
Towards the Characterization of Monitor Smells in
Adaptive Systems

Marcel A. Serikawa, André de S. Landi, Bento R. Siqueira,
Renato S. Costa, Fabiano C. Ferrari, Ricardo Menotti, Valter V. de Camargo

Department of Computing - Federal University of São Carlos

São Carlos, São Paulo - Brazil

Email: {marcel.serikawa, andre.landi, renato.costa, fabiano, menotti, valter}@dc.ufscar.br

Abstract—Adaptive Systems (ASs) can adapt themselves to a
changing environment or new user needs. Monitors are essential
in AS, being responsible for collecting and processing data
from environment. There exist different kinds of monitors with
distinct characteristics. Based on a literature review, we have
noticed that Monitors are usually designed and implemented
in an inadequate way: i) making them obscure in the source-
code; ii) compelling all of them to have the same polling
rate and also iii) predetermining the execution order among
them. This leads to maintenance, evolution and performance
problems. Besides, based on our observations, this erroneous
way monitors are implemented follows a pattern and it is a
recurrent practice. Therefore, we believe it can be classified as
Monitor Smells of Adaptive Systems. In this paper we present
two architectural smells we have identified: the Obscure Monitor
and the Oppressed Monitors. The first smell occurs when the
monitors are not evident in the source-code. The second smell
occurs when monitors are compelled to have the same poling
rate and an immutable execution order at runtime. The presence
of these smells compromises the reusability, evolvability and
maintainability. We have also conducted an exploratory study
by comparing the impact of maintenance tasks in the original
version of an AS called PhoneAdapter with a refactored
version, in which the smells were removed. The results indicate
the maintenance is facilitated in the version without the smells.

I. INTRODUCTION

Adaptive Systems (AS) are able to modify their structure

or behavior at runtime, in order to provide a better user

experience and quality of service [1]–[3]. Although they are

usually referred as a unique system, conceptually they can

be viewed as two distinct sub-systems: the managed sub-

system and the managing sub-system [4], [5]. The managed

one is where the user requirements reside, i.e., the application

itself. Yet, the managing one comprises all the source-code

responsible for the adaptations.

The design of ASs is a research topic aiming at structuring

them in a way to make maintenance and evolution a more man-

ageable and productive task. ASs are inherently composed by

control loops (CLs) and they must be designed/implemented

making the CL abstractions evident in the source-code [3], [5],

[6]. CL is a subject from the Control Engineering field and

comprises an adaptation cycle that act over a process/system

to be adapted [3]. The most important concepts/abstractions

of CLs are Monitors, Analyzers, Planners and Executors.

Monitors are software components that are responsible for

observing, collecting, processing and broadcasting the data

provided by sensors. They provide information about the

environment or the system itself [7] and can be classified

as dependent or independent. The dependent ones need to

consume data from other monitors to proceed with their

operation. On the other hand, the independent ones do not

need interact with other monitors to perform their processing.

The focus on this paper is the second type, the independent.

In general, monitors have two important facets; a static

one and a behavioral one. The static facet is concerned with

the source-code responsible for the monitoring logic, the

processing logic and the broadcasting logic. These compose

the main functionality of a monitor. On the other hand, the

behavioral facet is concerned with the source-code responsible

for: i) defining a polling rate and ii) guarantee the independent

execution for the independent monitors. Polling rate is the

frequency in which the monitor captures data from sensors.

For example a polling rate of 0.5 seconds means that the sensor

data are collected at every 0.5 seconds. The independent exe-

cution is concerned with guarantee that independent monitors

do not need to wait for others to finish their work. Examples

of Monitors are GPS Monitor, Bluetooth Monitor, Ultrasonic

Monitor, Laser Monitor, Touch Monitor and WeekDay Moni-

tor. Each of these demands different behavioral characteristics,

for example, normally it makes no sense a Bluetooth and a

WeekDay monitors have the same polling rate.

We conducted a literature review concentrated on analyzing

the way monitors are designed/implemented in ASs. We

have observed that, in some cases, they are designed in an

inadequate way, leading to the following problems: i) the

monitoring, processing and broadcasting logic get obscured

in the source-code; ii) all independent monitors are oppressed

to have the same polling rate and iii) an unmodified execution

order is imposed to them. Normally, the source of the first

problem is not implementing monitors as first class entities and

the source of the second and third problems are the erroneous

employment of a loop structure or a central component that

manages all of the monitors.

Based on our investigations, the erroneous way they are

implemented follows a pattern and can be documented as

Architectural Smells for ASs. Architectural smells are design

decisions that are non-obvious and leads to significant detri-

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.19

51

2016 X Brazilian Symposium on Components, Architectures and Reuse Software

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.19

51

2016 X Brazilian Symposium on Software Components, Architectures and Reuse

978-1-5090-5086-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBCARS.2016.19

51

mental impacts on maintainability [8]. To remediate architec-

tural smells or architectural deviations, larger refactorings are

required, known as Architectural Refactoring (AR).

In this paper we present two architectural smells called

Obscure Monitor and Oppressed Monitors. The first occurs

when the monitors are not evident in the source-code, i.e.,

they are not implemented as first-class entities. The second

occurs when independent monitors are compelled to have the

same polling rate and a predetermined execution order among

them.

Furthermore, an exploratory study is also presented , where

we have refactored an AS called PhoneAdapter and com-

pared it with its original version. We have applied and analysed

some maintenance tasks in both systems. The results show that

the maintenance tasks in the refactored system are less invasive

to the system.

This paper is divided as follows. In section II, a brief

background for this paper. In section IV, the two smell

proposal for ASs. In section III, a practical example of both

smells. In section V, the refactoring for a system with the

smells. In section VI, an exploratory study to exemplify and

evaluate the smells impact. In section VII, relevant works

related to architectural smells. In section VIII, a discussion

and conclusion about the smells and the exploratory study.

II. ADAPTIVE SYSTEMS AND CONTROL LOOPS

Adaptive systems (ASs) are able to modify their own

behavior and/or structure in response to their perception of the

environment and the system itself [2]. In most of the cases

they are viewed as a unique system, however they may be

conceptually interpreted as two systems: the managed system

and the managing system. The managed one is the application

itself, i.e., where resides the user requirements. Normally,

it operates independently. On the other hand, the managing

system is responsible for monitoring the managed one and

trigger adaptations on it, changing its behavior when necessary.

Another important conceptual division is that the managing

system can be divided in “control loops” (CL).

CL is a largely used concept in Control Theory, being the

generic mechanism responsible for making systems adaptable

[3], [5]. The adaptation process is accomplished as follows:

i) the CL receives as input data through sensors; ii) then it

evaluates if this data complies with the system goals; iii) if

it does not, the CL plans possible adjustments targeting the

objectives; iv) after planning the CL executes the adaptations

on the managed system [3]. Therefore, the CL cycle can be

conceptually divided in four concerns: monitoring, analysing,

planning and executing as precognized by the MAPE-K con-

ceptual model shown in Figure 1.

Figure 1 shows a schematic view of an AS divided in two

parts. The upper part represents the managing sub-system con-

taining the following components: monitor, analyzer, planner,

executor and a knowledge based component. The first four

elements represent the control loop sub-process. There are

also the Sensors and Actuators that links the managing sub-

system to the managed one, which is represented by the box

Fig. 1. MAPE-K schematic view

Application in the lower part of the figure. As it is represented

in this figure, an adaptive system usually has more than one

control loop, each one is related to a different property, i. e.,

a control loop for security, battery management and others.

TABLE I
SOME EXAMPLES OF SENSORS APIS

Platform Sensor Type API available classes/packages

Android
Accelerometer Sensor.TYPE ACCELEROMETER
GPS android.location.GpsStatus.Listener
Bluetooth android.bluetooth

LEJOS Touch lejos.nxt.TouchSensor
Light lejos.nxt.LightSensor
Distance lejos.nxt.UltrasonicSensor

JAVA ME General I/O com.oracle.deviceaccess
Analog Input com.oracle.deviceaccess.adc
Power Management com.oracle.deciceaccess.power

Monitor is an important CL abstraction, since it is respon-

sible for initiating the adaptation cycle, as showed in Figure

1. Monitor behavior follows behavior follows a pattern, called

here “Monitoring cycle”, which can be schematically viewed

over the monitor component in Figure 1. This cycle includes

three steps: i) collecting data from sensors; ii) preprocessing

these data and iii) broadcasting the results to other compo-

nents. Monitors have a close relationships with sensors which

are usually available as APIs (Application Program Interfaces)

providing the communication between hardware and software

[7]. Table I shows some examples of sensor APIs. The first

column contains the platform of the provided sensor APIs; the

second contains the type of sensor; and the last column shows

the class or packages to instantiate the sensors.

According to our investigation, a possible classification

for monitors is regarding their dependency, being classified

as dependents or independents. Dependent monitors do not

operate alone, that is, they depend from the data provided

by other monitors, so their execution needs to be scheduled

with other monitors. The independent ones do not need to be

synchronized with others to operate as they do not dependent

neither on the data nor on the control flow of other monitors.

The independent monitors are the focus of this paper, so from

525252

this point on, every time we mention the term “monitor” we

are referring to the independent ones.

Also in our investigation, we have identified that Monitors

have two important facets: the static one and the behav-

ioral one. The static facet is concerned with the source-

code responsible for the monitoring logic, the processing

logic and the broadcasting logic. These compose the main

functionality of a monitor. The monitoring logic is all the

source-code responsible for getting the data provided by the

sensor API. The preprocessing logic performs conversions,

standardization, aggregation and filtering of the data collected

from sensors [7]. The broadcasting logic involves sending the

data collected for the next components.

The behavioral facet is concerned with the monitor exe-

cution. This facet involves the source-code responsible for:

i) managing a polling rate and ii) managing the execution

order among them or guarantee their independence operation.

Polling rate is the frequency that monitors capture data from

sensors - what triggers their monitoring cycle. For example,

the polling rate of a Battery Monitor can be set for 5 minutes

while a Weekday Monitor can have a polling rate of 12

hours. Therefore, each monitor can have its own polling

rate. In the case of independent monitors, there is no order

among them. So, the way these monitors are implemented

must guarantee their execution freedom. Examples of possible

monitors are GPS Monitor, Battery Monitor, Wifi Monitor,

Ultrasonic Monitor, Camera Monitor and WeekDay Monitor.

The monitoring concern can also be classified as indepen-

dent and dependent. The independent monitoring is able to be

executed by itself independent of the managed subsystem. On

the other hand, the dependent monitoring executes only when

the managed subsystem requires, similar to aspect oriented

programming (AOP) [9].

III. MOTIVATING EXAMPLE

In order to exemplify the smells described we have used

an AS called PhoneAdapter [10]. It characterizes itself

as “adaptive” because it uses context information to adapt

the mobile phone profile. Phone profile is a configuration

that determine the phone’s behavior. This configuration may

involve the display intensity, ring tone volume, vibration mode,

Bluetooth discovery and others. Due to its adaptability ca-

pacity, the application automatically changes between profiles

based on rules previously set. The selected profile prevails until

a more suitable one is activated through other rules. The rules

are based on context readings from Bluetooth, GPS sensors

and the internal clock of the phone [10]

Figure 2 presents part of the class diagram of the

PhoneAdapter. This figure is divided in two parts, the

upper part representing the Original system and the lower part

representing the Refactored system, which will be discussed

in Section VI. As it is shown in the upper part of this figure,

the managing system involves the ContextManager and

the AdaptationManager classes.

The ContextManager class is responsible for collect-

ing and preprocessing the monitored data. Therefore, in the

Fig. 2. PhoneAdapter class diagram Original and Refactored.

PhoneAdapter, the monitoring concern is designed and

implemented in this class. The AdaptationManager is

responsible for managing the necessary adaptations according

to rules stored in the database accessed by the MyDbAdapter
class. The MainActivity class represents the managed

system. Notice that in ContextManager class, there are

attributes and methods related to the data monitored, for

example, the mLocation is related to GPS position while

the method listContainsMac() is related to list all

active Bluetooth devices. This system is quite representative

and follows a conventional architecture commonly found in

Context-Aware AS [10].

Figure 3 shows the code snippet of this class. It encom-

passes distinct types of Monitors that are: GPS, Bluetooth and

Calendar. In this figure each different monitor is highlighted in

a numbered box from 1 (one) to 4 (four): 1) Time Monitor; 2)

Weekday Monitor; 3) Bluetooth Monitor; 4) GPS Monitor. It

is possible to see that the same monitor is composed by pieces

of code that are not modularized, that is, they are spread and

tangled with the code of other monitors. For example, the Time

monitor is composed by five boxes - five code snippets. The

same occurs with the others.

This class extends IntentService which is equivalent to

extend a Thread class in Java. That is, this class is executed

in parallel to the main application, which is normally a

common characteristic of monitors. The ContextManager
class is describe as follows:

• from line 1 to 4 there are import statements related to three

sensors APIs: GPS, bluetooh and calendar.

• from line 7 to 13 there are the attributes related to sensor

instantiation, the mCal for the time and days of the week;

535353

Fig. 3. ContextManager class snippet code

the mLocManager and mLocListener related to the

GPS; the mBtAdapter and mReceiver related to the

Bluetooth device. Also there are the mTime and mWeekday
for storing the time and day of the week respectively.

• on line 15 the method (onCreate()) is executed during

the class instantiation, loading all necessary sensors.

• on line 27 the method (onHandleIntent()) is respon-

sible to execute the class main logic. While this method is

being executed this class object will be active and when

this method finishes its execution the object is destroyed.

Therefore, at line 28, there is the loop statement responsible

to keep this class active while the application is running.

• from line 29 to 65 there are all monitors grouped inside

the loop in a sequence. This loop contains the static facet

of a monitor (monitoring logic, preprocessing logic and the

broadcasting logic). For example the Time Monitor (box

number 1): in line 30 the mCal.getTime() snippet code

is the monitoring logic to acquire data from time sensor. In

line 29, the SimpleDateFormat object is responsible to

the preprocessing logic of previous data, specifying a data

format. In line 57 the time data collected and preprocessed

is added in a content, to be sent by broadcasting logic.

• on line 63 it is set the period of time that this loop is

executed, that is, the polling rate for every monitor.

• from 67 to 74 the a method (transListToArray())

preprocess the bluetooth data and is called inside the loop.

IV. MONITOR SMELLS

This section presents the Obscure Monitor and the Op-

pressed Monitors smells. For each of them it is given a

description, identification guidelines and the quality impact

and trade-off.

A. Obscure Monitor Smell

Description: The Obscure Monitor smell is related to the

static facet of the monitor (monitoring logic, broadcasting

logic and preprocessing logic). It is characterized when a

monitor is not implemented as a first-class entity, making the

source-code of this facet tangled with the source-code of other

components. In object-oriented systems, that means there is

not a class or interface that represent the monitor, but a set of

lines of code inside arbitrary classes or methods.

In the Motivating Example shown in Section III, the Ob-

scure Monitor is presented in the ContextManager class

shown in Figure 3. For example, regarding the Bluetooth

Monitor (box number 3), all of its source-code is spread in

four boxes. The first one, from line 22 to 24, encapsulates the

first part of the monitoring logic. The second one, from line

40 to 43, encapsulates the second part of the monitoring logic.

The third one, from line 53 to 56, the broadcasting logic. The

last one, from line 67 to 74, the preprocessing logic. As can

be observed, the same occurs with the other 3 monitors.

Identification Guidelines: Next, there are some guidelines

to assist in the identification of the Obscure Monitor smell.

1) Identifying all the sensors used by the system. This is the

first step because monitors rely on the existence of sensors for

545454

gathering relevant data. Therefore an alternative to identify all

sensors is making a search in platform documentation because

sensors are usually implemented using specific platform APIs

as the ones listed in Table I.

2) Identifying all the classes that import/use the sensors
found in the step before. The next step is to identify which

classes are using/instantiating sensors. Classes that instantiate

a sensor are very likely to have one or more monitors related to

it. A possible way for identifying these classes is investigating

the system class by class. Another possible alternative for

automatically identifying is using a mining tool. In this step,

it is important to identify classes that are using more than one

sensor.

3) Identifying the monitors logic. The last step is identifying

the monitoring, preprocessing and broadcasting logic related to

each monitor. This task exclusively depends of the developer

who have to search all source-code related to each monitor.

Therefore, requires a previous knowledge about the system.

Listing 1 shows an algorithm that implements the above

guidelines and can be used for detecting the Obscure Monitor

smell. It receives two inputs provided by the user and generates

one output. As input, the allSystemClasses represents a

list of all classes of the system and the sensorToSearch
represents a list of the sensors to be searched. This is

usually all sensors of a specific platform. As output the

classesWithSensor represents a list of all classes that

have at least one sensor imported. The algorithm execution

gets all classes in the allSystemClasses, one by one and

searches for each sensor listed in the sensorToSearch.

Then if a sensor is found in the current searched class, this

class will be added in the classesWithSensor. It will

result in a list with classes that have any type of sensor.

Therefore, the class that has more occurrences in this list

possibly indicates the Obscure Monitor smell presence.
I n p u t L i s t S y s t e m C l a s s e s a l l S y s t e m C l a s s e s ,

L i s t S e n s o r C l a s s e s s e n s o r T o S e a r c h ;
Outpu t L i s t S e l e c t C l a s s e s c l a s s e s W i t h S e n s o r ;

f o r (c l a s s i n a l l S y s t e m C l a s s e s){
f o r (s e n s o r i n s e n s o r T o S e a r c h){

i f (c l a s s has s e n s o r)
add c l a s s i n c l a s s e s W i t h S e n s o r

}
}

re turn c l a s s e s W i t h S e n s o r ;

Listing 1. Obscured Monitors Smell Mining Algorithm

Quality Impact and trade-off: The software quality at-

tributes that the Obscure Monitor smell may direct affect are

monitor reusability, understandabilty and maintainability.

The impact in reusability is because of the lack of modular-

ization. For instance, if an obscure monitor has to be reused

in a different system, the monitor logic will have to be re-

implemented because it is coupled with non related code.

The impact in understandability is related to specificity of

each monitor. That is the data being monitored is usually from

very different concerns, for example, geographic location and

motion detection, then each of these data have specific ways

to be preprocessed. Therefore, each monitor may employ a

particular complex algorithm strategy and/or formulas. So, if

they are tangled in the same class, the understandability of

this code will be compromised.

The impact in maintainability and evolution of the system

is related to the lack of modularization. That is, if a monitor

need to be changed it may directly affect the behavior of others

monitors once they are highly coupled.

B. Oppressed Monitors Smell

Description: The Oppressed Monitors smell is related to

the behavior facet (polling rate and execution order). It is

characterized by a set of monitors that exhibits the following

three main characteristics: i) they are independent from each

other concerning the data manipulated; ii) they have the same

polling rate and iii) the execution order of the monitors

is predetermined in compilation time and unmodifiable in

runtime. This usually happens due to bad implementation

decisions leading all monitors to be confined in a unique loop

that takes from them their autonomy.

The first characteristic is regard that they are independent

from each other. Most of the times this is conventional

situation, i.e., they can operate without dependencies from

other monitors. The dependency between monitors usually

occurs at data level, i.e., when a monitor depends on the data

captured by other monitors.

The second characteristic (having the same polling rate)

is caused by employing a looping that wraps all monitors

together. Therefore, all monitors inside the loop perform their

execution in a polling rate imposed by the loop and not decided

by themselves. This leads to an unnecessary data capturing

frequency for some monitors impacting the performance and

loss of resources. In many situations the best alternative is

allowing for each monitor to have its own polling rate, being

possible to change it in runtime.

The last characteristic, regarding the predetermined execu-

tion order, occurs because monitors are sequentially disposed

inside of the same loop. Therefore, a specific monitor can

only start its operation when the previous one has released

the control. This may lead to two problems: i) if a monitor

crashes, all monitoring will be affected being not executed; ii)

if a monitor has a slow execution it will increase the likelihood

of other monitors getting out of date data and, consequently,

generating erroneous contexts.

In summary, the Oppressed Monitors smell can be under-

stood as two abstractions: monitors and a manager. The mon-

itor manager is responsible for the execution of all monitors.

This distinction is important because both can be implemented

as classes or methods. It is important to notice that even if

all monitors are designed/implemented as first class entities,

this smell can be present. Therefore, the main goal when

refactoring this smell is to remove the monitor manager,

making the monitors independent.

In the Motivating Example in Section III, the Oppressed

Monitors smell is characterized by the while loop from line

28 to 66. This loop imposes the same polling rate to all the four

monitors, i.e., oppressing all of them to perform the monitoring

555555

logic at every 2 (two) minutes, represented by the 120000 ms

at line 63. Besides, this loop also predetermines the execution

order for all the four monitors, as follows: Time Monitor,

Weekday Monitor, Bluetooth Monitor and GPS Monitor. For

example, the Weekday Monitor only is allowed to start its

operation when the Time Monitor finishes its execution. This

is a strong indication of a problem since these two monitors

are independent and should have very different polling rates.

For example the Weekday Monitors could have a polling rate

of 24 hours while the Time Monitors of 2 minutes.

Identification Guidelines: The guidelines provided as fol-

lows aims at supporting the identification of a structure that

manage all monitors.

1) Identifying all the monitors. The first step is to search

for all monitors components. The algorithm in Listing 1 can

support this search as it helps to find classes that use a sensor,

therefore, it helps in finding the monitors.

2) Identifying classes that use monitors. After finding all

monitors, the next step is to verify if there is a structure that

wraps them. The monitors can be structured in two ways:

obscure monitors or modularized monitors. If monitors are

obscure, usually the monitor manager can be found in the

same class of monitors as a loop statement. However, if the

monitors are modularized, the algorithm in Listing 1 can be

adapted to search for monitor classes instead of sensors. If

a class that wraps all monitors is found, it is necessary to

verify if its logic submit them to a same polling rate and a

predetermined execution order.

Quality Impact and trade-off: In some cases the Op-

pressed Monitors smell is acceptable, like when there are sim-

ple monitors with similar polling rate. It is acceptable because

creating separated monitors as parallel processes may lead

to an overhead problem. However, in other cases, when the

monitors require very different polling rate. For example, the

Weekday Monitor and the GPS Monitor. In the first monitor,

data changes at every twenty four hours meanwhile depending

on the situation the GPS data may change every minute or less.

In this situation, with the presence of the Oppressed Monitors

smell, the loop structure needs to comply with the GPS high

rate of change leading to useless Weekday monitoring process.

This leads to unnecessary waste of resources because the

Weekday Monitor is operating in a polling rate faster than

necessary.

Another quality impact of monitors in the same loop struc-

ture is that they are highly coupled. One becoming dependent

of the previous execution. This execution dependence may

affect the data gathered by other monitors leading to an

incorrect behavior of the managed sub-system. For example,

in a robotic system, the GPS Monitor is executed and then in

the sequence the distance monitor, if the GPS takes too long

to be preprocessed the gathered distance will be an erroneous

data. This may lead to an unexpected behavior.

C. Smell Evidence in other Systems

A real smell is recurrent in practice. In order to obtain

evidences of that, we have employed two searching strategies.

The first one was concentrated on analyzing AS-focused pa-

pers in which there was source code snippets showing parts of

the monitoring concern. The second one was concentrated on

searching for ASs in source-code repositories, so that we could

analyze the source-code of them for detecting how monitors

were implemented. As a result we have found some applica-

tions and frameworks/architectures that exhibit the mentioned

smells, as it is presented in Table II. This table is divided

in two parts; the upper one shows applications while the

lower one shows Frameworks/Architectures. Besides, the first

column contains the name of the application/framework, the

second one contains a brief description and last one presents

the classes/elements in which both smells were found. It is

important to highlight that the presence of the smells in frame-

works leadS to strong impacts. That happens because they are

used as base for developing applications, and consequently, all

the applications developed with their support will present the

smells.

V. REFACTORING PHONEADAPTER

In this section we demonstrate a possible way for refactoring

applications in order to solve the smells presented in this

paper. We exemplify our strategy with the PhoneAdapter
Application since it presents both smells the Obscured Monitor

smell and Oppressed Monitors smell. Our refactoring strategy

is based on two main tasks: i) creating a class for each existing

monitor of the system - what solves the Obscure Monitor smell

and ii) eliminate loops that manage the monitors - what breaks

out the centralized nature and solves the Oppressed Monitors

smell. Therefore, the new design must guarantee that each

monitor is evident in the code as first-class entity, independent

in terms of data and have its own polling rate.

The lower part of the Figure 2 shows the refac-

tored version. As can be seen, the ContextManager
class no longer exist. This class was broken into four

new monitor classes (MonitorWeekday, MonitorGPS,
MonitorTime, MonitorBluetooth), making the mon-

itors evident in the source-code as first-class entities.

Methods and attributes related to each monitor are now

in their respective classes. For instance, the method

sendBroadcast() is responsible to send the collected

data to the AdaptationManager class. This strategy of

slitting a unique class that was encapsulating all the monitoring

concern into new ones solves the Obscure Monitor smell. To

solve the Opressed Monitors smell we have to guarantee that

there is no loop that controls the monitors, so each monitor

must have its own parallel process. This is not shown in this

figure.

To make our refactoring suggestion easier, we have created

a simple template class to be completed, this template is shown

in Listing 2 and it is an evolution from a previous publication

[18]. The template is based on the main characteristics of

monitors [7], [19], [20], that are listed as follows:

1) It has to be a parallel process to the managed system.

For example, in Java this class should implement Runnable

565656

TABLE II
APPLICATIONS, FRAMEWORKS AND ARCHITECTURES WITH MONITOR SMELLS

Applications Description Present Smells

AIASProject [11]
An adaptive robotic application for artificial
intelligence test.

Both smells are present in the ScriptBot class
which involves five monitors.

PhoneAdapter [10]
An adaptive Context-Aware application for mobile phones
where adaptations are guided by previously defined rules.

Both smells are present in the ContextManager class
which involves four monitors.

Smartrac [12]
A mobile Context-Aware application for Travelling
and Activity Capturing

Both smells are present in the SensorDataCapture class
which involves two monitors

Vehicle
Recommendation [13]

A vehicle self-configuring application based
on previous driver preferences.

Both smells are present in the DriverLearning module
which may involves multiple monitors.

Framework Description Present Smells

Zanshin [14] A framework for developing adaptive software.
Oppressed Monitors is present in the MonitorThread class
which activate monitors one by one.

CAA Framework [15]
A framework for the development of context-aware
mobile applications.

Both smells are present in the object Sentinel
which may be responsible for multiple monitor.

SOCAM [16]
A framework for the development of context-aware
mobile services.

Both smells are present in the ContextInterpreter class
which may be responsible for multiple monitors.

Behavior-based [17] An architecture used in autonomous robotic field.
Oppressed Monitor is present in the behavior manager class
which activate each behavior one by one.

or extend Thread. For the Android platform, it should

implement the IntentService.

2) Sensors must be instantiated in the beginning of the mon-

itoring process. Therefore, this can be done in the constructor

method or in a loader method.

3) It has to have a constant loop structure in order to

keep the data up to date. That is, this loop must contain the

monitoring logic of how data are gathered.

4) The loop must be triggered by a polling rate that

determines when the monitoring logic is executed. That is, the

polling rate sets the frequency of the loop with the monitoring

logic.

The guidelines we have followed for conducting this refac-

toring has 3 main steps: (i) identifying the sensor responsible

to get data on the original code with the supportive algorithm

in Listing 1; (ii) identifying all code related to this sensor,

this includes attributes, code snippets and methods; finally

(iii) separating the monitoring logic, the preprocess logic and

broadcast logic from the code identified in the last step.
p u b l i c c l a s s monitorName [ex tends / implements] [Runnable /

Thread / I n t e n t S e r v i c e / . . .] {
/ / a t t r i b u t e s l i k e ‘ ‘ i n t p o l l i n g R a t e = ?;”
p u b l i c monitorName () {

/ / m o n i t o r i n g l o g i c (i n i t i a t e t h e s e n s o r s he re)
}
p r o t e c t e d void [run / o n H a n d l e I n t e n t / . . .] (< p a r a m e t e r s >) {

whi le (appOn) {
/ / m o n i t o r i n g , p r e p r o c e s s i n g , b r o a d c a s t i n g l o g i c

here
/ / p o l l i n g r a t e

. . .
}

Listing 2. Template class for Monitors

An example of a refactored monitor is shown in Listing

3. This code snippet is related to the Weekday Monitor (box

number 2) in Figure 3. Therefore, this code snippet is the

Weekday Monitor refactored.

To implement this refactoring, as first step we identify

the sensor responsible to get the day of the week, which in

this case is the Java API import java.util.Calendar,

on line 1. Then, we identify all parts related to this sen-

sor. Like the attribute mCal (on line 21) which represent

the sensor instantiation, located inside of the loader method

(onCreate()). The last step is identifying the monitoring,

preprocess and broadcast logic. The monitoring logic is done

by the mCal.get(Calendar.DAY_OF_WEEK) on line

31. The preprocess logic is inside the conditional structure

(switch/case), from line 31 to 39. Finally, the broadcast

logic is inside the runnable object mHandler on line 44.

After identifying all parts of this monitor, it is possible to

move these code parts to the respective place in the template

and then set a new polling rate specific for this monitor. Some

corrections in the code maybe necessary in order to keep the

correct behavior of the system, like initiate this new monitor

in the domain application.

import j a v a . u t i l . C a l e n d a r ;
. . .
p u b l i c c l a s s MonitorWeekday ex tends I n t e n t S e r v i c e {

/ / a t t r i b u t e s
C a l e n d a r mCal ;
. . .
p u b l i c MonitorWeekday () {

/ / m o n i t o r i n g l o g i c (i n i t i a t e t h e s e n s o r)
mCal= C a l e n d a r . g e t I n s t a n c e () ; }

p r o t e c t e d void o n H a n d l e I n t e n t (I n t e n t i n t e n t) {
whi le (appOn) {

/ / m o n i t o r i n g l o g i c
weekday=mCal . g e t (C a l e n d a r .DAY OF WEEK) ;
s w i t c h (weekday) {

case 1 : mWeekday=” sunday ” ;
break ;
. . . }

/ / b r o a d c a s t l o g i c
mHandler . p o s t (new Runnable () {

p u b l i c vo id run () {
I n t e n t i =new I n t e n t () ;
i . p u t E x t r a (
ContextName .WEEKDAY. mWeekday) ;
s e n d B r o a d c a s t (i) ; }

}) ;
/ / p o l l i n g r a t e
Thread . s l e e p (3 6 0 0 0 0) ; }

Listing 3. Refactoring example - WeekdayMonitor class

575757

VI. EXPLORATORY STUDY

This section presents an exploratory study to analyse the

impact of some maintenance tasks in two versions of the

PhoneAdapter application; the original one, containing

the smells and the refactored one, whithout the smells. The

maintenance tasks proposed are listed in Table III. The first

column presents the name of the maintenance task and the

second column a short description. As can be seen in this

table, the tasks we have chosen represent typical modifications

demanded in ASs. All of them are devoted to modify or evolve

monitor characteristics.

Notice that we are aware that the maintenance tasks do not

try to exercise a specific smell, i.e., if there are improvements

in the system, we cannot presume which smell had the most

impact. That is, the improvements may be because the Obscure

Monitor smell or the Oppressed Monitors smell or both was

solved.

Next, we provide a more detail explanation of each main-

tenance task listed in Table III. For each one, we provide an

explanation of the scenario in which this task usually occurs,

the impact in the original version of the system, the impact in

the refactored version and a conclusion.

TABLE III
MAINTENANCE TASKS

Maintenance Tasks Description
1- Adding new
monitor type

A common new system requirement is
monitoring a new sensor type.

2- Changing the
monitoring logic

A possible maintenance required is change the
monitor logic (monitoring, preprocessing and
broadcasting logic).

3- Setting different
polling rates

A common evolution in AS is setting different
polling rates for each monitor optimizing
the resources usage.

4- Setting same
polling rate

In this task all monitors have to be triggered at
the same time with the same polling rate.

5- Defining a
execution sequence

In this task a monitor may require information
from another one. In this case it is a execution
order maybe required.

1) Adding new monitor type. In this task it is required that

the system monitors the battery status in order to optimize the

device endurance. To add the Battery Monitor the source-code

shown in Listing 4 was added.

/ / M o n i t o r i n g l o g i c (Se ns or i n s t a n t i a t i o n)
I n t e n t b a t t e r y S t a t u s = c o n t e x t . r e g i s t e r R e c e i v e r (nul l , new

I n t e n t F i l t e r (I n t e n t . ACTION BATTERY CHANGED)) ;

/ / M o n i t o r i n g l o g i c
i n t l e v e l = b a t t e r y S t a t u s . g e t I n t E x t r a (B a t t e r y M a n a g e r .

EXTRA LEVEL, −1) ;
i n t s c a l e = b a t t e r y S t a t u s . g e t I n t E x t r a (B a t t e r y M a n a g e r .

EXTRA SCALE, −1) ;
/ / P r e p r o c e s s i n g da ta
f l o a t b a t t e r y P c t = l e v e l / (f l o a t) s c a l e ;

/ / B r o a d c a s t i n g
i . p u t E x t r a (ContextName . B a t t e r y , b a t t e r y P c t) ;

Listing 4. Battery Monitor implementation

Impacts on the Original system: The monitor is added in the

ContextManager class. The code for sensor instantiation

is placed on method the onCreate(). The monitoring logic

and preprocessing data are placed inside the while loop in

sequence with other monitors. At last, a new broadcasting

attribute is added in the broadcast container.
Impacts on the Refactored system: A new monitor class is

created with the monitor source-code, following the template

shown in Listing 2. Then, in the application main class

this monitor is instantiated as a parallel process with other

monitors.
Conclusion: The changes made in the original system are

more invasive, adding new source-code into an existent class.

In the refactored system a new class is created being less

invasive to the existent code.
2) Changing the monitor logic. In this task it is required

that whenever it is thirteenth Friday the Weekday Monitor

has to concatenate an “*” in the day of the week. In order

to accomplish this task, it was necessary to change the

preprocessing logic to the source-code shown in Listing 5.

i f (mCal . g e t (C a l e n d a r .DAY OF MONTH) == 13){
mWeekday=” f r i d a y ∗” ;

} e l s e {
mWeekday=” f r i d a y ” ;

}
Listing 5. Changing the weekday monitor preprocessing logic.

Impacts on the Original system: The change is done in

the ContextManager class inside the while loop. It is

necessary to find the Weekday monitor logic and change the

“case” statement that is about the Friday for the code in the

previous listing.
Impacts on the Refactored system: The change is the same

as done in the Original system, however it is done in the

Weekday Monitor class.
Conclusion: Even though the changes made in both systems

are very similar, changes in the Original system are more

invasive and may compromise other monitors in the loop.

While in the refactored system, changes are exclusively made

in one specific class, therefore, being less invasive in the

system.

p r o t e c t e d void o n H a n d l e I n t e n t (I n t e n t a rg0){
i n t c o u n t = 0 ;
whi le (! mStop){
c o u n t ++;
i f (c o u n t \% 9 == 0){

g p s A v a i l a b l e = mLocLi s t ene r . mGpsAvai lab le ;
gpsValue = mLocLi s t ene r . mLocat ion ;
gpsSpeed = mLocLi s t ene r . mSpeed ; }

. . . }
Listing 6. Setting different polling rate

3) Setting different polling rates. In this task, to reduce

the battery expenditure it is required to set the GPS Monitor

polling rate for 9 (nine) minutes, while the other monitors stay

with the same polling rate of 2 (two) minutes.
Impacts on the Original system: The changes are made on

the ContextManager class. The first modification is set the

polling rate for a frequency that allows even and odd minutes

values, for example, one minute. Then it is added an attribute

to count loop cycles and when the loop is multiple of nine, it

triggers the GPS Monitor as it is shown in Listing 6. A similar

logic is done with other monitors in order to be triggered every

2 (two) minutes.

585858

Impacts on the Refactored system: In the Refactored system

all monitors have a specific polling rate, therefore it is just set

the polling rate for 9 (nine) minutes in GPSMonitor class.

Conclusion: In this task there is a big difference between

both systems. Notice that if other monitors also need a specific

polling rate, at least a if statement should be added for each

monitor. Another important observation is that the polling rate

of the loop has to be adequate for all monitors. That is, if a

specific monitor requires a polling rate of 30 (thirty) seconds,

it cannot be greater than 30 (thirty) seconds.

4) Setting the same polling rate for all monitors. In this

task it is required that all monitors to be triggered just twice

a day at the same time.

Impacts on the Original system: The changes are made on

the ContextManager class. In the line with the polling rate,

method Thread.sleep(), it is setted a frequency of twelve hours

triggering the monitors twice a day. It is important to notice

that monitors are not triggered at same time once they have

an execution order.

Impacts on the Refactored system: In the refactored system

as the monitors are going to be executed twice a day, it is

not necessary to keep their thread waiting in the background,

therefore, a good solution is to create a monitor management

as it is shown in Listing 7.

whi le (! mStop){
I n t e n t gpsMoni to r = new I n t e n t (t h i s , GpsMonitor . c l a s s) ;
I n t e n t weekdayMoni tor = new I n t e n t (t h i s , WeekdayMonitor .

c l a s s) ;
. . .
s t a r t S e r v i c e (gpsMoni to r) ;
s t a r t S e r v i c e (weekdayMoni tor) ;
. . .
Thread . s l e e p (TimeUnit . MILLISECONDS . c o n v e r t (1 2 , TimeUnit .

HOURS) ;) }
Listing 7. Creating a monitor management.

Conclusion: In this scenario the Oppressed Monitors smell

is a good design solution because all monitors require to be

under the same polling rate, and depending on the frequency

the monitor thread can be created and terminated just for

the data collection, reducing the resources expenditures. It is

important to notice that on the refactored system it is created

a Monitor Manager which represents the implementation of

the Oppressed Monitors smell.

5) Defining a Monitor execution sequence. This task

requires that the GPS Monitor must not execute when battery

level is below 50%. Therefore the Battery Monitor has to be

executed before the GPS Monitor once its execution relies on

the monitored battery data.

Impacts on the Original system: In order to accomplish this

task in the Original System, it is necessary to set the Battery

Monitor code before the GPS Monitor, then an if statement in

the GPS Monitor to verify the battery level.

Impacts on the Refactored system: On the refactored system

the Battery Monitor will require a method to trigger its

execution every time the GPS Monitor is executed. Therefore,

there will be a method call in the GPS Monitor to update the

Battery Monitor data.

Conclusion: In this scenario if only some monitors need to

be executed in a determined sequence, it is possible to make

an hybrid solution. Monitors that must have an execution order

can be structured with a triggering method in order to be called

before the polling rate cycle.

VII. RELATED WORKS

The works related to our research can be divided in two

groups. The first deals with the design of monitors and the

second one deals with architectural smells. The second group

is devoted to show that most of the works in this area

do not present smells that are specific to types of systems.

Abuseta and Swesi [21] proposed design patterns for control

loop components of self-adaptive systems (SAS). The first

design pattern called SAS Monitor is related to the monitor

component. As the authors describe, it intends to establish

the relationships between the components participating in

accomplishing the monitoring activity. In the SAS Monitor

design, the monitor component is implemented as a first-

class entity. Therefore, if a system does not follow a similar

design pattern evidencing the monitor it corroborates with the

Obscure Monitor smell described in this paper.

Garcia et al. [8], [22], describe four representative architec-

tural smells. The four smells decribed are: Connector Envy,

Scattered Functionality, Ambiguous Interfaces and Extraneous
Connector. For each smell, there is a detailed description;

the quality impact and trade-offs; and a schematic diagram

in order to help architects detect the architectural smells

and assess its impact. The authors conclude that architectural

smells can be detected either in the conceptual architecture

of a software system or in the recovered architecture of

an implemented one. These smells are not described for an

specific system domain and can be applied to general systems.

However, we believe that AS software may present unique

features that may require specific architectural smells.

Mo et al. [23], propose two hot-spot patterns: the Unstable
Interface and Implicit Cross-module Dependency. They define

these hot-spot patterns as “recurring architecture problems that

occur in most complex systems and incur high maintenance

costs”. Therefore, we also consider these hot-spot as archi-

tectural smell. In this study, the authors conclude that these

patterns identify the most error-prone and change-prone files,

and also pinpoint specific architecture problems that may be

the root causes of bug-proneness and change-proneness. As

validation they report on an industrial case study to demon-

strate the practicality of these hot-spot patterns. The architect

and developers confirmed that the hot-spot discovered was

the majority of the architecture problems causing maintenance

pain. As the authors, we believe that in AS there are also

architecture designs that may cause maintenance pain and with

an analysis of AS it is possible to identify architectural smells

that will improve the system inner qualities.

Andrade et al. [24], [25] conduct an exploratory study that

aims at characterizing bad smells in Software Product Line

(SPL) architectures. They extracted the architecture of an open

source SPL project and and analyzed it to investigate the

595959

occurrence or absence of the four smells described in Garcia

et al. [8], [22]. In addition, they propose a smell specific to

the SPL context and discuss possible causes and implications

of having those smells in the architecture of a SPL. The

results indicate that the granularity of the SPL features may

influence on the occurrence of smells. Therefore, the authors

found the necessity of identifying specific domain architectural

smells for SPL, corroborating with our work of identifying

architectural smells for AS field.

All these studies corroborate with our paper goals of de-

scribing Monitor Smells in AS. In Abuseta and Swesi [21]

it shows the necessity of evidence the monitor component

as a first-class entity. In Garcia et al. [8], [22] and Mo et
al. [23] it described the presence of architectural smells for

general systems. Andrade et al. [24], [25] suggest that there are

architectural smells for specific domains. To our knowledge,

no studies about AS architectural smells were found.

VIII. DISCUSSION AND CONCLUSIONS

This paper presents two Architectural Smells for ASs. The

Obscure Monitor smell expresses the lack of modularization of

monitors while the Opressed Monitors indicates the monitors

are compelled to have the same polling rate and they must also

follow a strict execution order. As they are architectural smells,

it is difficult to assign them to a specific code level structure, as

occurs with canonical smells as God Class, Long Method and

others. Therefore, these smells can be found in either classes

or methods, that is, the smells may be implemented spread in

different classes or inside a single method in a unique class.

In order to facilitating the search for these smells, some

guidelines are presented and also an algorithm that enables

finding monitors. The algorithm provided is helpful in iden-

tifying both smells. In the Obscure Monitor smell it helps

to identify not modularized monitor, while in the Oppressed

monitors it helps to identify the monitors and then the presence

of a monitor management.

An important detail is that a system that presents Obscure

Monitor smell, usually has also the Oppressed Monitors.

However, there are also systems where they occur uniquely,

i.e., systems that present only the Obscure Monitor or the

Oppressed Monitors.

We have also presented a preliminary evaluation whose

goal was to characterize the effort of maintaining ASs with

and without the smells. In order to perform this analysis,

five maintenance tasks were applied in two versions of an

AS, an original and a refactored version. Results have shown

differences in the maintainability between both versions, being

the refactored one easier to be maintained in most of the

maintenance tasks.

IX. ACKNOWLEDGEMENTS

We would like to thank Fapesp (2012/00494-0).

REFERENCES

[1] M. Hussein et al., “Context-aware adaptive software systems: A system-
context relationships oriented survey,” Swinburne University of Technol-
ogy, Tech. Rep., 2010.

[2] R. De Lemos et al., “Software engineering for self-adaptive systems:
A second research roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 1–32.

[3] Y. Brun et al., “Engineering self-adaptive systems through feedback
loops,” in Software engineering for self-adaptive systems. Springer,
2009, pp. 48–70.

[4] D. Weyns et al., “A survey of formal methods in self-adaptive systems,”
in Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering. ACM, 2012, pp. 67–79.

[5] ——, “On patterns for decentralized control in self-adaptive systems,” in
Software Engineering for Self-Adaptive Systems II, R. de Lemos et al.,
Eds., vol. 7475 LNCS. Springer Berlin Heidelberg, 2013, pp. 76–107.

[6] J. Cámara et al., “Evolving an adaptive industrial software system
to use architecture-based self-adaptation,” in Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2013 ICSE Workshop
on. IEEE, 2013, pp. 13–22.

[7] D. G. D. L. Iglesia and D. Weyns, “Mape-k formal templates to rigor-
ously design behaviors for self-adaptive systems,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 10, no. 3, p. 15, 2015.

[8] J. Garcia et al., “Identifying architectural bad smells,” in Software Main-
tenance and Reengineering, 2009. CSMR’09. 13th European Conference
on. IEEE, 2009, pp. 255–258.

[9] U. Kulesza et al., “The crosscutting impact of the aosd brazilian research
community,” Journal of Systems and Software, vol. 86, no. 4, pp. 905–
933, 2013.

[10] M. Sama et al., “Context-aware adaptive applications: Fault patterns
and their automated identification,” IEEE Transactions on Software
Engineering, vol. 36, no. 5, pp. 644–661, 2010.

[11] M. M. Uwa. Aiasproject. [Online]. Available:
https://github.com/maltic/AIASProject

[12] Y. Fan et al., “Smartrac: A smartphone solution for context-aware travel
and activity capturing,” 2015.

[13] M. K. Rao and K. O. Prakah-Asante, “Driver behavior based vehicle
application recommendation,” Mar. 1 2016, uS Patent 9,272,714.

[14] V. Souza. The zanshin framework. [Online]. Available:
https://github.com/sefms-disi-unitn/Zanshin

[15] G. Biegel and V. Cahill, “A framework for developing mobile, context-
aware applications,” in Proceedings of the PerCom 2004. IEEE, 2004,
pp. 361–365.

[16] T. Gu, H. K. Pung, and D. Q. Zhang, “A middleware for building context-
aware mobile services,” in VTC 2004 - Spring, vol. 5. IEEE, 2004, pp.
2656–2660.

[17] L. E. Parker, “On the design of behavior-based multi-robot teams,”
Advanced Robotics, vol. 10, no. 6, pp. 547–578, 1995.

[18] M. A. Serikawa et al., “Guidelines for modularizing the monitor
component when refactoring adaptive systems,” in 2nd Latin-American
School on Software Engineering. Porto Alegre, Brazil: UFRGS, 2015.

[19] A. J. Ramirez and B. H. Cheng, “Design patterns for developing
dynamically adaptive systems,” in Proceedings of the ICSE 2010. ACM,
2010, pp. 49–58.

[20] P. Horn, “Ibm perspective on the state of information technology
- autonomic computing,” October 2001. [Online]. Available:
http://www.citeulike.org/group/1604/article/1512356

[21] Y. Abuseta and K. Swesi, “Design patterns for self adaptive systems
engineering,” arXiv preprint arXiv:1508.01330, 2015.

[22] J. Garcia et al., “Toward a catalogue of architectural bad smells,” in
Architectures for adaptive software systems. Springer, 2009, pp. 146–
162.

[23] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in Proceedings
of the WICSA 2015, 2015, pp. 51–60.

[24] H. S. de Andrade, E. Almeida, and I. Crnkovic, “Architectural bad smells
in software product lines: An exploratory study,” in Proceedings of the
WICSA 2014. ACM, 2014, p. 12.

[25] H. Andrade, “Software Product Line Architectures: Reviewing the
Literature and Identifying Bad Smells,” Master’s thesis, Malardalen
University, Vasteras, 2013.

606060

