, our investigation represents the
first effort in supporting the prioritization of architecturally-
relevant code smells. Architectural problems have been the
focus of various recent studies (e.g. [2], [8], [3]), including a
catalog documenting them [2]. However, existing work rarely
provides support for locating and prioritizing such problems in
the source code. In addition, they tend to assume that a detailed
architecture documentation is always available, which is rarely
the case. Case studies also mostly focus on reporting the
severe impact of architectural problems, such as Fat Interfaces
and Unwanted Dependencies, on the longevity of industrial
software systems (e.g. [3]). In [9], five types of architectural
problems are presented and formalized. These problems can be
detected in Design Structure Matrices (DSMs). Two of such
problems are based on the analysis of history information,
while the other three problems are inferred from the source
code structure. The authors show a correlation of these prob-
lems with both high frequencies of bugs and major mainte-
nance effort. However, none of these works assists developers
in the prioritization of code smells with the goal of identifying
and prioritizing architectural problems. We have observed in
our study that the use of project history information alone,
albeit useful, is of limited applicability (Section VI-B).

Other studies have investigated the impact of single
code smells throughout system evolution [10]. They analyzed
whether the number of smells increased or decreased over
time, and how often they resulted in code refactorings intended
to improve the system design. In other recent studies [11],
[12], the authors report on the relevance of code smells for
the identification of architectural problems. As main findings,
they observed that tracking of individual code smells without
regarding the occurrence of other smells do not suffice to assist
developers in revealing architectural problems. Each smell only
provides a partial realization of an architectural problem. Each
architectural problem tended to be realized by seven or more
code smells. In addition, a very high proportion of individual
smells (i.e. those smells detached from other smells in the
system) did not impact on the architecture.

Only a few studies have gone beyond and looked at groups
of code smells as indicators of architectural problems. The
concept of agglomerations was presented in our recent work
[4] to capture a group of inter-related code smells. The work
confirmed that agglomerations are much better indicators of
architectural problems than non-agglomerated code smells.
However, the results also showed that several agglomerations
are not related to any architectural problem. As a result,
there is a pressing need for supporting the prioritization of
agglomerations that are related to architectural problems. In
[13] we briefly discuss two criteria to prioritize agglomerations
driven by concerns and the version history. However, we
do not explain all the criteria proposed here and how these
criteria could be computed. In that short paper, we did not
conduct a proper case study either. In [14] the authors only
documented a few relationships among code smells that may
be related to four architecture problems. However, to the best
of our knowledge, no work has yet investigated strategies for
prioritizing groups of code smells. In this way, this is the
first work that proposes, implements, and evaluates a criteria
for prioritizing agglomerations aimed at locating architectural
problems. Existing tools do not provide any support for these
tasks [14], [15], [16], [12]. They normally only consider the
source code structure, disregarding architectural information.
Even worse, the users also cannot use, define or customize
their own criteria for prioritizing code-smell agglomerations.
We address all these gaps in the study reported in this article.

III. AGGLOMERATIONS AS POINTERS TO

ARCHITECTURAL PROBLEMS

In the context of our work, we focus on architectural
problems [2] that represent violations of design principles or
rules [2], [17]. We mainly target architectural problems affect-
ing the modular decomposition of a system into components
and their interfaces, i.e., maintainability-related problems [2].
Based on previous empirical findings [6], [4], the premise
is that groups of code smells, so-called agglomerations, are
normally associated with several architectural problems.

A. Illustrative Example

In order to illustrate the relation between architectural
problems and agglomerations, let us consider the example
of Fig. 1. The left side of the figure shows a fragment of
the component structure of the MobileMedia architecture –
a system for managing photos, music and videos in mobile
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Fig. 1: Example of a code-smell agglomeration related to architectural problems

devices. Components Controller and UI are mapped to sepa-
rate Java packages in the implementation, each one containing
several classes (right side). If a static analysis tool is run over
the implementation of these components, the developer will
receive a list of more than one hundred code smells. Then,
it may not be clear which code smells should be the focus of
her attention as candidates for revealing architectural problems
in those components, which prevents her from performing
effective maintenance or refactoring activities.

Architectural Problems. This example reveals three archi-
tectural problems. First, the Controller component is mainly
realized by the class hierarchy rooted at class AbstractCon-
troller, which is responsible for handling different commands
through the handleCommand method. After a broad look at all
the anomalous implementations of method handleCommand
and their callers, the developer realizes, based on her experi-
ence, that there is an overload of responsibilities, which leads
to two architectural problems, called Fat Interface and Am-
biguous Interface [2]. These problems mean that Controller,
as an architectural component, provides several non-cohesive
services (Fat Interface) that are not properly exposed in its
interface handleCommand (Ambiguous Interface). Note that
the problem is not the controller itself or its object-oriented
materialization in terms of an abstract class with many concrete
classes, but rather the decision of having only one single
controller (at the architecture level), which can generate ripple
effects to other components and their implementations if the
controller logic has to be changed. Second, the call from class
PhotoViewController to class AlbumListScreen leads to a usage
dependency between packages Controller and UI, which is
not allowed by the component architecture. This violation is
indicated in the architecture (left side) by the absence of arrows
between the two components.

In these examples, a possible way for a developer to
identify the architectural problems is by reasoning about the
architecture documentation and checking candidate problems
in the source code. Unfortunately, developers are usually
overwhelmed by these tasks because, even with tool support,
it is hard to effectively explore all the available information
and all code smells in order to uncover architectural problems.
In these cases, the developer needs to turn her attention to
the (partial or full) realization of architectural problems in
the source code. Along this line, she might discover that
the implementations of handleCommand in the subclasses of

AbstractController are simultaneously affected by the code
smell called Dispersed Coupling (DC), which is a method that
calls various methods of several classes. That is to say that
the subclasses of AbstractController generate dependencies on
many other classes. Since there are several DC smells within
the Controller package, this group of smells is considered as an
agglomeration. Therefore, this package-level agglomeration is
a sign of (potential) architecture decay [2], which in this case
affects the Controller component.

However, the developer cannot be fully sure about the
architectural problem exposed by the agglomeration of DC
smells, as it could be a false positive. Other agglomerations
can be present nearby, as it is the case of a group of instances
of the smell called Feature Envy (FE) in package UI, which
corresponds to the UI component. FE is a smell representing
a class that is more interested in accessing data from other
classes (instead of using its own data), which often indicates a
poor assignment of responsibilities. Things get further compli-
cated for the developer because agglomerations normally vary
from a system version to another. These two factors (false
positives and variations over time) motivate our interest in the
definition of criteria for prioritizing agglomerations.

B. Detecting Individual Code Smells

Existing catalogs of code smells define guidelines to iden-
tify single smells and how to provide tool support for their
detection [7], [18]. In this work, we use the JSpIRIT1 tool for
that purpose. JSpIRIT is an Eclipse plugin for detecting code
smells of a (Java-based) system and ranking them according
to different criteria [12]. Fig. 2a shows the view of JSpIRIT
that lists the code smells for a system. Currently, JSpIRIT
supports the identification of 10 single smells (such as Feature
Envy, Brain Method, and Disperse Coupling)2 [12] following
the detection strategies presented in Lanza’s catalog [18].

C. Types of Agglomerations

The original version of JSpIRIT was extended to support
the detection of agglomerations. Fig. 2b shows a list of
agglomerations detected on the basis of the smells of Fig. 2a.
Since our work focuses on architectural information regarding

1https://sites.google.com/site/santiagoavidal/projects/jspirit
2A complete list of the supported code smells can be found at

http://www.les.inf.puc-rio.br/opus/priorizatingAgglomerations/
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Fig. 2: JSpIRIT outputs

static code structures, we worked with agglomerations within
the scope of architectural components. For our case-studies
(Sections V and VI), we assumed a relation (or mapping)
between an architectural component and its realization as a
Java package in the code. However, developers can flexibly
establish other kinds of mappings between components and
packages/classes in a program. We are mainly interested in
two particular patterns of agglomerations:

• Smells within a component. This grouping pattern
identifies code smells that are implemented by the
same architectural component. Specifically, we look
for one single component with: (i) code smells that
are syntactically related, or (ii) code elements infected
by the same type of code smell. Two classes are
syntactically related if at least one of them references
the other one. Fig. 1 showed an example of this kind
of agglomeration where different classes in package
UI are affected by the Feature Envy (FE) smell.

• Smells in a hierarchy. This grouping pattern identifies
code smells that occur across the same inheritance tree
involving one or more components. We only consider
hierarchies exhibiting the same type of code smell.
The rationale is that a recurring introduction of the
same smell in different code elements might represent
a bigger problem in the hierarchy. An example of
this agglomeration is the AbstractController hierarchy
in Fig. 1 whose subclasses are affected by Dispersed
Coupling (DC) smells.

A more complete description of the above agglomerations
can be found in [6]. Certainly, other types of agglomerations
are possible, as reported in [4], but they are related to other
architectural problems not addressed in this article.

IV. PRIORITIZATION APPROACH

In this section, we present three criteria to prioritize
agglomerations by means of scoring criteria. The proposed
criteria were implemented in JSpIRIT. Our hypothesis is that
these criteria are useful for prioritizing those agglomerations
with high chances of spotting architectural problems. In this
way, a criterion can be seen as a function:

criterionA(agglomerationB) = scoreA,B

where the score for an agglomeration B given by a criterion
A is a value between 0 and 1. The score value indicates how
critical the agglomeration is for the system architecture (0=not

Concern 
name

Packages that 
compose the 

concern

Classes that 
compose the 

concern

Fig. 3: Wizard to provide concern mappings in JSpIRIT

critical, 1=very critical). In particular, we began working with
a criterion based solely on architectural information (namely,
architectural concerns). Later, we developed two additional
criteria based on the combination of the code versions and
architectural information (namely, history of changes and ag-
glomeration cancer). In our context, architectural information
refers both to the component structure (as used for the detec-
tion of the agglomerations) and the architectural concerns.

A. Architectural Concerns

This criterion analyzes the relationship between an ag-
glomeration and an architectural concern. An architectural
concern is some important part of the problem (or domain) that
developers aim at treating in a modular way [8], such as graph-
ical user interface (GUI), exception handling, or persistence.
For example, in Fig. 1, the subclasses of AbstractController
(along with other system classes) all address a concern called
PhotoLabelManagement. This criterion was adapted from [11]
where it is used to rank single code smells. The rationale
behind this criterion is that an agglomeration that realizes
several concerns could be an indicator of an architectural
problem.

The JSpIRIT tool offers a simple interface to specify
concerns (Fig. 3). Specifically, the developer must provide a
concern name and select the system packages and classes the
concern maps to. To compute the ranking score of a given
agglomeration, we count the number of concerns involved in
that agglomeration. A concern is involved in an agglomeration
if the agglomeration is located in a class mapped by the

444444



concern. At last, we normalize the values to obtain scores
between [0..1]. To do so, the highest number of concerns
affecting a single agglomeration is used. For example, given
four agglomerations A1, A2, A3, and A4 that involve 0, 1, 2
and 3 concerns respectively, the highest number of concerns
per agglomeration is 3. Then, the agglomeration scores will
be 0/3 = 0.0, 1/3 = 0.33, 2/3 = 0.66 and 3/3 = 1.0.

Certainly, the specific mappings of concerns to program
elements affect the results of this criterion. Furthermore, as
the implementation evolves, the mappings might need to be
adjusted. Existing feature-location tools, such as Mallet [19]
and XScan [20], can be used here to derive concern mappings
automatically and with high accuracy according our recent
experience on using them [4].

B. History of Changes

This criterion analyzes the stability of the classes in which
the code smells (of an agglomeration) are located. By looking
at the “stability” of the main classes of these smells, we want
to check whether the agglomeration is in a component or
class hierarchy that is usually modified. Our assumption is
that agglomerations appearing in classes that changed often
should have a higher score. Note that this notion of stability
relies not only on the actual architectural information (e.g. the
agglomeration affecting a particular component), but also on
information from the history of class changes.

To calculate the score of an agglomeration we use the
LENOM metric [10]. We previously used this metric to rank
single code smells [21]. This metric identifies the classes that
experienced most changes in the last versions of the system.
In LENOM, the classes that most frequently changed are
identified by weighting the delta in the method count (NOM)
of a class between two adjacent versions. More formally:

LENOMj..k(C) =
k∑

i=j+1

| NOMi(C)−NOMi−1(C) | ∗2i− k

where 1 ≤ j < k ≤ n being j the first version of the system
analyzed, k the last version analyzed and n the total number
of versions of the system.

Once the LENOM values for each main class of the code
smells are obtained, the criterion computes the score of the
containing agglomeration by averaging the LENOM values.
For example, given an agglomeration A1 that is composed
by three Brain Method (BM) smells: Foo.a(), Foo.b(), and
Foo2.c(), and knowing that LENOM(Foo) = 0.8 and
LENOM(Foo2) = 0.5, the score of A1 will be 0.8+0.8+0.5

3 =
0.7. A score close to 1.0 means that the classes composing
the agglomeration change often during the history of the
system. In contrast, a score of 0.0 means that the classes
composing the agglomeration did not change since their initial
implementation.

C. Agglomeration Cancer

This criterion makes an analogy of the agglomeration with
a disease in the system. Our assumption is that a disease that is
growing is more critical than a disease that is stable (i.e. it does
not change) or that is on a remission state (i.e. it is shrinking).

Along this line, we analyze the behavior of the agglomerations
across system versions and compute a variation rate in terms
of the number of code smells that compose the agglomeration.
We can think of this criterion as a variation of the previous one,
which concentrates on the “volume” of smells over time. This
criterion combines history-based and architectural information.

To calculate the score of a given agglomeration, we con-
sider pairs of adjacent versions and determine the percentage
of variation in the number of code smells that constitute the
agglomeration. This percentage will be positive or negative,
depending on whether the smells increased or decreased. For
example, given agglomeration A1 with 3 code smells in version
v1, 5 smells in v2, and 4 smells in v3, the corresponding
variation rates are 5*100

3 − 100 = 66.6% from v1 to v2, and
4*100

5 −100 = −20% from v2 to v3 (by definition, agglomera-
tions always have at least two smells). Then, all the percentages
of variation (for the same agglomeration) are averaged. In our
example, this value becomes 66.6−20

2 = 23.3%. Once averages
for all the agglomeration are obtained, we normalize these
values to produce scores in the range [0..1].

V. STUDY SETTINGS

This section describes the research question and hy-
pothesis of our study. We also describe the target appli-
cations used in our empirical evaluation, as well as the
procedures for data collection and analysis. More details
about the evaluation can be found at http://www.les.inf.puc-
rio.br/opus/priorizatingAgglomerations/.

A. Research Question and Hypothesis

To investigate the effectiveness of the scoring criteria on
the prioritization of architectural problems, we defined the
following research question (RQ): Does the use of a scoring
criterion assist developers to prioritize smell agglomerations
that indicate architectural problems?

We derived the corresponding hypothesis for this research
question: (H10) the use of a scoring criterion do not assists
developers to prioritize critical agglomerations. We consider
that a scoring criterion is effective to assist developers if
at least half of the prioritized agglomerations are related to
architectural problems. The reasoning is that developers would
give up in inspecting the agglomerations if more than 50% of
them are not related to architectural problems. If the criterion
ranks correctly most agglomerations, we can conclude that
the criterion enables developers to analyze the most critical
agglomerations.

B. Target Applications

The systems chosen for our study had exhibited several
symptoms of architecture degradation, so that we could prop-
erly evaluate the effectiveness of the prioritization criteria.
The selection of the target systems was performed in two
stages. In the first stage, we selected 3 Java applications of
reasonable size (from 10 to 54 KLOC). They were also chosen
because the original developers were available to validate
the architectural problems and code smells being inspected
in our analyses. Due to their availability, we produced both
reliable ground truths and findings. The first application is
Mobile Media (MM) [22], a software product line that provides
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TABLE I: Characteristics of the Target Applications

Target Application MM HW SDB OODT

System Type Software Product Line Web Web Middleware

Programming Language Java Java Java Java

Architecture Design MVC Layers MVC Layers

Selected Version 5 8 2.4 10

KLOC 54 49 10 182

#Classes 77 125 151 1424

#Code Smells 260 497 82 1816

1 - Detection of 
code anomalies 

and 
agglomerations 
(automatically)

2 - Identification of 
architectural 

problems
(manually)

3 - Prioritization of 
agglomerations 

with scoring criteria 
(automatically)

4 - Computation 
of correlations 

(manually)

Source Code 
(Java)

JSpIRIT

Architecture 
documentation 

(blueprint, design 
rationale, etc.)

Applications 
Experts

Creation of 
reference 
ranking

(manually)

List of concerns 
and mappings

System versions

Fig. 4: Procedures for data collection

support for manipulation of media on mobile devices. The
second application is Health Watcher (HW) [23], a Web-based
application that allows citizens to register complaints about
health issues in public institutions. Our third application is
SubscriberDB (SDB) [12], a subsystem of a publishing house
that manages data related to the subscribers of its publications,
and also supports different queries on the data.

In the second stage, we selected a large system, consisting
of 182 KLOC. The goal was to check whether our most
effective scoring criteria would also be effective to prioritize
architectural problems in more complex projects. Given this
goal, we selected Apache OODT (OODT) [24], a middleware
framework aimed at supporting the management and storage
of scientific data. A summary of the application characteristics
is given in Table I.

C. Data Collection and Analysis

This section describes each of the main activities of the
study, which are graphically summarized in Fig. 4.

1-Detection of code smells and agglomerations. We used
JSpIRIT to detect both code smells and agglomerations auto-
matically. After detecting all instances of code smells, JSpIRIT
proceeds to identify the agglomerations based on the grouping
patterns described in Section III-C. JSpIRIT presents two
different outputs: (i) a list of smell instances, and (ii) groups of
inter-related code smells, i.e., the agglomerations presented in
Section IV, along with their score for a given criterion (Fig. 2).
For the criterion of architectural concerns, we relied on a list
of concerns provided by the original architects of each system.
For each concern, they provided a list of packages/classes
realizing the concerns, i.e., the concern mappings.

For the assumption of architectural components being
represented by Java packages, we looked at the DSMs of each
system using Lattix3. We applied the component partitioning

3http://lattix.com/

algorithms of Lattix, and analyzed the differences between the
components suggested by Lattix and the package structure.
We found that it was fair to assume a component as a Java
package. For example, in the case of HW, Lattix identfied 17
component from 20 packages.

2-Identification of architectural problems. For HW, MM
and SDB , the application architects identified and reported to
us the architectural problems they faced along their projects.
Based on a catalog of architectural problems [2], architects
reported the existence of 7 types of architectural problems,
namely: Ambiguous Interface, Concern Overload, Connector
Envy, Cyclic Dependency, Scattered Functionality, Unused In-
terface, and Architectural Violations (unwanted dependencies
among components). To confirm the presence of architectural
problems, the architects first manually inspected the source
code and the architecture blueprint of each system. Based on
their experience along the project, they produced a list of the
most critical architectural problems for each version of the
target applications. As a result, using the list of architectural
problems, we produced a reference ranking of the agglomer-
ations detected by JSpIRIT that contribute to the most critical
architectural problems for each target application.

To determine if an agglomeration X was linked to an archi-
tectural problem Y, we check whether problem Y mapped to
(some of) the main classes hosting the smells of agglomeration
X. That is, we looked at intersections between the program
elements realizing the architectural problem and those related
to the agglomeration. Coming back to Fig. 1, we can see
an example of this intersection for the Ambiguous Interface
problem, which is realized by the Controller package and
some of its classes take also part in an agglomeration. The
reference ranking of agglomerations was built in such a way
it has in the first positions the agglomerations being related
to the highest number of architectural problems. That is to
say, the score of an agglomeration is the number of related
architectural problems. The agglomerations along with their re-
lated architectural problems for each case-study constituted our
ground truth. For OODT, we did not produce a ground truth,
due to the size and complexity of this application. Our goal
with OODT was to evaluate the criteria in a system larger than
HWS, MM or SDB and assess the architectural problems for
the best-ranked agglomerations. Along this line, we performed
a manual analysis considering the top-12 agglomerations as
ranked by the cancer criterion (Section IV-C).

3-Prioritization of agglomerations with scoring criteria
(JSpIRIT). We simply executed JSpIRIT to apply automatically
the scoring strategies from Section IV, one by one, on the
agglomerations detected in the previous activity. As a result,
the agglomerations were ranked according to their scoring
value in a decreasing order. We focused on analyzing the top-7
rankings for each system, as those high-priority agglomerations
would represent the initial focus of the developer’s attention.

As an example, Fig. 5 shows the ranking of agglomerations
for MM as produced by JSpIRIT with the cancer criterion
(rows), and the associated architectural problems (columns)
determined from the ground truth. Note that cell 2f (intra-
component agglomeration based on DC for Controller inter-
secting with Ambiguous Interface in Controller) corresponds
to the situation of Fig. 1. Also note that the intra-component
in SmsMessaging (row 7) has no association to architectural
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1 - IntraComponent: FE datamodel

2 - IntraComponent: DC controller

3 - IntraComponent: FE screens

4 - Hierarchical: BM AbstractController

5 - IntraComponent: BM controller

6 - Hierarchical: DC AbstractController

7 - IntraComponent: SmsMessanging

8 - Hierarchical: FE MediaAccesor

9 - IntraComponent: MediaController

10 - IntraComponent: MediaAccessor

11- Hierarchical: FE AlbumData

12 - IntraComponent: DC sms

13 - IntraComponent: AlbumController

14 - IntraComponent: SS controller

15 - IntraComponent: AbstractController

16 - Hierarchical: SS AbstractController

a: Concern Overload - ImageAlbumData
b: Concern Overload - MusicAlbumData
c: Concern Overload - MusicMediaAccessor
d: Concern Overload - VideoAlbumData
e: Concern Overload - MusicMediaUtil
f: Ambiguous Interface - Controller

Ranking using the cancer criterion

g: Ambiguous Interface - PlayMediaScreen
h: Redundant Interface - Datamodel
i: Cyclic dependency - Controller
j: Architectural violation - Controller
k: Architectural violation - Datamodel

Fig. 5: Matrix of ranked agglomerations for MM versus related
architectural problems (’a’ to ’k’).

problems, even when it is relatively high in the ranking. This
is a case of a false positive. which can be due to variations
in the number of smells of the agglomerations across system
versions, as detected by the cancer criterion. In other cases, like
the hierarchical agglomeration based on FE for AlbumData
(row 11), the agglomeration is ranked low in spite of being
related to four architectural problems. This situation can be
explained by the fact that the smells of the agglomeration
remained almost constant over time.

4-Computation of correlations: For HW, MM and SDB ,
once a given scoring strategy was applied on the agglom-
erations, we measured the correlation between the ranking
generated by JSpIRIT and the reference ranking (from the
ground truth). To do so, we applied the Spearman’s correlation
coefficient for rankings with ties (p) [25]. This coefficient
measures the strength of the association between two rankings.
The coefficient can take values between 1 and -1. If p=1,
it indicates a perfect association between both rankings. If
p=0, it indicates no correlation between the rankings. If p=-
1, it indicates a negative association between the rankings.
Finally, values between 0.5 and 0.7 are regarded as a good
correlation, while values higher than 0.7 are regarded as a
strong correlation. As we did not have a ground truth for
OODT, we did not use the same correlation strategy. To eval-
uate OODT, we looked instead at the precision of the criteria
for the top-12 ranked agglomerations. With the help of an
OODT architect, we analyzed whether each agglomeration (in
the top-12 ranking) was related to architectural problems. Table
III shows the correlation results computed on the three case-
studies, plus the precision value for OODT (7 true positives
over 12 cases).

VI. EMPIRICAL EVALUATION

In this section, we first report on the results of applying
each of the 3 scoring criteria to the 3 target applications.
Then, as previously explained (Section V-B), we also discuss
the results of applying the most effective criterion to the
fourth software project, OODT, which is the largest one. Table

TABLE II: Architectural problems and code-smell agglomer-
ations for the 4 applications

HW MM SDB OODT

#Architectural problems 61 41 60 n/a

#Agglomerations 11 16 22 431

TABLE III: Correlation results (note that the value for OODT
is a precision and not a correlation value)

Applications Architectural
concerns

History of
changes

Agglomeration
cancer

Health Watcher
(HW)

0.01 0.57 0.62

Mobile Media
(MM)

0.53 0.34 0.77

SubscriberDB
(SDB )

0.38 0.71 0.14

SubscriberDB
(SDBv2 )

0.1 0.51 0.6

Apache OODT n/a n/a 0.58

II shows the number of architectural problems (reported by
architects) and agglomerations (identified by JSpIRIT) in each
system. On one hand, as suggested in recent studies [6], [4], we
confirmed that the use of the agglomerations helped to discard
hundreds of (non-agglomerated) smells that had no relationship
to architectural problems. On the other hand, up to 60% of the
agglomerations had no relationship to architectural problems,
thereby confirming the need for defining and assessing the
effectiveness of alternative prioritization criteria. Therefore, in
the following subsections, we carefully analyze the correlation
results for each scoring criterion and discuss their effective-
ness to indicate locations of architectural problems. We also
derive additional insights after inspecting all the prioritized
agglomerations.

A. Do Architectural Concerns Help?

The architectural concerns were provided by the system
architects. Our goal was to check whether the scoring crite-
rion (Section IV-A) would work with a minimal amount of
architectural information, which is usually part of either the
project documentation or the mindset of architects. The ar-
chitects spontaneously defined: (i) nine architectural concerns
for HW – their mappings encompass around 100 classes in the
program, which cover 74% of the total number of classes), (ii)
seven architectural concerns for MM – their mappings include
65 classes (84% coverage), and (iii) five concerns for SDB –
their mappings subsume 45 classes (30% coverage).

After applying this criterion, JSpIRIT ranked the agglomer-
ations according to their number of concerns. All the agglom-
erations were related to at least 3 architectural concerns. As
shown in Table III, only MM had a moderate correlation with
this criterion (correlation of 0.53 with p-value = 0,03471); the
correlations for HW and SDB turned out low. The correlations
were low because the agglomerations with the largest number
of architectural problems were not ranked first. The reason
for these low correlations is that, albeit agglomerations were
often related to architectural problems, this criterion gave
the highest scores to agglomerations that were not related to
architectural problems. Developers would need to inspect more
agglomerations in the ranking in order to find the architectural
problems. The use of this criterion would require more effort
(than the other criteria) to find the first spots of architectural
problems in the source code.
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This criterion had the worst results in the HW system. In
this system, the first two agglomerations ranked were related
to 13 problems. However, the agglomerations ranked third,
fourth and fifth were not related to architectural concerns. In
the case of the HW system, 11 agglomerations were found,
but only 5 of such agglomerations were actually related to
problems. Therefore, this result does not necessarily represent
a negative result because, on average, the developer would
need to approximately inspect two agglomerations for finding
at least one agglomeration related to architectural problems.
Moreover, we found that certain agglomerations in the ranking
tend to concentrate most of the architectural problems. For
example, in the case of the HW system: two agglomerations
were actually related to 14 problems, two with 13, and one
agglomeration with 7 problems.

Concluding, we observed that the successful use of archi-
tectural concerns (as a criterion) depends on the completeness
and coverage of the list of architectural concerns provided
by the developers. In fact, MM was the system that had the
mappings with the highest coverage (84%) and the highest
correlation (0.53). In addition, we observed that this criterion
worked well in systems (e.g. MM) where most problems were
caused by the poor modularization of architectural concerns.

B. Does Change History Help?

In order to compute the rankings using the history criterion
(Section IV-B), we loaded in JSpIRIT previous versions of the
analyzed systems. In particular, we analyzed all the versions
available for each application, namely: 10 versions of HW, 8
versions of MM and 15 versions of SDB . In this case, we were
able to find a moderate correlation for HW (0.57 with p-value
= 0.06713) and a strong correlation for SDB (0.71 with p-value
= 0.00021). Also, we obtained a positive correlation for MM
(Table III). These results mean that the agglomerations located
in the classes that changed often during the history represent
sources of architectural problems in the implementation. We
observed that the classes realizing agglomerations related to
architectural problems experienced more changes during their
history than the agglomeration classes that were not affected by
those problems. For instance, in the case of HW, after applying
this criterion, the agglomeration ranked first by JSpIRIT is
related to 7 architectural problems, while the agglomerations
ranked second and third are related to 14 problems. Regarding
the agglomerations related to 13 problems, they were tied in
the sixth position. Therefore, we observed that the consid-
eration of history information improves the prioritization of
architectural problems as compared to the use of architectural
concerns, presented in the previous sub-section.

However, the use of the change history criterion was also
not effective to prioritize architectural problems in all software
projects. Recent studies [3] have suggested that anomalous
source code, whenever it is frequently changed, indicates the
presence of major design problems. We found this might
be true in certain systems and, therefore, this factor helps
to identify architecturally-relevant code smells. However, this
is not always the case, as captured by the low correlation
(0.34) in MM. In this system, several architecturally-harmful
agglomerations were not often touched by changes. Moreover,
the success of the history criterion depends on having several
versions to be processed.

C. Does Agglomeration Cancer Help?

Overall, the use of agglomeration cancer was the best-
performing criterion in the context of our dataset. As shown
in Table III, we obtained strong correlations for HW and
MM. However, in principle, we obtained a low correlation in
SDB . However, while understanding the reasons for this low
correlation, we realized there was an issue to be addressed in
the SDB artifacts. When examining the architectural blueprints
provided by the system architects, we found out that the
blueprint of SDB was inconsistent with the source code [11].
By inconsistent, we mean that the blueprint was an “ideal”
design model of the application, but it was not faithfully
implemented in the source code. In fact, we computed a
consistency metric [11] for HW, MM and SDB . We found
that the HW blueprint had a 89.6% of consistency, the MM
blueprint had a 67.9%, and the SDB blueprint had just a 54.5%.

For this reason, with the help of an SDB architect, a
new, more realistic blueprint called SDBv2 was created, which
had a consistency of 77.3%. In this case, the architect found
11 critical architectural problems. Then, we re-computed the
reference ranking of this application and ran again the scor-
ing criteria using JSpIRIT. Then, we observed a significant
improvement in the correlation for the cancer criterion (0.6
with p-value=0.00315), that is, a moderate correlation. As
shown in Table III, the correlation values for the remaining
criteria decreased in SDBv2. In the case of the change history
criterion, the correlation was still acceptable with the adjusted
blueprint. Nonetheless, this was not the case for the criterion
of architectural concerns that dropped to 0.1. These results
indicate that the correlation values are sensitive to the way in
which the blueprints are defined. Therefore, in order to get
the best results of this criterion, developers also need to rely
on blueprints of the implemented architecture rather than on
blueprints of the planned architecture.

As agglomeration cancer was consistently the best-
performing criterion in all the three systems, we also applied it
to OODT. Our goal was to check whether this criterion would
scale well to very large systems, such as OODT. Following
the procedures described in Section V-C, we analyzed the
top-12 ranked agglomerations in OODT (Fig. 6). In this
analysis, we observed a moderate precision for architectural
problems: 7 out of 12 agglomerations were true indicators of
architectural problems. In addition, three of the top-4 agglom-
erations were related to one or more architectural problems.
Therefore, the results for OODT suggest that the proposed
criterion can work well for large software projects in terms
of “circumscribing” the search for architectural problems. As
an example of this, consider the OODT’s crawl component.
In OODT, crawl is responsible for listing the contents of
a staging area and submitting products to be persisted by
the file management component. However, as presented in
Figure 6, there is an agglomeration indicating the presence
of an architectural problem named Scattered Functionality.
This architectural problem takes place when an architectural
concern is scattered across multiple components and some
of those components are responsible for other independent
concerns. This problem occurs in crawl because functionality
related with the extraction of metadata from products, which
should be done by the metadata component, is mixed with
the crawling functionality. The Scattered Functionality prob-
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1 - IntraComponent: FE action

2 - IntraComponent: FE crawl

3 - IntraComponent: FE page.metadata

4 - Hierarchical: DC system

5 - IntraComponent: FE mux

6 - IntraClass: filemgr.util.XmlRpcStructFactory

7 - IntraClass: workflow.util.XmlRpcStructFactory

8 - IntraClass: resource.util.XmlRpcStructFactory

9 - IntraComponent: FE jobqueue

10 - IntraComponent: MediaAccessor

11- Hierarchical: FE AlbumData

12 - IntraComponent: DC sms

a: Scattered Functionality - craw
b: Scattered Functionality - metadata
c: Connector Envy - system
d: Cyclic Dependency - system

Ranking using the cancer criterion

e: Ambiguous Interface - XmlRpcStructFactory
f: Connector Envy - XmlRpcStructFactory
g: Cyclic Dependency - jobqueue
h: Connector Envy – query

Fig. 6: Matrix of (top-12) ranked agglomerations for OODT
versus related architectural problems (’a’ to ’h’)

lem may affect aspects like maintainability and reusability.
This happens because, when the shared concern needs to be
changed, all the components that realize it should be updated
and tested. Therefore, the metadata concern should be better
modularized by the metadata component.

The only top-ranked agglomeration unrelated to any archi-
tectural problem is an intra-component agglomeration, found
in the action component. In this agglomeration, the number
of Feature Envy (FE) smells grew over time. However, this
agglomeration turned out to be a false positive when judged by
the OODT architect. The rationale is that the action component
was responsible for parsing command line options, and thus it
was expected to depend on several other classes for this task.
The ranking also exposed several FE-related agglomerations,
because this smell was more prevalent in the OODT versions
than other types of smells. Thus, we consider that this result
does not undertake our conclusions.

Overall Conclusion

After analyzing the results of the 3 scoring criteria: (i) we
cannot reject H10 for the first two criteria since none of them
sufficed to rank correctly at least half of the agglomerations
across all the systems, and (ii) we can reject H10 for the
third criterion, the agglomeration cancer criterion, since it
ranked correctly more than half of the agglomerations in all
the systems, including OODT. The use of the latter would
help developers to find most architectural problems in all
the systems with less effort. Developers would still need to
inspect each ranked agglomeration and discard the irrelevant
ones. However, we found they could discard more than 500
code smells in their analysis. If developers analyze all these
individual code smells, they would need to carefully inspect
dozens or hundreds of smells in order to eventually find a
partial source of a single architectural problem.

Furthermore, even when the detection might lead to some
false positives, the automation of the criteria with JSpIRIT
contributes to significantly reducing mistakes and manual
effort of developers. With existing solutions/tools, developers
would have to investigate all the architectural information,
code smells, and all their relationships, in order to luckily find
key architectural problems.

When analyzing why the agglomeration cancer was con-
sistently the best criterion, we observed an interesting phe-
nomenon affecting most of the architectural problems: groups
of smells flocking together tend to better indicate the presence
of architectural problems, and these groups tend to be increas-
ingly connected with additional new smells when changes are
made in the source code over time. This phenomenon is often
caused by an ill architectural decision in early system versions.
This finding can be illustrated by the misuse of Controllers in
the MVC architecture of MobileMedia. In principle, the archi-
tects decided to rely on the use of a single Controller instead
of multiple Controllers (Section III-A). There were only three
smells as part of the agglomeration affecting Controllers in the
first version. These smells were located in the BaseController
class. In subsequent versions, this agglomeration was being
“expanded” to several code elements, including those located
in new BaseController subclasses and new BaseController
clients. The newly-introduced smells in the existing agglom-
eration were all directly caused by the harmful constraint of
having only a single Controller. Therefore, inter-related smells
in the code of evolving software systems (i.e. cancer criterion)
tend to be good indicators of architectural problems.

D. Threats to Validity

In this section, we present potential threats to the validity
of our study and how we tried to mitigate them.

Internal and External Validity. An internal threat is related
to the quality of the mappings between architectural problems
and code elements. We used a consistency metric [11] to make
sure that the architectural specification reached a minimum
quality. In addition, for each target application, we validated
with system experts all the responsibilities and architectural
components realized by the code elements in the different
system versions. A threat related to the criteria was about the
mapping of concerns to code and the selection of the system
versions. Also, the usage of LENOM as the main metric for the
history criterion can introduce a bias, because some kinds of
changes are insensitive to LENOM. The main threat to external
validity is that the applications analyzed were relatively small
with few instances of code smells and agglomerations. We
mitigated this threat by analyzing the cancer criterion in the
context of Apache OODT. Unfortunately, performing a com-
plete analysis in larger applications (like OODT) is not always
viable because an expert must manually analyze the source
code and the blueprints to find the architectural problems.

Construct and Conclusion Validity. As construct threats, we
can mention possible errors introduced in the generation of
the reference ranking. We partially mitigated this imprecision
by involving the original architects and developers in the
inspection process. For all target applications, architects with
previous experience on the detection of architectural problems
and code smells, validated and refined the list of problems.
The main threat to conclusion validity refers to the number
of target applications. We are aware that a higher number of
applications is needed for generalizing our findings. However,
the information required to conduct this kind of studies can
be difficult to obtain. For instance, the activities of identifying
and validating architectural problems is highly dependent on
having the original personnel available. In order to account
for this threat, we selected applications with different sizes,
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purposes and domains. Moreover, the applications had different
architectural styles and involved a different set of architectural
problems (with a minor overlapping).

VII. CONCLUDING REMARKS

As far as we are aware of, no previous work supports
the prioritization of smell agglomerations in order to assist
developers to focus on a limited set of potential sources of
architectural problems. The prioritization is based on three
scoring criteria that have the goal of ranking first the agglom-
erations that likely indicate locations of architectural problems.
In order to rank agglomerations, the criteria explored different
types of information, which are typically available in software
projects, including (partial) lists of architectural concerns,
(approximate) component structure, and change history. As a
proof-of-concept, the scoring criteria were implemented in the
JSpIRIT tool.

In order to assess and compare the effectiveness of the
prioritization criteria, we conducted a study based on the
analysis of four systems, one of them with a very large
size (OODT). In our study, we found out that, although the
effectiveness of most criteria depended on the characteristics
of each project, the use of the agglomeration cancer criterion
tended to be consistently effective across all the projects,
including OODT. The other criteria did not present a good
correlation in certain projects. For instance, in two projects,
the use of architectural concerns alone did not suffice to
pinpoint agglomerations related to architectural problems. We
observed that the criterion based on architectural concerns is
effective only in projects were developers are able to provide a
complete coverage of the architectural concerns. In our dataset,
this was the case of the MM, where the specification of the
architectural concerns covered 84% of the classes in the source
code. However, even for this project, it would be useful to also
rely on the use of the cancer criterion as: (i) it had a strong
correlation with architectural problems in this system, and (ii)
it helped to spot a different list of architectural problems, not
detected with the criterion of architectural concerns.

We also believe that these findings have practical implica-
tions. For instance, the choice amongst concern-based, history-
based and cancer-based criteria has tradeoffs [12]. The usage
of the criterion of architectural concerns may be preferred in
several cases, even at the cost of being an inferior indicator of
architectural problems, because problems can be spotted since
the first versions when they are usually easier to be dealt with.
Further studies could investigate how the use of architectural
concerns and agglomeration cancer could be combined in
order to get better indicators of architectural problems. In
fact, in our study, using them in conjunction would lead to
the identification of almost 90% of all architectural problems
affecting the three first systems: HW, MM and SDB . Futher
work can investiage particular combinations of scoring criteria
and understand which combination tends to be most effective
across a larger sample of projects. As regards history-based
information, we envision the usage of metrics other than
LENOM as an alternative proxy for maintenance effort.
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