A Tool for Isolating Performance in General-Purpose
Operating Systems

*
Valéria Q. Reis
Computer Science Department — PUC-Rio
Rio de Janeiro, Brazil
vreis@inf.puc-rio.br

ABSTRACT

General-purpose Operating Systems do not provide effec-
tive mechanisms for application processing reservation. For
this reason, some initiatives aim at guaranteeing processing
by instrumenting kernels or by isolating the performance
through the creation of virtual machines. As will be de-
scribed in the present paper, CPUReserve works differently
from these approaches. It is a processing reservation sys-
tem that runs at user level. Because CPUReserve presents
a client-server architecture and significant scalability — as
suggested by the experiments carried out — it can be used in
distributed and shared environments just like computational
grids.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—schedul-

ing

General Terms

Management

Keywords

Scheduling policies, Distributed computing, Processing reser-
vation, User-Level scheduler

1. INTRODUCTION

General-purpose Operating Systems do not treat applica-
tion classes in any specific manner, and thus are inefficient
in managing the Quality of Service of some applications.
When scheduling is performed by time- or space-sharing al-
gorithms, different priority levels among the applications are
not distinguished, aside from the fact that these algorithms
are very conservative — the time or space slices allotted can-
not be transferred to other processes even when they are

*Sponsored by a CNPq doctoral fellowship.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MGC '08, December 1-5, 2008 Leuven, Belgium.

Copyright 2008 ACM 978-1-60558-365-5/08/12 ...$5.00.

Renato F. G. Cerqueira
Computer Science Department — PUC-Rio
Rio de Janeiro, Brazil
rcerq@inf.puc-rio.br

not being used. On the other hand, when priority-based
process-scheduling systems are used, applications classified
as having low priority might have to wait too long.

Due to their own nature, shared computational environ-
ments pose certain challenges to resource management. En-
suring that users do not overload machines or violate usage
policies, as well as ensuring a minimum service standard for
all users, can be very difficult tasks when there are no tools
to limit the use of system resources. Implementing resource-
reservation mechanisms can facilitate management by set-
ting lower and upper limits for processing, memory, disk or
network usage. Particularly, the present study focuses on
processing because many of the applications submitted to
shared environments are CPU-bound.

In the case of computational grids, defining processing
reservation can prevent overload of system nodes while giv-
ing machine providers the right to set the processing ca-
pacity limits they wish to offer. In the case of on-demand
computing, reservation can guarantee a minimum service
standard for users. The same applies to multimedia appli-
cations, which require a minimum and periodic processing.

Some initiatives, such as Resource Kernels or Resource
Containers, seek to develop processing-reservation mecha-
nisms by creating kernel extensions, with the purpose of
ensuring timely access to the resources of an Operating Sys-
tem [9, 7, 1]. However, there is a new tendency to use virtual
machines for this purpose. Virtual machines offer users a
customized environment in which computer resources are ex-
clusively dedicated to the processes required by the current
user. This isolation of the environment results in greater
control over the resources used and in increased security,
because a process in a given virtual machine cannot access
data in another virtual machine [6, 11].

Taking a different approach from Resource Kernels and
virtual machines, some initiatives have attempted to manage
resource reservation at user level, thus avoiding the need for
kernel recompiling or system overload by instancing a large
number of virtual machines. An example of such solution is
DSRT - Dynamic Soft Real Time CPU Scheduler [3]. Cre-
ated in the late 1990's with the purpose of treating process-
ing reservation for multimedia applications, DSRT was used
in several projects. However, it did not evolve enough to
be applied in more modern scenarios, such as opportunistic
grids, utility-computing environments, and multi-processed
architectures. These limitations combined to the difficulty
of adding new resource-sharing policies in this system have
motivated the development of a new reservation manager,
called CPUReserve, which is the objective of study of this

paper.

The rest of the paper is organized as follows: in Section 2,
other works related to CPUReserve are reviewed. In Sec-
tion 3, implementation details of the system and its architec-
ture are presented. In Section 4, the experimental evaluation
and limitations of CPUReserve are described. Section 5 out-
lines a proposal to integrate user-level processing-reservation
approaches, also including virtual machines. Finally, Sec-
tion 6 concludes this paper.

2. RELATED WORK

Processing reservation is often related to Resource Ker-
nels. A resource kernel is a kernel that has been modified to
manage resources by means of reservation models. It allows
ensuring access to a certain portion of a machine’s resources
while running an application, using functionalities provided
by the core of the OS. RT-Mach and Linux/RK are two of
the main Resource Kernels referred to in the literature [9, 7].
Both of them, as well as CPUReserve, provide ways for spec-
ifying the applications’ execution periods. However, unlike
CPUReserve, RT-Mach kernel and Linux/RK need kernel
recompiling for the changes in their code to make effective.
Since 2.6.23 kernel release, the Linux Kernel Organization®
has adopted the Completely Fair Scheduling (CFS) as its
new task scheduler. CFS proportionally divides CPU among
the system’s processes according to the their corresponding
weights. However, CFS does not provide an admission con-
trol for new applications, nor does it ensure applications QoS
guarantees that require a specific amount of CPU allocation
at a constant periodicity as CPUReserve does.

Recent initiatives have been using virtual machines as a
means to ensure processing reservation, since virtual ma-
chines create closed execution environments that provide se-
curity and isolation for application performance [6, 11]. Xen
is one of the most relevant monitors in the literature [2]. In
Xen, the monitor can load different schedulers during the
host operating system booting phase, including the sEDF
scheduler, which enforces domains to execute during a time
slice within a period. Although processing reservations can
be assigned to domains, there is no mechanism for isolating
the performance of the processes running inside each do-
main. The only way to achieve performance isolation using
virtual machines is to execute one domain for each applica-
tion. This practice, however, may generate a great overhead
to create and manage big numbers of virtual machine in-
stances. On the other hand, CPUReserve can isolate part
of a machine processing capacity and assign it to a specific
process with an almost insignificant resource usage.

Like CPUReserve, DSRT manages processing reservation
at user level [3]. In DSRT as well as in CPUReserve, pro-
cessing reservations are implemented by temporizers which,
upon expiring, handle the priorities of client applications on
the current Operating System. However, on the former sys-
tem, client and server applications must run in the same
machine, as communication between these entities is made
by memory sharing. This implementation makes the use of
DSRT in distributed environments difficult. In CPUReserve,
the client-server communication is made through sockets.

DSRT was designed to respond to the needs of multimedia
applications, so it allows classifying applications according
to the processing profile, which may adopt different period-

"http://www.kernel.org/

icity patterns. It also provides a reservation API that can
be added to application code, to allow a more precise con-
trol over the resources. On the other hand, CPUReserve
was designed to respond to the needs of computing inten-
sive applications in scenarios such as the ones found in op-
portunistic grids and multi-processed architectures. Conse-
quently, CPUReserve can take advantage of idle processing
in machines in addition to provide mechanisms for processor
reservation in machines with more than one processor.

Finally, CPUReserve was designed seeking to prioritize
code modularization, so that the reservation-implementation
mechanism is independent from the reservation policies. This
separation between reservation mechanisms and reservation
policies allows introducing new prioritization parameters in
CPUReserve.

3. CPURESERVE

The disadvantages identified in processing reservation per-
formed by Resource Kernels and by virtual machines have
motivated the implementation of CPUReserve, a user-level
processing reservation system. Similarly to DSRT, CPURe-
serve manages processes through system calls that dynami-
cally change priorities of processes, causing them to consume

more or less processing in a given time span.

CPUReserve uses the client-server model with communi-
cation among processes made through sockets. To run the
server, the process needs to be launched at a given port,
defining a bitmask that informs in which processors in the
machine the reservations are to be managed and the system’s

processing limit?:
./server <port> <processors_decimal_set> <system_limit>
To run the client, one needs to run a command such as

./client <mach:port><period><slice><cons><exec><params...>

where mach:port refers to the machine name combined with
the TCP port number where the server is listening, and
slice is the processing time percentage required by the ap-
plication at each period specified in the server configura-
tion. Field cons (work-conserving), if set to 0, restricts the
amount of CPU allotted to the process specified in the mes-
sage. If this field is 1, the amount of processing per period
can be larger if the running machine has idle processing.
Fields exec and params, together, correspond to the com-

mand line of the application to be executed.

If the client’s request is accepted, the application will be
allotted the CPU percentage specified in the request. Reser-
vation parameters can be changed by means of a command
such as

./adapt <mach:port> <period> <slice> <cons> <pid>

where pid is the identifier of the process being executed by
the server.

To prevent starvation of the processes running outside the
CPUReserve server, including the server itself, a reservation
limit is set using variable RESERVATION_LIMIT, which is
0.8*num_reserved_processors by default®.

Reservation and adaptation activities cover the whole pro-
cess tree. New processes share the time slice reserved for the

2Typically, this value is set to 1, meaning, the system is not
limited by another entity such as a hypervisor, for example.
3This value was determined through the experiments de-
scribed in Section 4.

process that created them. This method prevents children
processes from bypassing the agreement regarding process-
ing usage.

3.1 Architecture

The CPUReserve server is composed of two main threads:
one to monitor CPU usage (idle CPU and CPU time used
by each process), and one to await client connections. The
connection-waiting thread listens, on the port set when the
server started running, for reservation or adaptation requests.

Figure 1 illustrates the server architecture and the interac-
tion among its components. Upon receiving a message from
the client through the IO-treatment thread, the server starts
another thread to treat this request. This latter thread
treats reservation and adaptation requests differently, but
in any case it checks the message’s parameters for consis-
tency and assesses whether the reservation requested can be
provided (admission control). In the case of reservation, if
the client request can be serviced, the specified process is
created, and its processing consumption is monitored. New
children of this process will also be monitored to ensure that
they will share the time slice defined for the parent process.
In the case of the adaptation request, new process reserva-
tion parameters are updated and new alarms are configured.

Server _———mmm . e -
. e . €
\ ¢
'
1 Monitor 1 ' 10 1 Client
\ 1 ! Handler 1
\
’ p >
- T -
PTTTTTT
1 Alarm ‘l
> > " Handler
.
Alarms ST TT == e
=== T mms
N
N Msg \

Monitor Reserve Adapt
Process Tree

| |

Figure 1: Architecture of the reservation server.

Processing-reservation control is made through alarms that
expire after a processing time slice. The alarms are ordered,
with those that expire earlier being first in line. When an
alarm expires, a thread is created to treat it. This thread
checks the processing time of the process that generated
the alarm and makes decisions regarding continuing or in-
terrupting the execution of that process. The monitoring
and alarm-treating threads exchange information. Such ex-
changes occur when the alarm-treating thread wants to know
whether the machine has any idle processing capacity, in or-
der to allocate it to a work-conserving type of process.

3.2 Implementation Details

When the server is initiated, its execution is bound to a
given set of processors. This binding restricts not only the
server’s execution but also that of the processes it manages.
Their execution is ensured by calls to the Operating System
that makes the processes bindings. CPUReserve is imple-
mented using the Linux API for its Linux version and win32
API for its Windows version. In both implementations, it

is assumed that the operating system scheduler is priority
concerned and that processes in a same priority queue divide
the processing capacity equally, in a round-robin fashion, for
example.

To manage the scheduling of the processes requested by
the clients, the server runs giving maximum priority to real-
time processes. For this reason, the server must be executed
with administrator privileges. When a client process begins
to be executed, the server transforms it into a real-time pro-
cess, with the second highest priority in the system. Then,
this client process is monitored and, if it exceeds the time
slice determined for this period, it can either be halted or
have its priority reduced to the minimum allowed for com-
mon process class until the following period begins. The
decision to either halt the process or reduce its priority is
based on the work-conserving parameter informed by the
reservation or adaptation request.

Process monitoring is all done through real-time alarms
that invoke a decision thread upon expiring. This thread
has an implementation guided by the decisions illustrated
in figure 2.

Alarm
. I .
Terminated Stopped Running

[I 1

exec(slice) RT OTHER
|

execSlice lexecSlice makeRT
exec(slice)
!passkdPer passedPer !passLdPer passedPer

exec(slice) enough !enLugh

conserv lconserv exec(slice)*
time time
makeOTHER stop until l
exec(next_per) next_per exec(remaining_slice) exec(next_per)*
Figure 2: Decision steps of the alarm-treating

thread.

When an alarm expires, the thread verifies the status of
the process that requested the alarm. If its status is termi-
nated, the process is removed from the process line in the
server. If the status is stopped, this means that in the pre-
vious period the process has executed its processing time
slice, was stopped until the end of the period because it was
not work-conserving, and must execute a new time slice in
the new period. If the process status is running, one must
verify whether it is being executed as a real-time (RT) pro-
cess or as a common one (OTHER). If the process is of type
OTHER, this means the alarm expired because the process
has ended its period. Therefore, the process must be turned
again into a real-time one and be given a new time slice for
execution.

If the process was running in real time, one must check
whether its time slice has already been executed. If it has,
one must verify if its period has expired. If it has, the pro-
cess can run again during another time slice. If the period
has not been exceeded, one must check whether the pro-
cess is a work-conserving one. If it is work-conserving, it
is transformed into a common, low-priority process and al-
lowed to run with this status. Finally, if the process is not
work-conserving, it is halted until the next period.

If the process has been running in real time but still did
not finish its time slice, one must check whether its period
has been exceeded. If it has, this means an error has oc-

'
f
80+ ~,-r'“’-a_fx_,1_,_,v\‘,li
i
60
404
2".]'./“/__’\ Iruf’\._ P A
i T T T
9:37:49 PM 0:38:20 PM 9:38:50 PM 9:39:.20 PM 9:37:48 PM

Figure 3: Performance of applications with and without reservation.

curred (marked with a star in figure 2). This error indicates
that there are more reservations than the available proces-
sors can handle. In this case, the value of variable RESER-
VATION_LIMIT must be reduced. To avoid interrupting
the server’s execution, the process is allowed to continue
running despite the error, restarting a time slice. If the pe-
riod for the process has not expired, the process is allowed
to run for the remaining time slice — if it is still possible
to run what is left of the slice before the period expires —
or for the remaining period — if an error similar to the one
described previously has occurred.

4. EXPERIMENTAL EVALUATIONS

In order to evaluate CPUReserve’s effectiveness, we exe-
cuted two CPU-intensive applications in a same machine —
one application without reservation, that is, being serviced
in a best-effort way, and one application being executed with
reservation guaranteed by CPUReserve. Initially, as one can
see in figure 3, the latter application (solid line) has 20% of
the CPU assigned to it. Consequently, the former applica-
tion (dashed line) consumes the remaining machine’s pro-
cessing capacity, that is, 80% of the CPU. At 9:38:20, the
second application suffers an adaption which increases its
reservation to 80% of the CPU. As a result, the first appli-
cation has its CPU consumption decreased to 20%. After
30 seconds, the former application is killed, releasing part of
the machine’s processing capacity. Nevertheless, the second
application does not use the idle resource since it is con-
figured to be non-work-conserving. Finally, after another 30
seconds, we changed this feature and the application started
to consume all the available machine processing.

Tests were also carried out in order to evaluate CPURe-
serve’s scalability and its use in a real distributed shared
computing scenario. The tests have shown that the server
provides significant scalability, but they have also revealed
some limitations of the proposed system, as will be described
in the following sections.

4.1 Scalability Tests

The scalability tests were performed in an Intel Centrino
computer with 1.66 GHZ, 1G memory, running the Linux

Operating System with kernel 2.6.24*. The goal was to es-
timate the amount of resources the server consumes to sup-
port an increasing number of processes. To achieve this, the
CPUReserve server was initialized to manage both proces-
sors in the machine. The processes consisted in busy-waiting
applications. The clients specified that the server should re-
serve them 10ms out of every 1000ms, i.e. 1% of the CPU
for each client process. We opted for a small percentage of
the processing in order to set off many alarms in the small-
est possible time®. This way, the server would work closer
to its maximum capacity, as it would have to generate many
threads for reservation treatment. The experiments have
shown that, on its own — without responding to any client
request —, the server consumes virtually 0% of CPU, 18 MB
of virtual memory, and 732 KB of resident memory. CPU
consumption increase linearly as the number of clients in-
creases. The amount of CPU per process in the tests has
been around just 0.2%.

Although tests with the server have shown that CPURe-
serve consumes few processing capacity, it was not possible
to make experiments with over 50 clients. In such cases, the
Operating System’s response time suffered delays, leading to
errors in the applications that were running on it, including
some client processes which, instead of being executed with
only 1% of CPU, were being executed with 3% or 4%. This
reservation malfunction has two reasons: the large amount
of time spent creating new alarm-treating threads, and the
excessive amount of work the server must carry out at each
10ms interval — when the number of processes reaches 55, the
server is no longer able to manage the priorities and tem-
porizers of all processes whose period or time slice expire
within a 10ms interval, causing some processes to continue
running for longer than they should.

In order to evaluate the impact of reservation’s require-
ments on the server, new tests were carried with different pe-
riods and slices: 20ms out of every 1000ms, 40ms out of ev-
ery 1000ms, and 20ms out of every 2000ms. The results are
depicted in figure 4. Note that CPU consumption decreases

4A Windows version is also available but not evaluated here.
>The execution time of a process in CPUReserve is obtained
by its file /proc/pid/stat. Time is given in jiffies, which, in
the environment used for the tests, corresponds to 10ms.

T
10 ms in 1000 ——
20 ms in 1000 ---*---
40 ms in 1000 -%---
20 msin 2000 -8

% CPU

0 10 20 30 40 50 60 70
Number of processes

Figure 4: CPU usage with a varying number of pro-
cesses and reservation specifications.

with 20-in-1000 time slices because, at this rate, the server
treats each process in periods of around 20ms. When the
number of clients increases, this period gets smaller because
there may be times when a process cannot execute 20ms
within 20ms, making necessary the setting of new timers
and the creation of new threads to treat these timers. The
high number of setting of new timers and of creation of new
threads explain why CPU consumption does not decrease
with 40-in-1000 time slices. With this latter rate reserva-
tion, the server is able to manage until 30 clients, because
a number of clients bigger than 30 saturates the executing
machine.

When the 1% reservation is obtained from executing 20ms
out of every 2000ms, one can notice that a bigger number
of processes, actually 65, can be handled by the server. In
this case the increased time slice allows the server to make
a bigger number of system calls to manipulate processes’
priority and scheduling policies.

Figure 5 depicts the virtual and resident memory usage
for the server when it deals with an increasing number of
processes. As a consequence of increasing memory sharing
as the number of processes increases, one can notice a dis-
crete reduction in the amount of virtual memory allotted for
each process. With 5 processes, this amount was of around
13594 K B per process; with 60 clients, this amount was re-
duced to around 8796 K B.

Note that the amount of resident memory allotted for the
server is reduced as the number of processes increases. With
10 processes, this amount was of around 83K B per pro-
cess; with 60 processes, this amount was reduced to around
21K B. There are three reasons for this reduction: first be-
cause managing new processes through the server implies
creating light processes such as threads, which consume few
system resources; second because the amount of memory re-
quired to load the server has been divided into an increasing
number of processes; and third because the short time in-
terval between each client period caused some monitoring
alarms to expire at the same time, being treated as a single
thread.

Since the server has consumed a small amount of mem-
ory and less than 10% of CPU to manage a maximum of
65 clients, even considering the CPU consumption stan-

1.04858e+06 T T T T
resident memory (KB) - 20 ms in 2000 +——+—
virtual memory (KB) - 20 ms in 2000 s
524288 . « X 4
X x =
262144 « X 4
*
131072 x]
*
65536 x 4
P 32768 X 4
S
£
1]
= 16384 |- 4
8192 - 4
4096 - 4
2048 - 4
+ + + +
) P]
+
512 I I I I I I
0 10 20 30 40 50 60 70

Number of processes

Figure 5: Virtual and resident memory usage for the
server with a varying number of processes.

dard deviation, a maximum value of 0.9 can be assured for
variable RESERVATION_LIMIT. Although, to take into ac-
count bigger deviations, this value is set to 0.8 in CPURe-
serve’s code.

4.2 Limitations

Because CPUReserve was developed at user level, it is
limited by the machine’s Operating System. For instance,
the Operating System has to provide the interfaces for sys-
tem calls responsible for configuring processor binding and
for changing process priorities and current scheduling poli-
cies. Also due to the fact that CPUReserve runs at user
level, it can suffer interference from other priority-changing
processes in the applications being managed (nice-type com-
mands, for example).

Server execution can be unpredictable when a machine
faces high workload. In these cases, an alarm might expire
at a moment when its treating thread cannot be called. To
prevent this, it is important to configure variable RESERVA-
TION_LIMIT so that the Operating System does not suffer
delays in its execution.

5. CPURESERVE AND VIRTUALIZATION

While a virtual machine is being created, it is possible to
specify how much memory and disk the machine will be al-
lotted. Sometimes, it is also possible to specify how much
processing the machine can consume. It is the case of Xen
monitor [4], for example. On the other hand, KVM (Ker-
nel based Virtual Machine) does not provide this functional-
ity [10]. In cases like KVM, one can ensure virtual-machines’
performance isolation using CPUReserve to trigger a new
VM. It is only necessary to have a CPUReserve server run-
ning on the host and to invoke a CPUReserve client request
reservation with the command kvm my_kvm_img
<kvm_optional_args>.

Although performance isolation can be ensured using vir-
tual machines, the cost of managing them is high, and can
deem the practice of isolating application executions by plac-
ing them in different virtual machines unfeasible [5]. More-
over, running more than one application per virtual machine
no longer ensures performance isolation. An alternative is
to envision hybrid isolating environments, where virtual ma-

chines coexist with user-level reservation managers.

Figure 6 presents a hybrid environment with a reservation
hierarchy, where a physical machine is represented by two
virtual machines. In the first one, an instance of CPURe-
serve is in charge of closely managing processing reservation
among the applications of that virtual machine. Several ap-
plications may run at the same time in this machine without
having their performance affected. For instance, the first
machine can be set to be executed with 50% of a CPU and
applicationl with 30% of those 50%, i.e. with around 15%
of a CPU’s processing capacity.

User Software User Software

CPUReserve

"

GuestOS

GuestOS

Xen - Domain 0

!

Hardware

Figure 6: Processing reservation hierarchy in virtual
machines.

To validate the proposal for hybrid environments, two pro-
totypes were built with kernel 2.6.24. The first one was
enabled with KVM module. In this scenario, CPUReserve
were used to ensure each virtual machine performance isola-
tion and to ensure applications’ isolation inside each virtual
machine.

The second prototype was built with Xen 3.2 enabled with
SEDF scheduler. This prototype tried to reproduce the sce-
nario illustrated in figure 6, where a virtual machine with
processing capacity limited by the hypervisor isolates its
applications performance using CPUReserve. The experi-
ments with the prototypes have shown that CPUReserve is
a light, easy-to-use manner to ensure performance isolation
in virtualized environments. CPUReserve can be used with
different virtualization techniques and for different levels of
granularity since it can reserve processing for VMs and for
applications inside VM’s.

6. CONCLUSION

This paper has described the implementation of a user-
level processing reservation system based on ideas proposed
by DSRT [3]. Differently from traditional approaches found
in the literature, the resulting system, called CPUReserve,
does not require recompiling the Operating System’s kernel
and does not overload the server even when many clients are
being monitored. The scalability presented in the tests, as
well as its client-server architecture, are important features
that make CPUReserve fit to be used in distributed shared
computer environments. With this in mind, authors of CS-
Base, a framework for managing application execution in
distributed environments [8], have been studying the use of
CPUReserve to restrict the amount of CPU an application
can use. Also in project CSBase, CPUReserve was used to
measure some benchmarks accuracy.

Besides reserving time slices, CPUReserve also allows re-
serving CPUs in multi-processed machines. This feature was
useful to test different reservation options in the system, as it
was possible to saturate one of the machine’s processors and
see how the server behaved in a situation in which the Oper-
ating System could not function due to excessive workload.
We expect this processor-managing feature to be useful in
further scalability tests.

Finally, CPUReserve’s implementation allows the separa-
tion between reservation policies and the reservation mecha-
nisms, which facilitates the replacement of reservation poli-
cies. Developing new policies, using machine learning tech-
niques to parametrize CPUReserve processes and inserting
new kinds of reservations, like disk and memory, consist in
further studies to be developed.

7. REFERENCES

[1] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management in
server systems. In Proceedings of OSDI ’99, pages
45-58, New Orleans, USA, 1999. USENIX Association.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. In
Proceedings of SOSP 03, pages 164—177, New York,
USA, 2003. ACM.

[3] H.-H. Chu and K. Nahrstedt. A soft real time
scheduling server in unix operating system. In
Proceedings of IDMS 97, pages 153-162, London, UK,
1997. Springer-Verlag.

[4] Citrix. Home of the xen hypervisor, Aug. 2008.

[5] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing performance isolation across virtual
machines in xen. In M. van Steen and M. Henning,
editors, Proceedings of Middleware 06, volume 4290 of
Lecture Notes in Computer Science, pages 342-362.
Springer Berlin / Heidelberg, 2006.

[6] K. Keahey, K. Doering, and I. Foster. From sandbox
to playground: Dynamic virtual environments in the
grid. In Proceedings of GRID ’04, pages 34-42,
Washington, USA, 2004. IEEE Computer Society.

[7] C. Lee, R. Rajkumar, and C. Mercer. Experience with
processor reservation and dynamic QoS in real-time
mach. In Proceedings of Multimedia Japan 96, Japan,
Mar. 1996.

[8] M. J. Lima, C. Ururahy, A. L. de Moura, T. Melcop,
C. Cassino, M. N. dos Santos, B. Silvestre, V. Reis,
and R. Cerqueira. Csbase: A framework for building
customized grid environments. In Proceedings of
WETICE 06, pages 187-194, Washington, USA, 2006.
IEEE Computer Society.

[9] S. Oikawa and R. Rajkumar. Portable RK: A portable
resource kernel for guaranteed and enforced timing
behavior. In Proceedings of RTAS 99, page 111,
Washington, USA, 1999. IEEE Computer Society.

[10] RamiTamir. Kernel based virtual machine, June 2008.
[11] S. Santhanam, P. Elango, A. Arpaci-Dusseau, and
M. Livny. Deploying virtual machines as sandboxes for
the grid. In Proceedings of WORLDS ’05, San
Francisco, USA, Dec. 2005.

