
Ricardo Couto Antunes da Rocha

Context Management for
Distributed and Dynamic

Context-Aware Computing

Ph.D. Thesis

DEPARTMENT OF INFORMATICS

Postgraduate program in Informatics

Rio de Janeiro
February 2009

Ricardo Couto Antunes da Rocha

Context Management for Distributed and
Dynamic Context-Aware Computing

Ph.D. Thesis

Thesis presented to the Postgraduate Program in Informatics of
Department of Informatics, PUC–Rio as partial fulfillment of the
requirements for the Ph.D. Degree in Informatics.

Supervisor: Prof. Markus Endler

Rio de Janeiro
February 2009

Ricardo Couto Antunes da Rocha

Context Management for Distributed and
Dynamic Context-Aware Computing

Thesis presented to the Postgraduate Program in Informatics, of
Departament of Informatics, PUC–Rio, as partial fulfillment of
the requirements for the Ph.D. Degree in Informatics.

Prof. Markus Endler
Supervisor

Departamento de Informática — PUC–Rio

Prof. Noemi de La Rocque Rodriguez
Departamento de Informática — PUC-Rio

Prof. Renato Fontoura de Gusmão Cerqueira
Departamento de Informática — PUC-Rio

Prof. Antonio Alfredo Ferreira Loureiro
Departamento de Ciência da Computação — UFMG

Prof. Artur Ziviani
Laboratório Nacional de Computação Cient́ıfica

Prof. José Eugênio Leal
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro — February 06, 2009

All rights reserved. Copying portions or the entirety of the
work is prohibited, except as otherwise permitted by the
university, the author and the supervisors.

Ricardo Couto Antunes da Rocha

He received the B.S degree in Computing Engineering from
Federal University of Esṕırito Santo (UFES/ES), in 1998,
and M.S. degree in Computer Science form Institute of
Mathematics and Statistics (IME) of University of São Paulo
(USP/SP), in 2001. He worked as a software developer at Xe-
rox do Brasil, from 2001 to 2003, and as a professor of under-
graduate courses at UVV (ES) and graduate courses at PUC-
Rio (RJ), from 2003 to 2008. He is member of the Brazilian
Computer Society (SBC) and the Association for Computing
Machinery (ACM) since 2000.

Bibliographic data

Rocha, Ricardo Couto Antunes da

Context management for distributed and dynamic
context-aware computing / Ricardo Couto Antunes da Ro-
cha; adviser: Markus Endler. — 2009.

v., 100 f: il. ; 30 cm

1. Tese (Doutorado em Informática) - Pontif́ıcia Univer-
sidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia.

1. Informática – Teses. 2. Gerenciamento de contexto. 3.
Contexto. 4. Percepção de contexto. 5. Ambientes dinâmicos
e abertos. 6. Evolução de contexto. I. Endler, Markus. II. Pon-
tif́ıcia Universidade Católica do Rio de Janeiro. Departamento
de Informática. III. Title.

CDD: 004

to my beloved wife, Renata

Acknowledgments

I would like to thank my friends from LAC and PUC-Rio, for the

friendship, the assistances, incentives, trust, constant feedback and patience

with my days of bad humor. In particular, I would like to thank Vagner, Hana,

Fernando Ney, Antonio Theophilo, Gustavo, Marcelo Malcher, Jordan and José

Viterbo. A very special thanks to Juliana and Bruno, for their patience and

availability to help me in the last time arrangements for my thesis defense.

Marcel and István, thanks for your friendship (Danke!).

I wish to give a very special thank to my long-time friends Uirá (my

nearly brother) and Roberta. They received me and my wife with extreme

care and love in our arrival at Rio. Thanks for all!

I wish to deeply thank my advisor Markus Endler, for his unconditional

trust and the freedom he gave me to work in my thesis. For the friendship,

patience, comprehension and dedication: thank you, Markus!

I wish to thank the members of the examination commitee: Antonio

Loureiro, Renato Cerqueira, Noemi and Artur Ziviani. Their comments and

critics help me to improve the quality of this thesis. In particular, I wish to

thank them for the patience.

To my parents, my brother Gustavo and my sister Adriana, that even

without an exact comprehension of the nature and the demands of my Ph.D,

gave support and care. In particular, I would like to thank all the prayers of

my worried mother.

To my wife, friend, partner, psycologist Renata. During the storm of my

Ph.D. you has suffered with me (sometimes, even more) and always, always,

gave me all support, comprehension and patience that I needed to continue

and never give up. You are my motivation for everything. I love you!

Abstract

Rocha, Ricardo Couto Antunes da; Endler, Markus. Context
Management for Distributed and Dynamic Context-Aware
Computing. Rio de Janeiro, 2009. 100p. PhD Thesis — Depart-
ment of Informatics, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

In context-aware computing, applications perform adaptations at the oc-

currence of pre-defined context-based situations. Research in context-aware

computing has produced a number of middleware systems for context man-

agement, i.e. to intermediate the communication between applications and

sensor/agents that generate context information. However, development of

ubiquitous context-aware applications is still a challenge because most cur-

rent middleware systems are still focused on isolated and static context-

aware environments. For example, applications typically require global

knowledge of all underlying context management systems in order to start

context-based interactions. Moreover, context-aware environments are in-

herently dynamic as a result of occasional additions or upgrade of sensors,

applications or context inference mechanisms. The main challenge of this

scenario is to accommodate such changes in the environment without dis-

rupting running context-aware applications. Some middleware approaches

that tackle some of the mentioned problems, do not properly support other

aspects, such as generality and scalability of context management. This

thesis argues that in distributed and dynamic environments, context-aware

applications calls for context interests of variable wideness, i.e. primitives

for describing context-based conditions that involve context types and con-

text management systems that cannot be defined in advance. To achieve this

goal, this thesis proposes a novel architecture for context management based

on the concept of context domains, allowing applications to keep context

interests across distributed context management systems. To demonstrate

the feasibility of the approach, this thesis describes a distributed middle-

ware that implements the aforementioned concepts, without compromising

scalability and efficiency of context access. This middleware allows the de-

velopment of context-aware applications for mobile devices, and runs on two

platforms: Android and Java J2ME CDC 1.1.

Keywords

context management, context, context-awareness, open and dynamic

environments, context evolution

Resumo

Rocha, Ricardo Couto Antunes da; Endler, Markus. Gerencia-
mento de Contexto para Computação Senśıvel ao Contexto
em Ambientes Distribúıdos e Dinâmicos. Rio de Janeiro,
2009. 100p. Tese de Doutorado — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

A pesquisa em computação senśıvel ao contexto gerou vários sistemas de

middleware para gerenciamento de contexto, ou seja, para intermediar a co-

municaçao entre as aplicações e os sensores/agentes que geram a informação

de contexto. Entretanto, o desenvolvimento de aplicações senśıveis ao con-

texto ub́ıquas é ainda um desafio porque a maioria dos sistemas de middle-

ware são focados apenas em ambientes isolados e estáticos. Por exemplo,

aplicações tipicamente precisam de um conhecimento global de todos os sis-

temas de gerenciamento de contexto para poderem registrar as situações

contextuais em que estão interessadas. Além disso, ambientes em que exe-

cutam aplicações senśıveis a contexto são inerentemente dinâmicos, devido

à incorporação dinâmica ou atualização de sensores, aplicações ou mecanis-

mos de inferência de contexto. O principal desafio neste cenário é acomodar

essa dinâmica do ambiente sem interferir na execução ou consistência das

aplicações senśıveis ao contexto. Os atuais sistemas de middleware que ten-

tam lidar com esses desafios, tipicamente não atendem a outros aspectos,

como generalidade e escalabilidade no gerenciamento de contexto. Esta tese

de doutorado defende que em ambientes dinâmicos e distribúıdos, aplicações

senśıveis ao contexto requerem interesses de contexto de amplitude variável,

ou seja, primitivas para descrever condições baseadas em contexto que en-

volva tipos de contexto e sistemas de gerenciamento de contexto que não

podem ser previamente estabelecidos. Para atingir este objetivo, esta tese

propõe uma nova arquitetura para gerenciamento de contexto baseada no

conceito de domı́nios de contexto, que permite às aplicações manter in-

teresses de contexto que permeiem sistemas de gerenciamento de contexto

distribúıdos. Para demonstrar a factibilidade da abordagem proposta, esta

tese descreve o projeto de um middleware distribúıdo que implementa os

conceitos mencionados, sem comprometer a eficiência e escalabilidade no

acesso a informações contextuais.

Palavras–chave

Gerenciamento de contexto. Contexto. Percepção de contexto. Am-

bientes dinâmicos e abertos. Evolução de contexto.

Summary

1 Introduction 13
1.1 Requirements and Challenges 14
1.2 Limitation of Current Approaches 16
1.3 Goals 17
1.4 Summary of Contributions 18
1.5 Organization of this thesis 18

2 Foundations of Context Management in Distributed and Dynamic En-
vironments 19

2.1 General Concepts 20
2.2 Conceptual Layers of Context Interest Management 28
2.3 Context Interest Management in a Dynamic Context-Aware Ecosystem 30
2.4 Summary 36

3 State of the Art 38
3.1 Distributed middleware systems 39
3.2 Peer-to-Peer Approaches for Context Management 42
3.3 Federation-based Approaches 44
3.4 Bridging Approaches 46
3.5 Summary 46

4 Domain-based Context Management 48
4.1 Requirements 48
4.2 Context Domains 49
4.3 Managing Context Interests through Domain-addressable Entities 52
4.4 Summary 54

5 Usage Scenario 55
5.1 Application description 55
5.2 Usage Scenario 56
5.3 Context-aware infrastructure 57
5.4 Implementation of application’s context interests 60
5.5 Analysis of interest dissemination 61
5.6 Summary 63

6 Middleware for Context Management based on Context Domains 64
6.1 Design Rationale 64
6.2 Architecture and Services 65
6.3 Client Node 73
6.4 Modeling and Deployment of Context Types 74
6.5 Programming Model 76

7 Implementation and Evaluation 77
7.1 Implementation 77
7.2 Testing Scenario 80

7.3 Scalability Tests 80
7.4 Limitations 85

8 Conclusions 88
8.1 Summary of Contributions 90
8.2 Future Work 91

References 94

List of Figures

2.1 Example of a Context Instance 22
2.2 Diagram of a CMS structure and its interaction with providers and

consumers 27
2.3 Layers of interest implementation on context-aware ecosystems 28

3.1 Distributed Approaches for Integrating CMSs 39
3.2 Architecture of Peer-to-Peer Approaches for CMS integration 43
3.3 Federation-based Approaches 44
3.4 Architecture of Bridging Approaches 46

4.1 Example of distributed CMSs organized in context domains 50
4.2 Interest selecting a part of the domain tree 53

5.1 Domains adopted on the scenario 58
5.2 Relationship between context domains and the city’s geographic

areas, in the scenario 59
5.3 Context types 59
5.4 Entities used in the scenario 60
5.5 Context domain switches 62

6.1 Context Broker 65
6.2 Component Interaction 66
6.3 Middleware Services 67
6.4 Management Tier Protocol Interaction 68
6.5 Interaction among distributed domains to register and to update a

context interest 71
6.6 Solving the address of the domain br.rj.rio.santateresa 73

7.1 Interaction among consumers, providers and the CMS service in the
Android implementation 78

7.2 CMN implementation 80
7.3 Delay of client proxy creation 82
7.4 Delay for creation of provider and consumer proxies 82
7.5 Example of a Naradabrokering network (extracted from [1]) 83
7.6 Max distance between two Naradabrokering nodes 84
7.7 Delay of accessing context in a CMN 84
7.8 Hand-off processing delay 85

List of Tables

2.1 Main Asynchronous Primitives of Context Management Systems 27
2.2 Example of context location providers (sensors) and the placement

of their CMS 32
2.3 Mapping between requirement for context management middleware

and Kindberg and Fox’s principle for ubiquitous computing 34
2.4 Classification of Context Interest Expressions 37

5.1 User interaction storyline 57
5.2 Context providers 59

6.1 Example of Entity Home entry for an entity e 70

Não faças de ti
Um sonho a realizar.
Vai.

Cećılia Meireles, “Tu tens um Medo” (Antologia Poética).

1
Introduction

The goal of context-aware computing is to allow applications and services

to perform adaptations at the occurrence of pre-defined context-based situa-

tions. Context information is data that describes the state of a certain entity

at a specific moment [2]. For example, an application running on a portable

device may change the rate of sending network messages if the battery level

drops below 50%. In this case, the context information that triggers the adap-

tation is the percentage of remaining energy in the battery, which is the state

of the device’s power resources. This thesis adopts the term context interest

to specify a context-based situation that triggers such an application-specific

adaptation.

Modern operating systems for mobile devices, such as iPhone OS and

Android, provide APIs to access embedded sensors, such as GPS, accelerom-

eters, light sensors and power management system, which may act as context

providers and enable context-aware computing. However, complex context-

aware applications require a more sophisticated mechanism to deal with con-

text interest. For example, to obtain the list of devices currently located in a

room, an application may need to contact location sensors at several devices

in the room (e.g., a presence sensor). In such distributed scenarios, some sen-

sors may be external to the device that maintains the context interest and

may require an external computational infrastructure that stores context. For

example, a location sensor for indoor environments may be provided by an

external service, such as in [3] and [4]. Middleware systems and frameworks

should provide primitives that support transparency of sensor location and

subscription of contextual situations and asynchronous notifications when a

context situation satisfies an interest. The computational element responsible

for binding context providers and applications is called context management

system (CMS). A CMS is responsible for registering context interests and

checking them against previously probed context information.

Research in context-aware computing has produced a number of frame-

works [5, 6, 7], middleware systems [8, 9, 10, 11, 12, 13] and complex mod-

els [14, 15, 16] for describing and processing context. Their adoption, however,

Context Management for Distributed and Dynamic Context-Aware Computing

14

has been limited, in part because most solutions are restricted to specific ap-

plications, centralized architectures, limited physical domains or scopes. For

example, the CoBrA infrastructure [17] provides mechanisms for context infer-

ence and models that are specific for smart meeting-room applications, such

as described in [17].

In particular, most systems must be deployed and used in environments

with predictable [18] behavior and characteristics, i.e. they cannot be deployed

in distributed and dynamic scenarios/environments because they are unable

to deal with the idiosyncrasies of various environments, such as the diversity

of sensors and context models. Middleware systems that address such require-

ments typically do not offer generality, flexibility or reuse.

T-Mobile’s Hotspot@home service [19] is an example of a real-world ser-

vice that performs adaptations according to changes in its context information.

In this service, a mobile phone’s voice communication application is able to

seamlessly switch the communication channel between a cellular network link

and a WiFi connection when the user enters any of T-Mobile hotspot’s coverage

area. However, this solution is limited to an adaptation at the protocol-layer

for voice communication, and only recognizes network domains provided by

T-Mobile. Hence, any additional or similar service would have to be developed

from scratch. Since neither the service is general purpose nor is based on a

framework for context-aware computing, that solution does not easily apply

to another context-based adaptation. In fact, only location-aware applications

have been widely deployed, producing some commercial products. However,

these are still heavily based on applications and specific technologies.

1.1
Requirements and Challenges

In Weiser’s ubiquitous computing vision [20], applications should be

able to seamlessly interact with distributed context management systems,

without compromising the consistency of their interests. However, after the

user move from one environment to another one, or after changes on the

environment, the application’s interests may need to be adapted to the

particularities of the new scenario. Kindberg and Fox [18] call this requirement

of spontaneous interoperation. A middleware for such a scenario must fulfill

five basic requirements: (i) distributed context management, (ii) uniform

representation of context interests, (iii) support for seamless evolution of

context management systems, (iv) dynamic context discovery, and (v) domains

of context perception.

In a macro-scale ubiquitous scenario, a context management system

Context Management for Distributed and Dynamic Context-Aware Computing

15

must be distributed in order to allow efficient and scalable dissemination of

context. However, a distributed architecture may introduce new problems for

context-aware applications, as it requires prior knowledge of the entity of the

distributed middleware infrastructure that is responsible for disseminating a

specific context they are interested in. Thus, distributed context management

must be implemented in conjunction with services for dynamic discovery

of context management systems and for transparent distribution of context

information.

Multiple environments and administrative domains may use different rep-

resentations and specializations for the same type of context information, ac-

cording to the particularities of each environment and their context providers.

For example, location information may have various representations [21] such

as physical (e.g., geographic), symbolic or relative position, and it may be pro-

vided by a different sort of sensors such as GPS, Active Badges [3] or inference

agents (e.g. [4]). Some of these context providers are device-embedded sensors,

while others are provided by services executing in the wired network infrastruc-

ture. An application that tracks the location of some portable devices, whose

position may be provided by various sensors placed in different environments,

needs to describe an interest that comprehends each possible type of location

information (e.g., GPS coordinates, relative location, symbolic location). This

requirement is called uniform description of context interests.

Furthermore, context-aware environments are inherently dynamic as a

result of frequent replacement and addition of new types of sensors, applica-

tions or context inference mechanisms. These changes may require updates of

the context models, of the context databases and of the means that the mid-

dleware processes context interests. The main challenge here is therefore to

accommodate such changes on the environment without compromising active

context interests. If an application or middleware cannot deal with such evo-

lution of the environment, then the application’s interest is likely to become

inconsistent and invalid during its lifespan, causing disruptions in previously

specified interests. In addition, the creation or change of context types must

not compromise the consistency of global context type systems.

A distributed context-aware infrastructure may offer context data of dif-

ferent types and sources that essentially describe the same context informa-

tion that an application is interested in. The selection of which data type is

most appropriate for the application’s purpose may depend on the context

meta-attributes, such as precision and accuracy, and may dynamically change

accordingly to the availability of new context providers. For example, when

a device enters a new physical environment that has its own location mecha-

Context Management for Distributed and Dynamic Context-Aware Computing

16

nism, applications interested in this device’s location should become aware of

the availability of this new type of location information and evaluate if this

new type of location is appropriate for their purposes. Ideally, the middleware,

and not the application, should be responsible for choosing the most adequate

context information among a dynamic set of available ones. This requirement

is called dynamic context discovery.

Finally, the usage of certain context information may be restricted to

some domains, environments or applications. In this case, by restricting the

access and perception of the context, we may increase the scalability of the

middleware. Moreover, it reduces the number of CMSs that may be involved in

the conflict resolution of multiple context interests. This requirement is com-

pliant with the principle of system boundary [18] of ubiquitous applications.

These five requirements call not only for a new middleware architecture,

but also for primitives for describing context interests.

1.2
Limitation of Current Approaches

In classical approaches to context-aware computing, such as Context-

Toolkit [2], CMSs are isolated and independent from each other, and do not

support means of communication amongst each other. These isolated environ-

ments are like context-aware islands, because they hinder the implementation

of applications with global or cross-environment interest in context informa-

tion, i.e., applications whose context interest is a combination of several pieces

of contextual information provided by context providers of different environ-

ments. Such systems are typically conceived to operate independently, based on

their own restricted view of the world [22]. In those systems, the responsibility

to implement contextual interoperability is delegated to applications.

Some middleware systems try to overcome the aforementioned limitations

by offering either distributed platforms for context management [23, 12, 24,

25], federations of context management systems [26, 27, 28], peer-to-peer

interaction approaches [10, 29], or bridges [30] among context management

systems. The first approach concentrates on allowing efficient dissemination of

context information among distributed clients, which is, however, only one of

the requirements in a distributed scenario. The second and the last approaches

support interoperability among different administrative domains. Although

they implement important requirements of this scenario, they do not properly

support other aspects, such as system scalability, generality and environment’s

evolution.

In a truly ubiquitous scenario, where a mobile application must be able to

Context Management for Distributed and Dynamic Context-Aware Computing

17

adapt to diverse CMSs as the user roams through different domains, the adop-

tion of these middleware approaches for context-aware computing has several

drawbacks. Firstly, applications need a global knowledge of each available CMS

in order to identify which one provides the context information they require.

If more than one CMS contains the desired information, applications must

dynamically solve potential type conflicts and inconsistencies among different

context types and providers, and decide which context information is the most

appropriate for their current task. This adaptivity requirement usually causes

a huge increase in application’s complexity, which makes its implementation

almost unfeasible. Finally, in dynamic and evolvable context-aware systems,

updates of context models and providers normally cause disruption of the ap-

plication’s access to context information, if they are bound only statically to

previously known CMS or are able to handle only specific types of context

information.

Hence, the problem of context management in distributed and dynamic

environments has three main aspects to consider: support for heterogeneity [31,

32] specially in terms of sensors, applications and context models that are

provided in an environment; support for the environment’s evolution avoiding

disruptions in application’s behavior; and support for scalability, in terms of

the number of context types and the context-aware applications. Clearly, there

is a trade-off among these three aspects and, in fact, there is no a single solution

that adequately satisfies all of these requirements.

1.3
Goals

This thesis argues that in distributed and dynamic environments,

context-aware applications require context interest of variable wideness, i.e.

interest that involves an undefined set of CMSs or an undefined set of context

types.

The goal of this thesis is to propose a middleware architecture for context

management that enables the combination of dynamic and evolvable context

management systems. As a result, applications may describe and maintain

a context interest that involves context provided by various environments,

independently of the environment where the user is currently located.

To achieve this goal, this thesis proposes a novel organization of dis-

tributed context management systems based on the concept of context do-

mains.

Context Management for Distributed and Dynamic Context-Aware Computing

18

1.4
Summary of Contributions

The main contributions of this thesis are:

– The concept of context domains as an approach to compose distributed

context management systems, so that applications may maintain context

interests across systems.

– Development of a primitive for describing a context interest of variable

wideness in context information distributed through context domains.

This primitive enables applications to describe either a broad or a narrow

interest that addresses simultaneously the application’s purposes, the

environment scope, and the distributed nature of the context providers.

– A distributed middleware that implements the aforementioned concepts,

without compromising scalability and efficiency of context access. This

middleware allows the development of context-aware applications at

mobile devices, and runs on two mobile device platforms: Android and

Java J2ME CDC 1.1.

1.5
Organization of this thesis

This thesis is organized as follows. Chapter 2 describes the problem

of managing context-aware applications in distributed and dynamic environ-

ments, which is the focus of this thesis. Chapter 3 describes the state-of-the-art

middleware systems and infrastructures for context management and discusses

their drawbacks when used on the proposed ubiquitous scenarios. Chapter 4

describes the central idea of the thesis: the definition of hierarchically context

domains to organize distributed CMSs. Chapter 5 presents a full scenario of an

application dynamically interacting with distributed CMSs using the proposed

approach. Chapter 6 presents a middleware architecture that enables the im-

plementation of the context domain concept. Chapter 7 presents the evaluation

of the middleware and the validation of the proposed solution. Finally, Chap-

ter 8 summarizes the contributions of this thesis and presents future research

work.

2
Foundations of Context Management in Distributed and

Dynamic Environments

In context-aware applications, adaptations are triggered by changes of

certain context information. For example, smart applications designed to

support meetings may automatically transfer a presentation to a projector

as soon as the presenter enters the meeting room [17]. In this case, both the

location of the presenter and his/her role in the meeting room are basic pieces of

context information used to trigger the transfer of the presentation. Basically,

the development of a context-aware application, as in this example, involves

the description of the actions to be triggered according to a set of contextual

conditions.

The same context information may be used for different purposes.

The location of the presenter, for example, may also be used by another

application to disseminate his availability status for an instant communicator.

Moreover, this context information may be provided by different sensors,

such as a proximity sensor to identify if the user is inside the classroom

and using a microphone connected to a voice recognition software to identify

specific users in the classroom, as in [33]. This requirement of reuse calls for

middleware systems to enable context-aware computing, instead of requiring

that applications be developed from scratch.

The main goal of middleware in context-aware computing is to enable de-

coupled communication between sensors that provide context data and appli-

cations interested in context information. Most middleware systems have devel-

oped mechanisms that ease incorporation of sensors (e.g., ContextToolkit [2]),

and enable high-level description of context conditions that applications are

interested in, thus avoiding applications having to poll sensors. Typically, these

middleware systems adopt asynchronous communication mechanisms, such as

publish/subscribe [34] or tuple-space systems [35], as the basis of interactions

among sensors and applications. These mechanisms allow applications to regis-

ter interests in context information and to asynchronously receive notifications

of events that match their interests. RCSM [11], Confab [23], PACE [12] and

MoCA [36] are examples of middleware systems that adopt such communica-

Context Management for Distributed and Dynamic Context-Aware Computing

20

tion paradigm. Even higher-level programming abstractions for context-aware

computing, such as profiles [11] and preferences [37], require lower-level mech-

anisms based on asynchronous notifications. In fact, asynchronous communi-

cation is the most elementary mechanism of context-aware middleware sys-

tems, which is in charge of three main tasks: storage of context information,

management of application’s subscriptions, and dissemination of events that

represent a situation of interest. Some systems delegate this management task

to general-purpose asynchronous event systems.

This loosely coupled communication mechanism constitutes the context

management layer of most middleware systems, as proposed by Henricksen

and Indulska [37]. However, general-purpose asynchronous systems do not

satisfy adequately the requirements to enable context-aware computing in a

distributed and dynamic scenario. In general, publish/subscribe systems focus

only on efficient event dissemination and routing in a distributed scenario.

This chapter defines the foundational concepts of context management

(Section 2.1), the conceptual layers of context interest management (Sec-

tion 2.2), and discusses challenges of enabling context management in a dis-

tributed and dynamic environment (Section 2.3). These challenges call for a

new class of context interest called interest of variable wideness, as presented

in Section 2.3.2.

2.1
General Concepts

In order to exemplify the general concepts of context-aware computing,

consider the following hypothetical application:

UMessenger is a location-aware messaging application that en-

ables communication of a user with a group of people (his buddies),

integrating functionalities of a mobile phone and of an instanta-

neous communicator. By knowing the position of his/her buddies

on a map, the user can initiate location-oriented interactions based

on their location. The user can also define location-based notifica-

tion conditions, e.g., ”tell me when buddy x arrives at home”. The

location of the user and his/her buddies are obtained from GPS

sensors on their devices. The map is obtained from a geolocation

map-service, such as Google Maps1 service. UMessenger has also the

ability to adapt the communication mechanism (e.g. voice, video,

async/synchronous messages) to the current device’s network con-

nectivity.

1http://maps.google.com

Context Management for Distributed and Dynamic Context-Aware Computing

21

2.1.1
Context, Entity, Types and Instances

In a context-aware application, any interaction is based on two elemen-

tary concepts: entity and context information, as defined below.

Entity is any object that has a state and that can be represented in a compu-

tational environment, such as a physical object, a user, or computational

resource.

Context Information is an abstract information that describes the state of

an entity.

In the UMessenger application, location and network connectivity are

pieces of context information that characterizes the state of the entity user

device. Hence, the device’s state at a specific instant could be: location = home

and network connectivity = using wired network. For the sake of simplicity,

consider that the user’s device location in fact represents the user’s location.

This definition of context information is consistent to the definition already

proposed by Dey [2]. Context-aware systems implement context information

through context types and instances of these types.

Context type is a computational implementation of a context information

which specifies, at least, its data structure.

For example, to represent the data provided by the GPS sensor, the

UMessenger may implement a GPSLocation type composed of three float

numbers: latitude, longitude and elevation.

A middleware may adopt various types to represent an abstract context

information. For example, location may have various representations [21], such

as symbolic location [4] (e.g., RoomA, BuildingFPLF) and proximity-based

location [38]. As a result, each representation could be modeled in a particular

context type. However, an application may be only prepared to deal with some

of these types. For example, if the UMessenger is prepared only to display

the location on a map based on geo coordinates, then a location sensor that

provides symbolic location will not be useful for this application.

Context instance is a value or an aggregate of values that describes the state

of an entity at a specific instant of time and which conforms to a certain

context type. A context instance i is an object of context type T defined

by the tuple CT
i = (e, t, VT), where

– e: the entity.

Context Management for Distributed and Dynamic Context-Aware Computing

22

Figure 2.1: Example of a Context Instance

– t: a timestamp.

– VT : a set of values for each attribute defined in type T .

A GPSLocation instance could be described by the tuple shown in

Figure 2.1. A context instance is a snapshot of the state of an entity, at

a specific instant of time. The relationship between a context type and an

instance is similar to the relationship between a class and an object in

the object-oriented programming paradigm. Although the concept of context

information is an abstraction of context instance, for an implementation of a

context-aware system, these two terms can be used interchangeably.

2.1.2
Context Model and Modeling Approach

Context Model A context model determines the set of all context types and

entities, and relationships among them.

The definition of a context model is a part of the implementation of

a context-aware system. A context model defines relevant concepts to the

application domain, which the middleware is prepared to deal with. For

example, the CoBrA middleware [17] models entities such as Agent, Person,

Meeting, Event and Schedule, which are the basis of the implementation of

smart meeting applications. In the case of UMessenger, since the application

basically deals with location and resources of a device, the application should

adopt a model that, at least, describes context types to represent location and

resources, as well as an entity type to represent devices.

The expressiveness and complexity of a context model depends on the

modeling approach adopted in the system, which defines how the concepts and

their relationships are described.

Context Modeling Approach is the schema used to describe concepts and

their relationships in a context model.

A context modeling approach also defines the kinds of relationships a

model may support and the meaning of each relationship. An example of a

Context Management for Distributed and Dynamic Context-Aware Computing

23

simple context modeling approach is the pair key-value schema, which uses

tuples of pairs (key, value) to describe context information, as adopted in [39].

Using this modeling approach, an instance of GPSLocation would be described

by the following set of pairs:

((latitude=-22.979997),(longitude=-43.234302),(elevation=17))

Other examples of context modeling approaches [40, 16] are markup

schema, graphical, object-oriented, logic based, ontology based and hybrid

approaches (e.g. [41]).

Some modeling approaches support the formal description of how a con-

text information is inferred from previous existing information. For example,

ontology-based approaches use first-order logic to describe how a concept may

be inferred from another concept.

2.1.3
Context Providers and Consumers

Context provider is a computational element that populates the context-

aware system with context instances of a particular type.

A context provider translates raw data probes obtained from a low-

level sensor (e.g., accelerometer, GPS sensor) into context instances on a

context model. A provider is a proxy of a sensor in the context-aware system,

translating raw data to information that can be used in the system. In the case

of UMessenger, an application module may be responsible for collecting data

from the GPS sensor and for creating an instance of GPSLocation type. The

GPS sensor does not need to know the application’s context model, and thus

another computational element - the provider - generates the useful data for

the application.

Context consumer is a computational element that consumes context in-

stances to achieve some application-specific purpose.

Typically, a context consumer is a context-aware application, such as the

UMessenger, which consumes location information. A computational element

may act both as a context consumer and producer, generating a new context

information from another lower-level context. For example, some location po-

sitioning systems (e.g., [4], [42]) infer a location of a device from triangulation

of radio frequency signal strengths from reference points (e.g., 802.11 access

points). If such positioning systems model both signal strengths and location

Context Management for Distributed and Dynamic Context-Aware Computing

24

as context types, then they infer a context type from another one. This in-

ference is called context reasoning. The external element that produces this

reasoning is an inference agent.

Inference Agent is a computational element that consumes context in-

stances to deduce a new context of a different type. The inference agent

publishes the resulting context in the system, thus also acting as a con-

text provider.

Hence, an inference agent acts both as a context provider and a consumer.

2.1.4
Contextual Event and Context Interest

Contextual Event is a change in the state of one or more entities that is

relevant for some consumer.

For example, the contextual event phone is offline could be triggered

when the connection with a cellular network is no more available. Upon this

event, the UMessenger may disable the sending of SMS messages.

Context Interest is a representation of a class of contextual events that a

consumer is interested in. A context interest n is defined as a tuple

In = (E, T, ε(VT)), where

– E is a set of entities.

– T is the context type

– ε(VT) is a boolean function that contains a logic expression based on

the values of the attributes VT . It defines the constraint on context

instances that satisfies the interest.

The complexity of ε(VT) evaluation depends directly on the context

modeling approach adopted. For example, in a middleware that adopts a pair

key-value modeling approach, a constraint is a composition of logic expressions

based on the values of each attributes (i.e. key).

Context Management for Distributed and Dynamic Context-Aware Computing

25

2.1.5
Context Selection and Matching

Context Matching Function is a boolean function Match(n, i) that de-

termines if an instance i satisfies an interest n.

A context matching function is executed against context instances to

check if an instance change must produce a notification to the consumer.

Every return true results in a notification to a consumer. Basically, a matching

function is a translation of interest’s ε(VT) to the context of the computational

element responsible for an interest matching. The complexity of a matching

depends directly on the modeling approach adopted. For example, for a pair

key-value approach, the matching is a comparison of the values of the keys

that appear in the interest expression. For an ontology-based approach, the

matching is based on the execution of inference on ontology models. In general,

the more flexible the matching is, the more complex the implementation of the

matching function becomes.

The matching function must be executed when there is a change in the

state of an instance, which may correspond to a contextual event.

Context Selection is the task of selecting a subset of context instances to

which an interest applies.

A context selection2 function determines the context instances that

should be applied to an interest match, according to the interest specification.

The complexity of context selection depends on the modeling approach adopted

in the system and, in general, defines the class of context the consumer is

interested in. Context selection typically depends on the implementation of

the underlying asynchronous communication mechanism that a middleware

adopts. For example, in a middleware that adopts context management based

on a topic-based [34] publish/subscribe system, context selection is based on

the topic used in subscriptions. In general, context selection is based on the

entity and additional properties of a context interest. In the aforementioned

example, the additional property is the topic name.

Notification Composition is the task of choosing the more appropriate

notification resulting from an interest match, when more than one

context instance satisfies an interest.

Multiple matches may occur when more than one context provider

produces the same context information. The resulting information may be

2Typically called filtering in theory of event-based systems [43].

Context Management for Distributed and Dynamic Context-Aware Computing

26

complementary or inconsistent, so a consumer must use only one of the

notifications to trigger their adaptation. In general, an application may use

meta-attributes or quality-of-context information, to select the notification

that is more appropriate for an application. For example, an application may

specify that it is only interested in the most trustable notification.

Some middleware systems have developed mechanisms to deal with

these notification conflicts, such as PACE [12] and CARISMA [44]. When

the middleware is responsible for the notification composition, the interest

description must support such meta-attributes. Notification composition may

be implemented as a part of the middleware or as an external element, as

another middleware component or the application.

2.1.6
Context Management System

Context Management System A context management system (CMS) is

an architectural component in context-aware computing responsible for

storing context information, published by context providers, and match-

ing previously registered interest to context instances.

A CMS is an independent computational infrastructure that enables

interactions among context providers and consumers. A CMS must both

store context instances published by providers, as register context interest of

consumers, and check them against context instances, thus executing context

selection and matching.

A CMS is also responsible for managing the context model, validating the

consistency of interest and instances according to the model. As the context

model, the underlying modeling approach plays an important role in defining

the complexity of implementing the CMS. Depending on a context model

approach, management of a model may be resource-intensive. For example,

ontology-based models require constant execution of inference rules, which

usually degrades the performance of the CMS.

Four main elements characterize a CMS, as illustrated in Figure 2.2:

primitives, the context model, context interests, and context instances. Each

CMS has a particular set of context interest and instances, as result of context

providers and consumers interacting with it. The CMS’s primitives correspond

to the interaction paradigm, context modeling approach and the underlying

communication middleware on which the CMS is based. An application that

interacts with a CMS, is capable for interacting with any other CMS that

adopts the same primitives.

Context Management for Distributed and Dynamic Context-Aware Computing

27

Figure 2.2: Diagram of a CMS structure and its interaction with providers and
consumers

Operation Direction Meaning

publish Provider → CMS publishes a context informa-
tion

registerInterest Consumer → CMS registers an interest
notifyMatching CMS → Consumer notifies a consumer that a

previously registered inter-
est has matched to a context
information

unregisterInterest Consumer → CMS unregisters a context inter-
est

Table 2.1: Main Asynchronous Primitives of Context Management Systems

Some middleware systems, such as Nexus [8], support heterogeneity

among CMS’s context models, i.e. each CMS can adopt a particular context

model.

Table 2.1 shows the primitives of interaction with a CMS, considering

only the asynchronous mode of operation, which is the focus of this thesis.

A CMS may be implemented as a set of distributed infrastructural

components, such as proposed in [25]. However, to adhere to the proposed

definition, the CMS distribution must be totally transparent for providers and

consumers, that address the CMS through the same addressing abstraction.

Thus, in the perspective of consumers and providers, there is no difference

between accessing the distributed CMSs and accessing a unique CMS. The

distribution of CMS and the mechanism to confer transparency are totally

separated. Section 2.2 discusses the scenario of distributed CMSs and the role

Context Management for Distributed and Dynamic Context-Aware Computing

28

Figure 2.3: Layers of interest implementation on context-aware ecosystems

of middleware to confer transparency to such distribution.

2.2
Conceptual Layers of Context Interest Management

The support of context interest in distributed environments, i.e. dis-

tributed CMSs, brings up challenges in terms of context management infras-

tructures and programming abstractions, besides the traditional problems of

scalability and distribution3.

The goal of a middleware for open and evolutionary scenarios is to sup-

port context interest without increasing the application’s complexity. Middle-

ware systems should make transparent the diversity and distribution of a CMS.

Figure 2.3 shows distributed context management systems organized

in the conceptual layers. These layers range from the application to CMSs

responsible for managing and storing context information. In the figure, the

different shading of each CMS’s component represents heterogeneity in such

aspect among the CMSs. For example, CMSs A, B and C adopt a particular

context model, whereas A and C adopt a same primitive which is different

from B’s primitives. In addition, the different style of CMS C represents that

the CMS is not included in the processing of the application’s interest.

The interest specification layer comprises applications, frameworks and

middleware systems that specify and register context interests and that re-

ceives notifications when a context data matches an interest. The interest

processing layer comprises CMSs responsible for storing context information

and matching context interests. The interest delivery layer comprises middle-

ware infrastructures that route context interests to the corresponding CMS

and deliver notifications to the corresponding clients. It also may implement

transparent access to distributed CMSs and translate a higher-level interest to

3E.g., event notification routing and mobility management.

Context Management for Distributed and Dynamic Context-Aware Computing

29

lower-level interest. The set of computational elements of all interest layers is

called context-aware ecosystem.

Several context providers may provide the same context type regarding

a specific entity, and those may change dynamically. Thus, an application

may need to register its interest on several CMSs that are responsible for

that interest, or require that the interest delivery layer translate its high-

level interest to the corresponding lower-level interests. The interest translation

needs to conform the context model of each CMS, if they are heterogeneous.

The interest delivery layer may also need to implement a distributed

notification composition if more than one CMS disseminates notifications

for the same interest match. This composition may either be done on the

specification layer (application’s side) or in the delivery layer. The drawback

of the first case is that it increases application complexity.

Consider the case of UMessenger. To obtain the updated location of each

buddy, the application needs to register in any CMS that stores the location

of a buddy. Current peer-to-peer messaging applications such as Windows

Live Messenger4 and Google Talk5 , obtain references to peers to connect and

their current connectivity states from a centralized server. This architecture

could be suitable for UMessenger if location is limited to GPS embedded

sensor. However, a distributed scenario for context management suggests the

implementation of a more flexible implementation, as follows.

UMessenger 2.0 is an extension of UMessenger that can work

with flexible semantics of location information and different loca-

tion providers. In the default mode of operation, UMessenger 2.0

obtains a map from a centralized map provider, as in the previous

application version. In this mode, UMessenger 2.0 describes inter-

ests for geo locations of all user’s buddies, specifying a preference to

obtain location from the most precise provider, which is typically a

GPS provider. If GPSLocation is not available, e.g., the user is not

using a GPS-enabled device or the user is in an indoor environment,

the application shows the location using other alternative providers

(e.g., E911 and Active Bats). If the location provider is based on an

indoor position system, as in Active Bats, the application provides

an option to the user to switch the map view to the view directly

associated to the provider (e.g., a building map for an indoor posi-

tioning system). Then, the application starts showing the buddy’s

location according to this new map view, so a buddy who is not

4http://messenger.live.com
5http://www.google.com/talk

Context Management for Distributed and Dynamic Context-Aware Computing

30

present in the area covered by the map will not be shown. UMessen-

ger 2.0 still enables the corresponding location-based notifications,

using the place semantic of the new map view: instead of geo lo-

cations, semantic locations, such as Room510 and 5thFloor. When

required, the user can switch to the previous or another map view.

UMessenger 2.0 still maintains the ability to adapt the communi-

cation mechanism (e.g., voice, video, async/synchronous messages)

to the current device’s network connectivity.

In this scenario, an application may need to specify broader or narrower

interests, in terms of the CMS involved in the resolution and the context types

that satisfy the interest. The complexity of managing an application depends

on how broad are its context interests. An interest is more abstract if it involves

context managed in more CMSs and if its type is implemented by specific

means in more than one CMS. For example, an interest in the Location of a

Person p is more abstract than an interest in the GPSLocation of a Buddy p

of user u, although both contexts may describe locations of the same person p.

Whenever interests are more abstract, applications may need to specify more

context interests at different CMSs to describe the condition that triggers

the intended adaptation. Such concepts may need to be translated to context

model of each CMS. Consequently, the notification composition involves more

interest matches.

2.3
Context Interest Management in a Dynamic Context-Aware Ecosystem

In a dynamic context-aware ecosystem, the components of each interest

layer may change, as the result of the evolution of the whole ecosystem. Such

changes may compromise the consistency of interests and cause disruptions

in a context-aware interaction. The main issue regarding this scenario is how

to support a context interest that involves more that one CMS. Composing

isolated CMSs do not enable to deal with the challenges of this scenario with

efficiency and achieving scalability. Furthermore, by supporting a dynamic

ecosystem, instead of just isolated CMSs, applications may describe more

complex interests. As the ecosystem grows in size, the complexity of dealing

with context interests increases, since CMSs may be dynamically introduced

or changed.

Five characteristics make the implementation of distributed and dynamic

context-aware ecosystems challenging: (i) dynamic deployment of new context

providers, (ii) dynamic deployment of new context types, (iii) scoping of

Context Management for Distributed and Dynamic Context-Aware Computing

31

context models, (iv) lack of in-advance knowledge of CMS, and (v) dynamic

deployment of new CMSs.

Dynamic Deployment of New Context Providers New sensors may be

constantly introduced in the ecosystem, as a result of the development of

new devices, more precise sensors, new sensing mechanisms or new inference

mechanisms. If a new sensor provides context involved in an interest, then

it must be included in the interest matching. From the point of view of

an application, perceiving a new sensor means to have the provided context

included in the interest selection and matching. On the matching of interests,

running applications with alive interests should be able to recognize the new

provider, without requiring them to be restarted, recompiled or redeveloped.

The need to perceive a sensor may be the result of a client mobility: if

the device enters in an environment where CMS provides the same context

information.

Dynamic Deployment of Context Types As the result of the introduction

of new sensors, the context model may also need to conform to particularities

of the new provided context information. For example, location sensors that

provide geo coordinates and relative location must have different representa-

tions in the context model. Although both describe a location, the structure

of the provided context is completely different. If a consumer can deal with

the information of the new provider/type, then his/her active interests for an

already existing type must include the new type in the interest matching.

Scoping of Context Models Applications should be prepared to describe

context interests based on various context models, and some of them may be

restricted or relevant only within their administrative domains. The hetero-

geneity of CMS’s context models is also desirable, since it promotes efficiency

and security.

Lack of In-Advance Knowledge of CMS For some interests, the CMSs

responsible for managing the context can be statically discovered. For example,

both a GPS sensor and an accelerometer are internal device sensors, so

applications may be statically prepared to collect and deal with context

information they provide. For other providers, however, a consumer does not

know previously the CMSs that contain the desired context and, thus, where

its interests must be registered. For example, there may be many CMSs, as

Table 2.2 exemplifies, each one from a different administrative domain, that

Context Management for Distributed and Dynamic Context-Aware Computing

32

provide a particular location information for some users. If the context-aware

ecosystem requires that all consumers make an explicit addressing of CMSs

where their interest has be registered, then applications should be developed to

have a previous knowledge of existing CMSs. In a highly distributed ecosystem,

dealing with all CMSs may introduce a heavy burden to applications, which

have to deal with an amount of interest registry and the composition of the

resulting notification matches.

Provider CMS Location Applicability

GPS Locally placed Outdoor
E911 Cellular network Indoor/Outdoor

ActiveBadges Building infrastructure Indoor

Table 2.2: Example of context location providers (sensors) and the placement
of their CMS

The interest delivery layer plays an important role to identify the CMSs

where a specific consumer interest must be registered.

Dynamic Deployment of CMSs As a result of the incremental introduction

of context-aware computing, new CMSs may be dynamically deployed and

start participating in the ecosystem. This fact introduces a more challenging

scenario in terms of addressing and delivering interests to CMS, discussed in

the previous characteristic.

These five characteristics produce a dynamic and unpredictable behavior

on the interest processing layer. A middleware for context-aware computing

should deal with such dynamics, keeping it transparent to the upper level

interest description layer. In fact, the challenges for the implementation

of dynamic context-aware ecosystems, relates both in the interest delivery

layer and in the interest description layer. The following sections discuss the

resulting middleware requirements for the layer of interest delivery and interest

description.

2.3.1
Requirements of the Interest Delivery Layer

A middleware that supports dynamic context-aware ecosystems must sat-

isfy five requirements: (i) support for seamless evolution of context manage-

ment systems, (ii) dynamic context discovery, (iii) domains of context per-

ception, (iv) uniform representation of context interests, and (v) distributed

context management.

Context Management for Distributed and Dynamic Context-Aware Computing

33

The interest delivery layer directly handles changes of the elements of the

interest processing layer, as result of the dynamic deployment of CMSs, sensors,

and types (context model). Hence, the interest delivery layer is responsible for

accommodating such changes for the currently active context interests, without

the need to restart or invalidate registered context interests, i.e. supporting

seamlessly the evolution of context management systems.

This dynamics within an ecosystem also required the dynamic discovery

of CMSs. For example, in UMessenger 2.0, to track the location of a specific

buddy, the interest delivery layer must register the application’s interest at

the corresponding CMSs that maintain location information for the selected

buddy. If the buddy moves to another environment and, as a consequence,

sensors connected to other CMSs start publishing the location of the buddy,

then the application’s interest must be registered at those CMSs. The main

goal is to avoid the registration of an interest at all available CMSs, thus

avoiding scalability problems with the number of application’s interests. This

thesis uses the term dynamic context discovery to express this requirement.

A middleware for context management must support domains of context

perception, i.e. must allow each CMS to adopt a particular context model. In

addition, the middleware must be aware of this model heterogeneity among

CMSs, and then register an interest at the CMSs for which it applies. Also in

this case, the middleware would not scale if the whole ecosystem is based on

a single context model.

The dynamics of the ecosystem calls for heterogeneous CMSs, specially in

terms of models and managed sensors. The middleware must adopt a primitive

to describe context interests that can be the interpreted and registered at

any CMS, in spite of their heterogeneity. This requirement is called uniform

representation of context interests.

Finally, since an ecosystem is inherently composed of distributed CMSs,

the middleware also must support distributed context management.

These five requirements are aligned with the following three principles of

Kindberg and Fox [18] for system software for ubiquitous computing:

Volatility the set of participating users, hardware, and software is highly

dynamic and unpredictable.

System boundary an ecosystem is divided into environments with bound-

aries that demarcate their content, creating the notion of environment’s

scope.

Spontaneous interoperation software components may spontaneously en-

ter in the ecosystem and start interactions with each other.

Context Management for Distributed and Dynamic Context-Aware Computing

34

In fact, the goal of proposed approach for context management is to

promote ubiquity in a dynamic context-aware ecosystem. In addition to

Kindberg and Fox’s principle, a context-aware ecosystem also demands for

scalability as an orthogonal principle. Table 2.3 shows the relationship between

each discussed requirement for a context management middleware and the

corresponding principle proposed by Kindberg and Fox.

Requirement Related Principles

Support for seamless evolution of
context-aware management systems

Volatility

Dynamic context discovery Volatility & System boundary
Domains of context perception System Boundary
Uniform Interest Description Spontaneous Interoperation
Distributed Context Management Scalability & System boundary

Table 2.3: Mapping between requirement for context management middleware
and Kindberg and Fox’s principle for ubiquitous computing

2.3.2
Requirements for Interest Description Layer

The characteristics of a distributed and dynamic context-aware ecosys-

tem may impact on the complexity of a context interest. For example, an

application may need to describe a specific CMS to which an interest applies.

In this case, the CMS assumes the meaning of the interest’s scope. In the type

involved in an expression may be range from a specific CMS or set of CMS

to the whole ecosystem. It depends on how heterogeneous the context models

are and the types in the expression. Thus, in terms of types and CMS, an

expression may be more broad or more narrow, generating a context interest

of variable wideness.

Context interest of variable wideness is a context interest in a context-

aware ecosystem that either involves an undefined number of CMSs in

its matching or undefined actual context types.

Table 2.4 classifies context interest expressions according to two orthog-

onal aspects: domains of CMS, i.e. which set of CMS may be involved in a

context interest resolution, and type coverage, i.e. how specific the type of con-

text the application is interested in. Table 2.4 also shows some examples of

these interests, using UMessenger 2.0 as a reference.

The domain of CMS specifies which of the CMSs will participate in

the processing of a context interest. Since more than one CMS may contain

Context Management for Distributed and Dynamic Context-Aware Computing

35

providers for the same type of context information, a context interest may

require the registration of lower-level interests at several CMSs. Then the

interest must be disseminated to each CMS and the corresponding notifications

must be delivered back to the application. If an interest specifies exactly one

CMS responsible for its processing, then we say that it is a closed domain (Dc)

interest.

However, in a distributed and open scenario, where new CMSs and

context providers may be added and removed at anytime, an application

may not be able to identify the set of CMSs that provide a specific context.

In this case, if a change occurs at runtime, it may cause inconsistencies or

disruptions in interest match notifications. When an interest must be applied

to an undefined set of CMSs, we call this expression of an open domain (Do)

interest. A relative domain expression (Dr) is a particular case of interest where

it must be applied only to the closest scope of CMS to which the application

or the contextualized entity is associated.

The other aspect of interest expression is the scope of the context type

requested in an interest expression. In this case, we assume that the system

supports hierarchical context models with the notion of super and subtyping

among context types. An interest expression associated to an abstract type

(Ta) may be refined to interests of any subtype, increasing the number of

notifications and the complexity of result interpretation. An expression for a

specific type (Ts), defines precisely the actual type that must be involved in

an interest match.

Distributed and open CMSs increase the complexity of implementing

abstract type expression, since they allow each domain to have its own context

model.

The goal of a middleware for such an open and evolutionary scenario is

to enable those interest expressions without increasing the application’s com-

plexity. Middleware systems should make transparent the diversity and dis-

tribution of CMS, in terms of context models and available context sources.

Furthermore, the middleware’s programming abstractions should allow appli-

cations to specify in just one context interest expression, Do interests, leaving

for the middleware to solve the inconsistencies among interest match notifica-

tions, according to the application requirements.

Chapter 5 presents a case study of an implementation of the UMessenger

2.0, discussing in more detail the different types of interest expressions that

can be used by the application.

Context Management for Distributed and Dynamic Context-Aware Computing

36

2.4
Summary

This Chapter has shown the fundamental concepts for context-aware

computing and the main components of an architecture for context-aware

computing. Chapter used as a running example a hypothetical application

called UMessenger. In special, two fundamental concepts were used: context

interest and context management system (CMS).

Section 2.2 introduced the term context-aware ecosystem to specify all

elements that interact among each other in an architecture of distributed

context-aware computing. The management of context interest in an ecosystem

is composed of three conceptual layers: interest description, interest delivery,

and interest processing layers.

Section 2.3 discussed how the dynamics of a context-aware ecosystem

challenges the implementation of management layers of context interests. As

a result of this discussion, Section 2.3.1 enumerated five requirements for a

middleware for distributed context management in respect to interest delivery

layer whereas Section 2.3.2 argued that in a context-aware ecosystem, appli-

cations demand for interest description approach that enable the description

of interest with variable domain of CMS and coverage of types. This interest

is called context interest of variable wideness.

Next chapter presents distributed architectures for context management

that integrates and composes distributed CMSs, to build a context-aware

ecosystem. To discuss how the approaches support a dynamic context-aware

ecosystem, Next Chapter also discusses how they support context interests of

variable wideness.

Context Management for Distributed and Dynamic Context-Aware Computing

37

Aspect Type Description

Domain of CMS
Closed domain (Dc) Expression applies to a specific (and

well-known) CMS.
Ex: Application adapts its mode of
communication according to device re-
sources (local domain).

Relative domain (Dr) Expression only applies to the current
CMS to which an application or the
contextualized entity is associated.
Ex: Obtain the map of the current do-
main.

Open domain (Do) Expression must be applied to a
broader domain space of CMS.
Ex: UMessenger 2.0 uses location ob-
tained from any provider to track the
user’s buddy location.

Type Coverage
Specific Type (Ts) Expression applies to a very specific

and previously known context type.
Ex: UMessenger 2.0 uses wireless band-
width to adapt its communication
mechanisms/protocol.

Abstract Type (Ta) Interest expression applies to a general
and abstract context type, which may
be specialized by different and specific
context types, that in turn is provided
by different context sources.
Ex: UMessenger 2.0 requests abstract
location to locate a user in a map,
which may be either a coordinate-based
location or a symbolic location.

Table 2.4: Classification of Context Interest Expressions

3
State of the Art

State-of-the-art middleware systems support distributed context-aware

computing by using one of the following four approaches to compose dis-

tributed CMSs:

– Distributed middleware systems: natively support distributed con-

text management by offering primitives to query distributed CMS.

– Peer-to-Peer context management systems: support distributed

context management through peer-to-peer connections between pairs of

CMSs.

– Federation-based approaches: enable the composition of distributed

CMS in federations that offer a uniform primitive to describe interests

that involve more than one CMS.

– Bridging approaches: enable interoperability by offering bridges be-

tween pairs of CMSs, such that an application may use primitives of a

CMS to describe interests that apply to all further CMSs to which the

original CMS has a bridge.

Each one of these approaches adopts different assumptions in terms of

heterogeneity and integration requirements. Heterogeneity in a context-aware

ecosystem is defined by two aspects: model-oriented heterogeneity, i.e. each

CMS adopts a particular context model; and CMS heterogeneity, i.e. CMSs are

based on different underlying middleware. Usually, CMS heterogeneity implies

also model heterogeneity, as the mapping of concepts between two models may

not be supported.

This chapter will skip discussions on middleware systems that propose

centralized context management (e.g. ContextToolkit [2]) and that do not offer

an approach for handling interests that span distributed CMSs. Some systems,

such as CFN/Solar [25], support composition of distributed sensors, instead of

CMSs. Such systems are out of scope of this thesis because they address lower-

level aspects of context management, and in its approach context consumers

are tight coupled to sensor implementations.

Context Management for Distributed and Dynamic Context-Aware Computing

39

3.1(a): Without Delivery Layer 3.1(b): With Delivery Layer

Figure 3.1: Distributed Approaches for Integrating CMSs

Sections 3.1, 3.2, 3.3, and 3.4 discusses the main representative middle-

ware systems for, respectively, distributed middleware systems, peer-to-peer

context management systems, federation-based approaches, and bridging ap-

proaches. Each of these sections discuss how each of the approaches supports

context interests of variable wideness, according to the classification introduced

in the previous chapter.

3.1
Distributed middleware systems

Several middleware systems (e.g. [7, 45, 13, 46, 12]) have been developed

to enable distributed context-aware systems. The support for delivery of

interest expressions to multiple CMSs differs according to the underlying

assumptions regarding the CMS’s characteristics and the mechanisms for

delivery of interest. In general, they assume both model and CMS homogeneity

in the distributed environment. Figure 3.1 shows two interaction architectures

between applications and CMSs through distributed middleware systems. In an

approach without a delivery layer (Figure 3.1(a)), an application must have a

prior knowledge of which CMS stores the context that it wants to consume, and

then register its interest. In an approach with a delivery layer (Figure 3.1(b)),

an application queries a registry service to obtain a reference to the CMSs

where it must register its interest.

3.1.1
Gaia

Gaia [13] is a component-based middleware centered on the concept of

active spaces. An active space is a physical area where heterogeneous devices,

such as PDAs and printers, may discover, auto-configure and dynamically

Context Management for Distributed and Dynamic Context-Aware Computing

40

establish interactions among themselves. The goal of Gaia is to enable dynamic

environments for smart meeting rooms.

Gaia provides a context service that enables applications to query and

to register context interests, an active space repository, and a contextual file

system, that ensures that applications and users access their files even when

they migrate to another active space. When a consumer migrates to another

smart space, it loses the access to all context information in its previous smart

space, except its files. In fact, Gaia allows applications to move to the domain

of another CMS - an active space in its terminology -, but requires them to

re-apply their context interests to the new domain. Hence, Gaia supports only

Dr interests, where the scope of the interest expression is always the current

active space to which the consumer is connected with.

3.1.2
PACE

PACE [12] is a middleware developed at University of Queensland, that

aims at supporting a highly flexible context model and advanced programming

abstractions for distributed context-aware applications. PACE is organized in

layers [37] that provide, in addition to context management, an interface to

execute distributed context queries, and an adaptation layer, which maintains

a reusable repository of adaptation abstractions.

In PACE, applications may interact with distributed context reposito-

ries using the approach of Figure 3.1(b): they must first access a repository

catalogue using meta-attributes to identify which repository satisfies its re-

quirements. PACE uses a publish/subscribe event service [47] to disseminate

context to applications.

PACE adopts a flexible context model called CML (Context Modelling

Language) that enables the specification of associations, structural restrictions

and dependencies among context, as well as quality-of-context parameters [15].

The middleware provides a tool that processes the context model and generates

SQL scripts to configure the context repository for storing the modeled

context, along with libraries (stubs) to access the modeled context. The access

to context information is, thus, strongly typed. In theory, the tool could

be extended to generate code to access context in different programming

languages, providing architectural independence to the middleware. However,

a developer must re-execute the scripts to update a model. This restriction to

a model update hinders dynamic model evolution.

PACE supports distribution of CMS only by enabling access to a spe-

cific and previously known CMS by the application. By such, they restrict

Context Management for Distributed and Dynamic Context-Aware Computing

41

applications to interests of type Dc.

3.1.3
Confab

Confab [9, 23] (Context Fabric) is a distributed middleware that is fo-

cused at providing context information restricted to user privacy requirements.

Confab maintains context information in distributed tuple-spaces called infos-

paces. Each infospace is a repository responsible for storing one or more context

types. An application interested in a certain context, builds a context query

using the address of the responsible infospace, using a previously known in-

fospace URLs. Infospace servers maintain groups of infospaces, which in turn

may be kept in the device, e.g. if the stored context describes the user’s or the

device’s state.

One or more infospaces correspond to a CMS. However, Confab requires

an explicit and static addressing of infospaces, hindering the implementation

of Do interests.

3.1.4
AURA CIS

AURA CIS [48, 45] is another middleware for managing distributed

CMS - context information providers, according to AURA’s concepts. A

consumer has access to distributed CMS through a unified interest processor

called CIS Query Synthesizer that decomposes an interest (a query, for

AURA) in a set of invocations to distributed CMSs. An interest may contain

the following parameters: selected context attributes, provider names, entity

selection expression, meta-attribute constraints, and maximum response time.

Like Confab, AURA CIS requires a static deployment of CMS and an

explicit addressing of CMS. Since the distributed CMS must be previously

known by applications, AURA supports only Dc interests.

3.1.5
Vade

Vade [46, 49] is a middleware to enable ubiquitous applications to access

location-aware services in heterogeneous administrative domains. An appli-

cation seamlessly interacts with services/context of two domains: its home

environment and its local (current) environment. Vade infrastructure provides

distributed services that enable the implementation of global ubiquitous ap-

plications, in terms of this dual-domain supporting approach. Discovery of

domains is based on physical location of the applications: Vade uses a Vade

Context Management for Distributed and Dynamic Context-Aware Computing

42

directory to map application’s current location to the corresponding Vade en-

vironment. Hence, Vade supports only Dc interests, where c is always the home

environment, and Dr interests.

3.1.6
CMF

CMF [7] (Context Management Framework) enables distributed appli-

cations to interact with a distributed context-aware architecture, and, at the

same time, providing transparent contextual interoperability for applications.

CMF enables applications to seamlessly access distributed context providers1.

Context discovery is implemented as in PACE: through properties and descrip-

tions stored in a registry, applications and components obtain the address of

the context provider that satisfies their requirements. There is no notion of

an environment or how it could be translated to registry properties. More-

over, like PACE, CMF does not solve the problem of managing distributed

registries. The middleware puts emphasis on enabling efficient reasoning in a

distributed environment, through enabling distributed reasoners to access dis-

tributed context providers. Context reasoning in CMF is based on ontology

reasoning.

3.2
Peer-to-Peer Approaches for Context Management

Peer-to-peer approaches to context management require applications

(frameworks) or CMSs to establish a direct connection to each CMS that

contains context information to be involved in interest matching, as shown in

Figure 3.2. Distribution is generally transparent to applications and, typically,

the peer-to-peer connection between two CMS must be constructed before any

interest is registered. Hence, peer-to-peer approaches do not support any other

interest different of Dc. Contory and the work of Springer et al are example of

such approaches for context management.

3.2.1
Contory

Contory [10] is a middleware for context provision in mobile devices,

such as smartphones. Contory’s goal is to enable ad hoc collaboration among

devices, through the sharing of context information base they contain. Con-

tory allows the integration of multiple strategies for context provisioning in a

framework that keeps transparent the context provider’s location (i.e. CMS)

1CMF uses the term context sources for providers and context provider for CMS

Context Management for Distributed and Dynamic Context-Aware Computing

43

Figure 3.2: Architecture of Peer-to-Peer Approaches for CMS integration

to applications (consumers). The CMS integration mechanism is totally trans-

parent to applications, which use a unified query language to describe their

context interests.

In Contory, context information is an elementary data associated to

a name and which does not entail any typing information. For example, a

consumer indicates the name of the context in a query and receives as result

the context data. To enable applications to describe interests, the user must

previously indicate to Contory which context providers (i.e. CMS for Contory)

shall be included in the context information base. Hence, the providers must

be statically defined at development time, which thus restricts the interest

expressions to class Dc.

3.2.2
Springer et al’s work

In a more recent work, Springer et al [29] explored a distributed con-

text management to integrate highly heterogeneous environments based on

4G communication technologies. In the proposed approach, a ContextManager

manages context information in a specific domain, i.e. a scope of application us-

age. Multiple domains are integrated through peer-to-peer connections among

their ContextManagers, which may implement domain-specific2 APIs.

In a set of domains integrated through peer-to-peer connections, the mid-

dleware enables the transparent access to context information and description

of interests across various distributed domains. However, the approach does

not address issues such as evolution, Dr and Do interests. Moreover, contex-

tual interoperability is based on the adoption of a same top level ontology at

each domain.

2i.e. application-specific

Context Management for Distributed and Dynamic Context-Aware Computing

44

Figure 3.3: Federation-based Approaches

3.3
Federation-based Approaches

In federation-based approaches, adopted by middleware systems such

as Nexus and CAMUS, there is a mechanism that allows aggregation of

independent CMSs by sharing their context models with other CMS and by

providing a common interface for applications to interact.

3.3.1
CAMUS

In CAMUS [50], a CMS federation is a set of environments based on

CAMUS services, which disseminate context information as tuples. Each

tuple is mapped to concepts (i.e. types) through a repository of ontologies,

which also enable the inclusion of context reasoners. CAMUS eases the

interconnection among inference engines through an architecture of pluggable

reasoning engines. Each service of an environment is a CMS, that must be

registered at a Jini [51] discovery service. A CAMUS context domain is an

environment that supports a minimal set of CAMUS services. The set of all

Jini services responsible for each CAMUS domain composes a federation. In

order to access context information or to use a service of a specific domain, a

client must query the Jini federation, using parameters such as the name and

localization of the domain.

CAMUS uses the term context domain to define an environment that

offers context services for a specific domain of usage. To access context from

different domains, an application performs Jini lookups to domain services,

passing attributes of the required service, such as domain name and physical

Context Management for Distributed and Dynamic Context-Aware Computing

45

location. These lookups are processed by a federation of lookup services for

each domain, enabling distributed queries for context information.

3.3.2
Nexus

In Nexus [8], a federation may contain heterogeneous CMS. In order

to allow interoperability among CMSs, each one must implement an abstract

interface and register itself at an Area Service Register. A client may access

context information provided by the federation, by using a query language.

There is no concept such as domain or environment: each CMS is a repository

of a specific context type. Thus Nexus’s CMS heterogeneity is de facto type

heterogeneity. Consequently, CMS discovery is just a type discovery and

neither Dr nor Dc interests are allowed. However, in Nexus, a new CMS may

be dynamically added to a federation, which may allow applications to execute

Do expressions.

3.3.3
GLOSS

GLOSS [26] implements an approach similar to Nexus: it composes het-

erogeneous CMS through hierarchical or peer-to-peer interconnection methods.

This flexibility enables efficient maintenance and dissemination of context in-

formation, but GLOSS has been designed to manage location context only. To

describe interests, consumers use adapters for each location type provided by

a CMS. GLOSS uses the idea of HOME node.

3.3.4
Interoperability-centered Work

CoCo [28] and Strang et al [39] have proposed a different approach for

interoperability among distributed CMS. They propose an abstract language

and ontology that a CMS must use to publish context information in a common

infrastructure. In this case, clients are not aware of CMS distribution, but

access context from a centralized repository, i.e. a single CMS. The drawbacks

of a unique access point to context are well-known: central point of failure

and inefficient in distributed environments. Moreover, the maintenance of a

central and general-purpose context model is unfeasible and the authors agree

that describing a general purpose language for context interoperability is very

challenging [52].

Context Management for Distributed and Dynamic Context-Aware Computing

46

Figure 3.4: Architecture of Bridging Approaches

3.4
Bridging Approaches

Hesselman et al [30, 53] have proposed a bridging mechanism among

heterogeneous CMSs, enabling the creation of mappings between concepts of

two different CMSs (Figure 3.4), such as identity, query translation, context

adaptation, and context reasoning. Using this approach to integrate CMSs,

a context interest described according to one CMS’s interface may include

context information provided by any CMS that maintains a bridge with the

aforementioned CMS. Although this approach enables interoperability among

CMSs, it suffers from performance and scalability limitations, since each CMS

represents a central point of access.

This approach presents other drawbacks:

– It inserts delays of context dissemination at each bridge;

– CMS still need to be properly distributed; and

– Bridges must be described for each space/pair of the required ubiquitous

environment.

3.5
Summary

This chapter has discussed four middleware architectures for implement-

ing distributed context management. To analyse how middleware systems sup-

port dynamic context-aware ecosystem, the chapter presented an analysis of

how they support context interest of variable wideness. As a conclusion of

the chapter, there is no middleware system that support interest expression of

types Do, Dr, and Dc. In respect to the aspect of type coverage, some middle-

ware systems support expressions Ta and Ts, since it depends on the context

model adopted by the middleware. However, they do not support relation-

ships among type defined in different CMSs. Hence, they hardly support an

uniform description of context interests that could be applied and interpreted

Context Management for Distributed and Dynamic Context-Aware Computing

47

in the whole ecosystem. Next Chapter presents an architecture and modeling

approach that support the aforementioned context interests.

4
Domain-based Context Management

The support for context interests of variable wideness introduces several

challenges for context management. First of all, consumers demand contextual

interoperability, in order to enable the interpretation of a context interest

across various CMS. In order to support expressions of closed and open domain

(Dc and Do), a middleware must support address resolution of CMSs and

enable the definition of context scope boundaries and their management.

This chapter presents the concept of context domains as an approach for

enabling distributed context management and interests of variable wideness.

This chapter is organized as follows. Section 4.1 discusses requirements

for enabling context interests of variable wideness. Section 4.2 presents the

concept of context domains, and a primitive for describing context interests

(Section 4.2.1). Finally, Section 4.3 presents a mechanism to deal with the

complexity of managing context interest in a distributed architecture.

4.1
Requirements

In order to support context interests of variable wideness, a context man-

agement approach must deal with expressions that may cover an unanticipated

number of types and CMSs. On one hand, interests of abstract (Ta) and spe-

cific (Ts) type demand for contextual interoperability. On the other hand, the

number of CMSs involved in open (Do), relative (Dr), and closed (Dc) domain

interests demands for the specification of boundaries of context scope.

To address these challenges and also scale with the number of consumers

and providers, a context management approach must satisfy three main

requirements: provision of suitable primitives for describing context interests,

implementation of an efficient mechanism for the interest delivery layer, and

support an adequate context modeling approach.

Primitives for Describing Context Interests Middleware for context-aware

computing usually uses and adapts the primitives for context interests from

publish/subscribe systems. Although these primitives are suitable for central-

Context Management for Distributed and Dynamic Context-Aware Computing

49

ized approaches, they do not allow consumers to determine which CMSs should

process their interests, as required in distributed and dynamic environments.

In particular, context interest for variable wideness demands for primitives to

describe how broad or narrow an interest should be, in terms of CMS involved,

as in expressions Do, Dr and Dc.

Efficient Mechanisms for Interest Delivery Layer Middleware for context

management must implement an interest delivery layer that includes means of

dynamically discovering: (i) the CMS that applies to a Dr expression, and (ii)

the set of CMSs where a Do expression has to be registered.

For example, the interest delivery layer should avoid broadcasting interest

to all CMSs, because this would clearly hinder efficiency and scalability of the

context management approach.

Adequate Context Modeling Approach Context interests of variable wide-

ness call for a context modeling approach that supports relationships among

context types in different CMSs, as a means to support contextual interoper-

ability. However, since the context models must be managed in a distributed

environment, the modeling approach must be chosen properly so as to avoid

management of huge context models (e.g. a single unified model for all CMSs)

and to enable efficient context matching and dissemination.

In the proposed approach, contextual interoperability is based on super/-

subtyping relationships among context models of different CMSs. Moreover,

the proposed approach enforces a strict overall decoupling of context man-

agement and context inference. In particular, the context modeling approach

is data-oriented, i.e. it does not support model verification or reasoning, like

in ontology-based approaches. Hence, context inference must be implemented

externally to the CMS by an inference agent, instead of being described in

a context model and controlled by CMS’s model management. Instead, the

proposed middleware adopts an object-oriented-based modeling approach, i.e.

the CMS represents context instances as objects which have a type, a set of

properties and corresponding values. Chapter 6 details the implementation of

the modeling approach.

4.2
Context Domains

This thesis proposes context management based on the concept of context

domains, as a means to organize the context-aware ecosystem hierarchically.

A context domain establishes (i) the scope of a context model; (ii) the place

Context Management for Distributed and Dynamic Context-Aware Computing

50

4.1(a): Domain organization 4.1(b): Corresponding hierarchy of context domains

Figure 4.1: Example of distributed CMSs organized in context domains

and responsibility of the storage of context instances; (iii) the responsibility

for managing context providers and consumers inside the domain; (iv) the

management of remote and local context interests that involves locally stored

context instances; and (v) a set of sub-domains. A context domain is an

abstraction built on top of the traditional notion of network domain, and a

context domain, essentially, establishes a context management scope.

Figure 4.1(a) shows an example of organization of context domains. The

root domain (/) is the base domain on which all other domains are based. E

and F are sub-domains of C, whereas C and D are sub-domains of B and /.

Each domain is responsible for managing the corresponding context

model depicted in Figure 4.1(b). Context models distributed across domains

establish a hierarchical relationship among their context types. The super- and

sub-domains establish a relationship of containment, whereas context models of

super/subdomains establish a relationship of super/subtyping. Context types

of a domain may be modeled as subtypes of context types of any super-domain:

a context type defined in a model MN may inherit from any type T from MJ ,

if N is a sub-domain of J . For example, consider that M/, MB, MC , ME and

MF are context models of the domains root (/), B, C, E and F , respectively,

as depicted in Figure 4.1(b). Then, a context type described in ME or MF may

be modeled as a subtype of a type modeled either in MC , MB or M/. Hence,

context domains also establish a domain-distributed hierarchy of types.

To represent a context domain, this thesis adopts the following syntactic

structure: a concatenation of names separated by “.”, from the more, to the

less specific domain and use of lowercase characters, as with Internet domain

names. For example, the domain G of the Figure 4.1(a) is represented by the

string g.d.b.

Context Management for Distributed and Dynamic Context-Aware Computing

51

4.2.1
Description of Context Interests

In a domain-based context-aware ecosystem, each context instance is

stored in a specific domain and is associated to a certain context type in the

distributed type tree. An instance belongs to the domain where its provider

has published it. A context instance it
′

d′ , where d′ is a domain and t′ is a type,

satisfies an interest I ti
dj

where dj is a domain and ti is a context type, iff t′ is

a sub-type of ti and d′ is a sub-domain of dj. While the type is a mandatory

parameter of an interest, a domain parameter may be used or not according

to consumer’s needs.

The description of a context interest adopts the following structure:

<type>(<entity-id>)[@<instance-domain-constraint>]

[where <attribute-constraints>]

where

<type> is the context type.

<entity-id> is a domain-based identifier of the entity

<instance-domain-constraint> is a domain name, which constrains

the domains where the context instances for this interest will be searched.

<attribute-constraints> is a set of constraints that specify the con-

dition, in terms of attribute values of a type <type>, that satisfies the

interest.

For example, the interest Device(device01)@c.b where

(BatteryLevel < 60), where Device is a context type modeled on the

root domain and the interest is applied in the same domain tree of Figure 4.1.

A context instance satisfies this interest if all the following conditions are true:

– the type of the instance is Device or any of its sub-types.

– the instance is describing the entity device01.

– the context instance is published at the domain c.b or any of its sub-

domains e.c.b or f.c.b.

– the instance’s attribute BatteryLevel has a value that is less than 60.

BatteryLevel is an attribute of type Device.

Since in this example, Device is modeled at the root domain, the global

contextual interoperability is guaranteed, meaning that this type is already

recognized in any existing domain.

Context Management for Distributed and Dynamic Context-Aware Computing

52

In a context interest, the predefined domain @current may be used for

<instance-domain-constraint> to specify the domain where the interested

consumer is currently active. An expression with @current(Location(i))

represents the current domain of entity i. In both cases, the concrete domain

associated to @current may change dynamically.

The proposed primitive enables the specification of all types

of context interest discussed in Chapter 2. Depending on the

<instance-domain-constraint>, an application may define an expression

with a different coverage of domains, i.e. an expression uses a more narrow

domain, when the domain described in <instance-domain-constraint>

is more specific. If there is no <instance-domain-constraint>, then the

expression is for an entirely open domain, i.e., any domain may potentially

contain context instances that satisfy the interest. If an expression contains

@current, then it describes an interest of relative domain (Dr).

The type coverage of an expression depends on the <type> parameter:

e.g. a more specific type represents a Ts expression, whereas a more general

type represents a Ta expression, which could be a root level type in the more

abstract case.

4.3
Managing Context Interests through Domain-addressable Entities

The complexity of managing a context interest depends on the number

of domains w involved in its resolution, i.e. the domains that must execute the

context matching function against the interest. An interest must be registered

in each of these domains. This thesis will use the term wideness of an interest

for the number w.

The value of w may range from 1 to the total number of domains of an

ecosystem. As shown in Figure 4.2, an interest selects a part of a domain tree,

and w represents its complexity.

Let I ti
dj

be an interest for the context type i, and restricted to the domain

j. The wideness w of the interest depends on ti and dj. dj restricts the interest

for the domain j and their subdomains. The wideness may depend on ti if i is

defined in a subdomain of j. If i is defined in j or one of its super-domains,

then it does not interfere in the wideness of the interest. In the example shown

in Figure 4.1, an interest I tB
dC

restricts the interest processing to the domain C

and their subdomains (E and F), because C is a more restricted domain of B.

However, for an interest I tG
d/

, the type will be determinant in the restriction of

domains that will process the interest, since G is a more specific domain than

/.

Context Management for Distributed and Dynamic Context-Aware Computing

53

Figure 4.2: Interest selecting a part of the domain tree

The implementation of a context selection (see Section 2.1.5) through

distributed domains is more challenging, because the context resolution may

not be localized in a single and statically known domain. In the worst case,

if an interest uses a root level type and does not have a further restriction to

a more specific domain, any node may contain context instances that satisfy

the interest. In general, the number of nodes grows exponentially with the

wideness of a context interest.

In order to minimize the overhead of the distributed context selection

function, an entity will be localized in a domain specified by its <entity-id>.

For example, a student of the Department of Informatics of PUC-Rio called Al-

ice, might be identified by the id alice@inf.puc-rio.br. As a result, domain

inf.puc-rio.br is also responsible for maintaining the user alice, which is

Alice’s home domain. A home domain maintains references to all domains

that contain instances that describe their entities. For example, if a provider

at gcontext.google.com starts publishing context instances of Location

type for the entity alice@inf.puc-rio.br, then the domain responsible for

inf.puc-rio.br will have registered that gcontext.google.com is maintain-

ing the aforementioned context instance. However, it is clear that there must

be an inter-domain protocol to maintain consistently such references. For ex-

ample, these references must be always updated whenever another domain

starts maintaining instances of a domain’s entity. Section 6.2.3 discusses the

implementation of this inter-domain protocol.

When a consumer registers an interest, the home domain of the corre-

sponding entity is queried about the domains that contain the instances that

satisfy the context interest. Then, the interest is registered at each of these do-

mains. As the domains that keep entity’s context may change dynamically, the

home domain must be kept updated of the domains that contain registries for

each consumer’s interests. As a result, each domain can implement the context

selection function for interests that involve its home entities, returning only

domain names that satisfy an interest. This approach avoids registering an in-

terest in all the set of domains defined by the interest’s wideness w. Chapter 6

discusses in more details how a home domain works.

Context Management for Distributed and Dynamic Context-Aware Computing

54

4.4
Summary

This Chapter has presented a middleware approach for supporting dis-

tributed context management and distributed context modeling, in order to

support context interests of variable wideness. In addition, the proposed ap-

proach is complemented with a primitive for describing context interests that

eases that management of interests in distributed CMSs and, at the same time,

avoids the development of complex interest expressions to describe an applica-

tion adaptation. Next Chapter shows a example scenario of using the proposed

primitive to describe a context-aware application, whose interests depend on

the application’s current domain and may change at runtime. The scenario

demonstrates the utility of the proposed primitive.

5
Usage Scenario

This chapter describes a context-aware messaging application and a usage

scenario that make use of the interest expressions proposed in Chapter 2. In

this scenario, a tourist uses a location-aware application to plan an itinerary in

a city, which involves roaming through different context domains. Section 5.1

presents the application adopted in the scenario, which is based on the

UMessenger 2.0 example, described in Chapter 2. Section 5.2 presents a scenario

of the application usage by a tourist in the city of Rio de Janeiro. The scenario

considers the context-aware infrastructure (i.e. context domains, providers and

models) described in Section 5.3. Section 5.4 presents the context interests

required for the application. Finally, Section 5.5 discusses the benefits of using

context interests in the proposed scenario, based on the concept of domains, in

terms of an optimized number of overall notifications sent to the application.

5.1
Application description

Consider an application based on UMessenger 2.0, as described in Chap-

ter 2, developed for a context-aware infrastructure based on the concept of

context domains. The application would be able to:

1. Retrieve a global map that describes physical areas and place objects

in the map through its geographic coordinates (i.e. latitude, longitude,

altitude). This map corresponds to a broader map, i.e. any other map can

be described as a part of this map and, thus, any object can be placed on

it. The application assumes that there is a static and well-known provider

of this map.

2. Retrieve a specific map for a physical area, e.g. a building or a public

park. For a certain place, there may exist more than one service that

provides such a specific map, but the application will only retrieve the

map provided on the more specific domain.

3. Display the current location of a user, on either the global or a specific

map.

Context Management for Distributed and Dynamic Context-Aware Computing

56

4. Display the location of user’s buddies, also either on a global or a map

specific to buddy’s current locations.

5. Display nearest reference objects in a map. These objects can have

particular semantics: e.g. a printer in an office or a tourist attraction in a

tourist map. However, the application does not interpret such semantics

and only shows them in the map with the corresponding descriptive

information.

Each of these application’s features represents a context information

of which the application wants to be notified and, thus, translates into

application’s context interest. The idea of map’s scope is clearly implemented

through context domains.

5.2
Usage Scenario

In the usage scenario, over the course of a day, a tourist wants to explore

his own route in the city of Rio de Janeiro. He wants to leave his tourist group

at the hotel, and to use the application to:

– obtain location information of tourist places and points of interest.

– synchronize his route with the activities (or schedule) of the group.

– obtain more detailed information about the places he visits.

He plans to leave the hotel to visit the Museu Nacional de Belas Artes

(Museum of Fine Arts - MNBA), and then visit Santa Teresa district, through

a tourist tram (called “bondinho”), to attend the artistic event “Santa Teresa

de Portas Abertas”. He plans to rejoin his group at the end of the program,

or when the group decides to attend an interesting event.

For this scenario, consider that the city is fully covered by a context-aware

infrastructure based on the concept of domains, and that satisfies following

requirements:

– There is network connectivity in all places that are part of the scenario,

through either WiFi-based networks or a cellular network.

– Hotel, MNBA, the tram and Santa Teresa provide specific maps that

describe them. The tram’s map describes its route. Moreover, MNBA

and the hotel have their own location mechanisms to locate users on

their maps.

Context Management for Distributed and Dynamic Context-Aware Computing

57

– MNBA, hotel and Santa Teresa provide, on the map, points of interest

such as, respectively, art objects (e.g. sculptures, paintings), facilities and

artist’s studios. Each point has descriptive information, e.g. paintings

provide additional information such as related media, history of the

painting and comments by experts.

Consider as an example of the user’s actions and interaction the storyline

described in Table 5.1.

Place Actions

Hotel • user wants to go to another tourist place
• checks if his friends are on-line
• leaves a message to some group members (and the
guide of the group)
• check directions to the Museum of Fine Arts and then
to the Santa Teresa district
• takes a taxi

Street • checks directions to the next destination and compare
to taxi route
• arrives at the museum

Museum • checks maps of the Museum
• chooses a direction to start the visit
• checks: current location, suggestions and descriptions
• checks directions to Santa Teresa (user explicitly
switches to global map)
• starts walking to the tram station.

Santa Teresa • checks the schedule of the tram.
• queries buddies’ activity
• searches for map directions to specific artist studios.
• switches to the geomap and searches for restaurants
• searches the current location of the group
• tries to talk with guide (unavailable for voice, text
messages)
• initiates a conversation with a friend
• checks directions to Copacabana district

Copacabana • rejoins his buddies.

Table 5.1: User interaction storyline

5.3
Context-aware infrastructure

This section describes the context-aware infrastructure - domains, models

and providers - that is the framework upon which application’s context

interests are formulated.

Context Management for Distributed and Dynamic Context-Aware Computing

58

br rj

bondinho

m n b ario

copacabana

d o w n t o w n

santa te resa

copacabanapalace

lagoa

com claro rj r io

Figure 5.1: Domains adopted on the scenario

5.3.1
Context domains

Figure 5.1 depicts the relevant context domains adopted for the scenario.

The branch claro.com.br corresponds to the domain related to the cellular

network infrastructure of a mobile network operator (Claro), where all of

its subdomains are also managed by this operator. The branch rio.rj.br

contains domains that correspond to a physical scope of the city of Rio de

Janeiro. This branch includes subdomains that represent the city’s districts

(e.g. Downtown, Santa Teresa).

Figure 5.2 shows the association of these domains with specific geographic

areas in the city.

5.3.2
Context models and providers

The modeling of the scenario uses context types that enable the descrip-

tion of location and maps. Figure 5.3 shows a simple context model adopted for

the scenario. The modeling considers that a geosymbolic location contains both

a symbolic location and its respective geographic coordinates. For example, if

MNBABuilding is a geosymbolic location, than this type also encapsulates the

corresponding geographic coordinates of the building. This mapping from sym-

bolic location to geographic location is important to enable a visualization of

symbolic locations in a geographic map. In the scenario, interests for location

must be based on the abstract GeoLocation, instead of Location, because the

application needs to place any object in a geographic map. A similar rationale

applies to the hierarchy of types that inherits from Map.

Figure 5.4 shows a simplified diagram of entities adopted in the scenario.

Table 5.2 shows the context providers of the scenario and the correspond-

ing context types that they publish.

Context Management for Distributed and Dynamic Context-Aware Computing

59

Figure 5.2: Relationship between context domains and the city’s geographic
areas, in the scenario

Figure 5.3: Context types

Abstract
Type

Provider Type Domain

Map

Google Maps GeoMap root
MNBA Maps SymbMap mnba

Hotel’s maps SymbMap copacabanapalace

Bondinho’s route map SymbMap bondinho

Santa Teresa’s event map SymbMap santateresa

Location

Embedded GPS sensor GeoLocation root
MNBA Location System SymbLocation mnba

Hotel’s Location System SymbLocation copacabanapalace

Table 5.2: Context providers

Context Management for Distributed and Dynamic Context-Aware Computing

60

Person

Ent i ty

User

ObjectPlace

DeviceGeoLocatedPlace

Building

Paint ing

Figure 5.4: Entities used in the scenario

5.4
Implementation of application’s context interests

Application’s context interests must describe the consumption of the

context described in Section 5.1. There are two main context types the

application is interested in: Location and Map. For the following examples,

consider that the identifier of user’s device is alice-device, which has

inf.puc-rio.br as a home domain. Then, the application registers the

following interests:

GeoLocation(alice-device@inf.puc-rio.br) describes an interest for re-

ceiving the location of the device, which may be provided by any context

provider.

GeoLocation(alice-device@inf.puc-rio.br)@current describes an inter-

est for receiving the location of the device according to a GeoLocation’s

context provider in the current domain of the device.

GeoMap(myCurrentLoc)@gcontext.google.com where (zoomFactor = 8)

describes an interest to receive a GeoMap, provided by the do-

main gcontext.google.com and that must satisfy the constraint

(zoomFactor < 8). In this example, zoomFactor is an attribute that

allows to restrict the coverage of the map a consumer receives.

Context Management for Distributed and Dynamic Context-Aware Computing

61

GeoMap@current describes an interest to receive the map provided by the

current user’s domain, which is the most specific map for the user’s

location.

Object@current where (distance(mylocation) < 50m) describes an in-

terest to receive any object, provided by the current domain, whose dis-

tance to the location of user’s device is less than 50 m. This example]

considers that distance is a constraint operator of context type Object.

5.5
Analysis of interest dissemination

Figure 5.5 shows a diagram of domain switches of the application,

according to the storyline previously presented in Table 5.1. For the sake of

simplicity, consider SMap, GMap, GLoc, and SLoc the context types SymbGeoMap,

GeoMap, GeoLocation , and SymbGeoLocation, respectively.

When the user wants to check directions to Downtown and

Santa Teresa, he configures the application to switch from domain

rio.copacabana.copacabanapalace to rio, because he needs to use a

map that describes the city, instead of the hotel. At each switch, a former

interest may be unregistered, which depends on application policy: e.g. the

application could adopt as policy to unregister an interest if the user does

not switch back to the current domain within a given interval. When the user

roams through domains 2 to 4, the application receives notifications of map

and location from the provider at the root domain, because there is no more

specific provider for either of the context types. When the domain switches to

rio.downtown.mnba at 5, the application starts receiving notification about

maps and device’s location according to providers at the MNBA. When the

user exits the museum (at 6), a new domain change occurs for the broader

domain rio.downtown. The application continues in this domain until the

user gets close to the tram station (at 7), where the application switches again

to the domain rio.downtown.bondinho, and starts receiving notification

about maps provided in rio.downtown.bondinho, i.e. SymGeoMap of do-

main bondinho, although it continues to receive notifications of GeoLocation.

When the user arrives at Santa Teresa (at 9), the application’s context domain

changes again for rio.downtown.santateresa. As a result, the application

starts receiving notification for maps provided in rio.downtown.santateresa,

which describes artist’s studios and event locations. Then, the user checks the

group location, using as a reference the location of one of his/her buddies. To

display buddy’s location, the application has to register the following interest:

Context Management for Distributed and Dynamic Context-Aware Computing

62

Figure 5.5: Context domain switches

Context Management for Distributed and Dynamic Context-Aware Computing

63

Location(buddy-device-id)@current(buddy-device-id) this expression

describes an interest for the location of the buddy according to his most

specific location provider

This interest is temporary: as soon as the user is satisfied with the buddy’s

location, he stops tracking buddy’s location and the corresponding interest is

unregistered.

As shown in the diagram, the usage of the primitives for describing

interests decreases the number of notifications to receive. In particular, context

of types GeoMap and GLoc are always available for the application. In domains

that these context types are not relevant, the application does not receive

notifications. In a scenario where there is a large number of location providers,

these additional notifications could decrease the performance of the application

and the middleware.

5.6
Summary

This Chapter has shown a distributed scenario for a messenger appli-

cation that adapts its behavior according to the current user’s domain. Sec-

tions 5.4 and 5.5 have shown, respectively, the implementation of the scenario

using the primitives proposed in the previous chapter and an analysis of con-

text dissemination in the scenario’s domains. These sections have shown that

the proposed approach enables the development of complex context-aware ap-

plication and efficient dissemination of context. Next Chapter presents the

design of a middleware that implements the proposed approach.

6
Middleware for Context Management based on Context Do-

mains

Chapter 4 presented an approach for context management that supports

context interests of variable wideness. To demonstrate the feasibility of the

proposed approach, this chapter presents a distributed middleware that im-

plements the concept of context domains. In addition, the design of the mid-

dleware addresses some additional requirements, such as its usage in resource-

constrained portable devices.

This chapter is organized as follows. Section 6.1 presents the design ratio-

nale that drove the implementation of the middleware and the main assump-

tions adopted in design time. Section 6.2 presents the middleware architecture,

services and protocols. Section 6.3 presents the cNode: a middleware instance

that runs on each client device. Section 6.4 presents the context modeling ap-

proach and the mechanism for deploying new context types in the distributed

architecture. Finally, Section 6.5 presents the programming model for context

consumers and providers.

6.1
Design Rationale

To enable seamless evolution of context types, the proposed middleware

architecture makes use of stubs for each context type that embedded the code

required for accessing and managing instances of the corresponding context

type. These stubs are automatically generated from a XML-based specification

of a context type, using the mechanism described in Section 6.4. The underlying

code is responsible for handling changes in the actual context type and

context domain that the application is dealing with. From the perspective

of applications, context access is strongly typed: i.e. the type of a context

information, in terms of the corresponding language mapping, is defined at

development time, so as applications can be statically prepared to recognize

the type of a context information.

Context subtyping is implemented as inheritance on the object-oriented

paradigm. The translation of context types/instances to classes/objects ac-

Context Management for Distributed and Dynamic Context-Aware Computing

65

Figure 6.1: Context Broker

cordingly to object-oriented paradigm, enable the use of polymorphism mecha-

nism, thus allowing applications to access context instances without requiring

them to previously determine which is the actual type they are referencing.

This mechanism provides a natural way to handle both with abstract (Ts) and

specific (Ta) type expressions at programming level.

The middleware provides transparency of CMS address resolution

through services for automatic self-discovery of domain membership and inter-

domain hand-off management of context consumers and providers. In order to

dynamically discover the context domains that contain context instances satis-

fying a context interest, the middleware implements the mechanism previously

described in Section 4.3.

Essentially, there are three components that interact to create, dissem-

inate and use context information: context providers, context consumers and

the Context Broker, as shown in Figure 6.1. The Context Broker is an abstrac-

tion for the distributed domain management services, provided by a network

of context management nodes (Section 6.2). Each context management node is

responsible for a context domain.

As an orthogonal requirement, the middleware must be able to run

in resource-constrained devices, such as PDAs and smartphones. To enable

efficient interactions in a distributed scenario, the middleware adopts a dual

mode of context management. On one hand, context published locally to a

device, is stored locally, enabling that interactions between a consumer and a

provider that run on this device avoid any network access. On the other hand, if

the context published by a provider needs to be shared with remote (i.e. device-

external) consumers, then the middleware stores it on the infrastructured

network , at CMNs.

6.2
Architecture and Services

As mentioned before, the Context Broker is an abstraction of a network of

distributed context management nodes (CMN). A CMN implements a context

management system responsible for a specific domain, thus intermediating

any interaction among consumers and providers of a domain. As shown in

Context Management for Distributed and Dynamic Context-Aware Computing

66

Figure 6.2: Component Interaction

Figure 6.2, each client device runs a cNode, an entity that is responsible

for implementing distribution transparency of context access, to deal with

local context-aware interactions (i.e. device-local providers and consumers)

and context access in disconnected mode.

A context domain is an IP-based network domain, such that the context

domain of a consumer corresponds to the domain defined by its current point

of network attachment.

A context management node is composed of the four tiers shown in

Figure 6.3:

– management tier, responsible for implementing context management

– proxy tier, responsible for maintaining proxies of context consumers and

providers.

– distributed domain tier, responsible for domain management tasks, such

as domain naming and inter-domain hand-off.

– context distribution and entity management tier, responsible for the

management of entities registered in a domain, resolving which CMNs

a specific context interest must be registered.

6.2.1
Management Tier

The management tier aggregates services that are responsible for context

management, i.e. storage of context information and management of context

interests. Context providers and consumers interact with the management tier

indirectly through their corresponding proxies, maintained by the proxy tier.

Hence, the management tier only interacts with CMN-local proxies, and does

not need to be aware of mobility or distribution of clients. The management

Context Management for Distributed and Dynamic Context-Aware Computing

67

Figure 6.3: Middleware Services

tier provides three services: the Context Event Service, the Context Repository

and the Type System Manager.

Context Repository

The Context Repository maintains a XML database that stores context

information, enabling processing of synchronous queries from consumers. The

repository also stores the representation of context types, i.e. the context

model, which is used by the Type System Manager (management tier) to

control model changes.

Context Event Service

The Context Event Service (CES) is responsible for asynchronous delivery

of contextual events to clients that have previously registered context interests.

CES stores contextual events (i.e. changes of context data) and executes

the matching function to evaluate if an event satisfies any context interests

registered locally.

Context is published as an XML event and interest are registered as

XPath subscriptions as shown in Figure 6.4. This approach provides flexibility

for constructing interest and generating stubs, even if the context type evolves.

CES is implemented on the basis of Naradabrokering [1], a distributed

publish/subscribe system. The middleware uses a underlying network of

Naradabrokering nodes to disseminate efficiently1 context events in a dis-

tributed network of management nodes.

1In terms of routing events to a group of consumers in a distributed network.

Context Management for Distributed and Dynamic Context-Aware Computing

68

Figure 6.4: Management Tier Protocol Interaction

Type System Manager

The Type System Manager (TSM) is responsible for maintaining the

context model for a domain and for controlling the type deployment mechanism

(see Section 6.4). Context types are stored in an XML repository using the

XML notation described in Section 6.4.1.

When a new context consumer/provider is deployed, stubs are generated

in development time from the current XML description obtained from TSM.

The TSM maintains a local database of copies of context types defined in its

superdomains. To avoid maintaining a large model database, the TSM copies

supertypes on-demand, i.e. only at deployment of a new context type, or when

a new interest is registered.

The following changes in the context model may introduce inconsistencies

in type system management:

– change or removal of a type attribute

– change of a type name

– hierarchy change, such as a removal of a type

When deploying such changes, the domain administrator is warned that a

change introduces type system inconsistencies, which may invalidate interests

based on the former version of the type. Any other change keeps the context

models structurally consistent.

The usage of XML for describing context instances and types enables

a loosely-coupled mapping between stubs that interact with the middleware

Context Management for Distributed and Dynamic Context-Aware Computing

69

and the actual context type definition. As a concrete benefit, if a change

is structurally consistent, both consumers and providers may use outdated

versions of stubs for a context type, without requiring the redevelopment or

restarting of an application.

TSM adopts a lazy approach for type change propagation: a change in

one type is propagated to its subdomains on-demand, i.e. in the development

of consumer/provider that uses the type.

6.2.2
Proxy Tier

The proxy tier is responsible for maintaining proxies that represent

all context consumers and providers of a domain. When a device enters a

domain, a corresponding client proxy is created. A client proxy aggregates

all the consumers and providers running at a client device, as depicted in

Figure 6.3. Each consumer proxy corresponds to a context interest created by

an applications at this client device. When an interest is unregistered, the proxy

tier removes the corresponding consumer proxy. A consumer proxy may also

maintain an interest for context in another domain. When a client device roams

to another domain the proxy tier transfers the corresponding client proxy to

the new domain, as a part of the inter-domain hand-off protocol. Hence, the

proxy tier is responsible for the mobility management of client devices.

A consumer proxy maintains context interests and primarily receives

notifications for an interest match. A consumer proxy forwards any interest

match to the actual consumer running at the client device.

Each client device has a unique identifier composed of a device id

(currently, its MAC address) and a domain name where the device must be

previously registered. In fact, a client device is modeled and managed as an

entity of type Device. For each client device of a domain, a CMN maintains

the context type NetworkConnectivity which maps a device to its current

IP address, besides other network connectivity attributes. The proxy tier uses

NetworkConnectivity context to manage the device’s mobility.

The communication between the proxies and a client device is imple-

mented by a lightweight connectionless protocol based on UDP. This protocol

uses leases to maintain the device’s connectivity state, such that the proxy can

stop forwarding notifications when the device becomes disconnected or con-

nected to another network. Currently, there is no bufferization of events when

a device is disconnected, to avoid event loss.

Context Management for Distributed and Dynamic Context-Aware Computing

70

6.2.3
Context Distribution and Entity Management Tier

Context Distribution and Entity Management Tier is responsible for

managing entities registered at a domain and to register the domains that

contain context instances of each registered entity. The goal of this tier

is to implement a mechanism for discovering which CMN contains context

instances that may satisfy an interest, avoiding the need to broadcast interest

registrations to all CMNs. This tier implements the concept of Entity Home and

the mechanism of resolving context interest described in Section 4.3.

Entity Home

Entity Home is a repository of entities that belong to a domain and that

maintains updated references to both domains and proxies that have registered

some interests for an entity. For each entity e, the Entity Home maintains

several entries with three attributes

– Type: a context type T, associated with the entity e

– Hosting Domains: set of domains that maintain context instances of

type T for the entity e

– Client proxies: references to client proxies that maintain interests for

the context type T for the entity e. This attribute may be empty if there

is no registered proxy for e.

Table 6.1 shows an example of an entity home table. In the example,

both B and C are subtypes of A (not shown) and D has not relationship with A,

B or C. Any new consumer or provider for a context that describes e, causes

changes on entries of the Entity Home table.

Entity e
Type Hosting Domains Client Proxies

1 B d1, d2, d3 p1, p2

2 C d2, d4 p3

3 D d2, d5 p3

A is supertype of B and C

Table 6.1: Example of Entity Home entry for an entity e

If a provider starts publishing context that describes e of type C at the

domain d4, the Entity Home inserts d4 at the column “Hosting Domains”. If a

consumer register an interest for any context type of e, then the Entity Home

includes the corresponding client proxy reference for the type that satisfies the

Context Management for Distributed and Dynamic Context-Aware Computing

71

Figure 6.5: Interaction among distributed domains to register and to update a
context interest

interest. At the registry of each domain, Entity Home returns the respective

proxies in the table. At the registry of each client proxy, the Entity Home

returns the referencing domains for types satisfying the interest.

For the same example, the registry of a new consumer’s interest will

produce the following changes on the Entity Home table:

– B(e): returns the hosting domains d1, d2 and d3, and registers the proxy

at line 1.

– B(e)@d3: the same of the previous interest, but returns only d3.

– A(e): returns domains d1 to d4, inserts a new entry for A and registers

the proxy. The hosting domain will be empty.

– A(e)@d4: returns d4 and register the proxy at 2.

– D(e)@d1: returns a empty set of domains, since there is no d1 or

subdomain of d1 at line 3, and register the proxy at line 3.

Context Distribution Service and Interest Registration

The Context Distribution Service is responsible for maintaining the Entity

Homes, which verifies if there are domains with context instances that may

satisfy a context interest and to trigger its registration on the respective

domain.

Consider an entity a@D4, registered in domain D4, and that both D2 and

D3 maintain context instances for this entity. Figure 6.5 shows the sequence

of interactions among each middleware service, in different domains, when a

consumer registers a context interest Ia for a@D4. For the sake of simplicity,

consider that Ia refers to the same context type of the instances maintained

Context Management for Distributed and Dynamic Context-Aware Computing

72

in D2 and D3. At the moment of Ia registration, the distributed service will

interact as follows:

1. Application registers its context interest (Ia) at the local cNode.

2. cNode sends the context interest to the CMN of the current domain D1.

3. D1’s CMN creates a consumer proxy for Ia, say pIa

4. pIa sends its request to CDSD1

5. CDSD1
requests to CDSD4

the domains with instances that may satisfy

Ia, informing the context type and the entity (a@D4) of Ia, as well the

proxy pIa .

6. After checking the Entity Home of a@D4, CDSD4
sends to CDSD1

the

domains D2 and D3. CDSD4
includes a reference to pIa in the Entity

Home.

7. Then, CESD1
sends to the proxy pIa the request for notifications for

such events, in the respective domains, and pIa updates the ids of the

notification it may receive.

8. pIa request CESD1
to register its two interests (for D2 and D3).

9. CESD1
propagates the interest registration to CESD2

and CESD3
.

6.2.4
Distributed Domain Tier

The distributed domain tier is responsible for domain-specific tasks such

as discovery, inter-domain hand-off dispatch and domain naming. This tier

contains two services: node discovery and domain configuration service.

Node Discovery Service

The Node Discovery Service (NDS) is responsible for discovering and

advertising the network’s context domain. NDS sends advertisements to its

local network, so that clients are able to detect a domain change through

domain announcements. NDS uses the Service Location Protocol [54] (SLP) as

the lower-level service discovery mechanism.

For example, when a client device is turned on, the middleware discovers

a CMN service responsible for the current network and defines the device’s

home domain, that registers the client device’s proxy. If there is no CMN in

the network, then the middleware contacts the device’s home domain, identified

Context Management for Distributed and Dynamic Context-Aware Computing

73

Figure 6.6: Solving the address of the domain br.rj.rio.santateresa

by its device id. This is the only case where the proxy is registered in a CMN

of another network.

When a client device connects to another network:

1. The device recognizes a new domain through NDS domain announce-

ments.

2. The device sends a hand-off procedure request, informing its domain.

3. NDS triggers the hand-off procedure, which transfers the client proxy

from the previous CMN to the current domain’s CMN.

NDS publishes a domain using the URL service:ucms://

<ip-address>:<port>. Currently, the service registry in SLP contains

only one attribute: the domain name.

Domain Configuration Service

The Domain Configuration Service (DCS) is a complementary service for

a CMN responsible for mapping domain names to IP network addresses, which

a CMN needs to interact to another CMN. At domain deployment time, DCS

registers a sub-domain at its super domain, and then each domain maintains

references for its subdomains. Resolution of the domain address is based on

the domain tree, as shown in Figure 6.6. This figure illustrates the process of a

DCS of a domain br.puc-rio.inf making the name resolution for the domain

br.rj.rio.santateresa.

6.3
Client Node

The client node cNode is responsible for implementing the basic mecha-

nisms of the management tier but restricted to scope of a device: it manages

locally restricted interests, implements transparent access of CMN, and handles

Context Management for Distributed and Dynamic Context-Aware Computing

74

device disconnection. The cNode intercepts all requests - from both consumers

or providers -, and forwards them to the domain node, when necessary.

The cNode stores all locally published context, i.e. whose provider is local

to the device. The middleware uses an opportunistic approach for publishing

context remotely: when a communication is required. A local context is

published also in the home domain node of the device.

For efficiency reasons, both the context repository and the event service

are based on a relational database, instead of a XML database. At the device

local scope, there is no support for evolution: when the internal context model

changes, an application that uses it may need to be restarted. This policy

is suitable because both applications and context changes in the scope of a

device, are totally controlled by the user.

6.4
Modeling and Deployment of Context Types

As shown in Figure 6.1, both context providers and consumers interact

with the Context Broker through context type stubs. They encapsulate the

underlying code required to request or publish a specific instance of a context

type, and type dependencies (e.g. supertypes, entity types). The developer of

a context-aware application includes the stubs of the required context types,

which map a context type to object-oriented language constructions. From the

perspective of an application developer, the access to context information is

strongly typed, since the application accesses classes that have a 1:1 mapping

to context types.

The deployment of a context type, which involves two main steps: context

modeling and the context model processing. The first step consists of modeling

the new context information using an XML-based description called DCMML

(Distributed Context Modeling Markup Language). In a DCMML file, the

context modeler2 specifies attributes, characteristics and relationships with

previously specified context.

In the context model processing step, a Context Tool reads the DCMML

file and executes the following tasks:

1. Validates the DCMML syntax and the context model, interacting with

the TSM of the domain where the type is being deployed;

2. Updates the context type system and initializes the repository for storing

the new context information;

2The user that models a new context.

Context Management for Distributed and Dynamic Context-Aware Computing

75

3. Generates a library containing the language bindings for describing

interests and accessing the deployed context.

Section 7.1 describes how the context tool implements the language

bindings for Java VM and Dalvik VM (Android platform). Context Tool alerts

the user about the consequences of the changes in deployment.

6.4.1
Context Modeling and Representation

Each DCMML modeling file models a unique context type, and contains

the following elements:

– Context Type:Domain - a name that describes the context type and the

domain where the type will be deployed.

– Supertype:Domain - the context supertype and the domain where the

supertype is modeled. Both supertype and supertype’s domain must be

consistent with the domain of the type: the domain of the supertype

must be either the same or a superdomain of the type domain.

– Entity - the entity type that the context decribes.

– (attribute,type)* - a set of attribute names and the corresponding

attribute types.

The listing below shows an example of a DCMML document

that describes a context type DeviceContext, modeled in the domain

lac.inf.puc-rio.br and that is a base context type: i.e. inherites from

the base type Context.

<?xml version=” 1 .0 ”?>

<context name=”DeviceContext ”

domain=” l a c . i n f . puc−r i o . br”

package=”moca . context ”

base=”Context”>

<en t i t y name=”DeviceMacAddress” type=” x s : s t r i n g ” kind=” en t i t y ”>

Device ’ s MAC addres s

</ent i ty>

<a t t r i b u t e name=”CpuUsage” type=”x s : i n t ” s t a t i c=”no”>

Percentua l o f CPU usage

</a t t r ibute >

<a t t r i b u t e name=”FreeMemory” type=”x s : i n t ” s t a t i c=”no”>

Ava i l ab l e memory in kb

</a t t r ibute >

<a t t r i b u t e name=”BatteryPower” type=”x s : i n t ” s t a t i c=”no”>

Percentua l o f the f u l l power a v a i l a b l e no the battery

Context Management for Distributed and Dynamic Context-Aware Computing

76

</a t t r ibute >

<a t t r i b u t e name=”IpAddress ” type=”x s : s t r i n g ” s t a t i c=”no”>

IP Address

</a t t r ibute >

<a t t r i b u t e name=”IpMask” type=”x s : s t r i n g ” s t a t i c=”no”>

IP Mask

</a t t r ibute >

</context>

6.5
Programming Model

The snippet below exemplifies the creation of an interest for the type

DeviceContext for the condition Battery < 70%.

Contex t In te r e s t appInte r e s t =

DeviceContext . newInteres t () ;

appInte r e s t . id (”AA:0A : 1 2 : . . . ”) . where (DeviceContext . Attr .BATTERY. l t

(70) .

appInte r e s t . register (i n t e r e s t L i s t e n e r) ;

Listing 6.1: Example of an interest creation and registry

The deployment of DeviceContext’s DCMML file generates a li-

brary (a jar file) that contains the class DeviceContext. Any interest for

DeviceContext and for any of its subtypes is constructed through the object

returned from newInterest() invocation. The method id(<entity-id>) in-

dicates the entity parameter of the interest and where indicates the constraints

of the interest. Notice that each attribute of the type contains a correspond-

ing attribute in the generated class that allows the construction of the con-

straint: for the attribute Battery, the Context Tool generated a static attribute

Attr.BATTERY that must be used to include the aforementioned attribute in

a constraint. It restricts an application to describe an invalid constraint and

the middleware does not need to revalidate a constraint at runtime. At the

last line of the snippet, the application registers the interest and informs the

listener to be invoked at any notification.

7
Implementation and Evaluation

The goal of this chapter is to describe the implementation details of the

middleware and to validate the proposed approach presented in previous chap-

ters. This chapter is organized as follows. Section 7.1 presents the implemen-

tation of the middleware in terms of cNode and CMN. Section 7.2 presents the

testing environment adopted to evaluate the middleware. The tests described

in Section 7.3 aim at evaluating how the proposed architecture supports a fea-

sible scenario, through testing the scalability of the middleware in terms of

the problem size as described in Section 4.3, and the impact of the number of

clients and evolution in the middleware performance.

7.1
Implementation

The implementation of the middleware is composed of two components:

the cNode, which runs in portable devices, and the CMN, that is a middleware

instance that runs in each host responsible for a particular context domain.

The context-aware ecosystem is composed of a network of CMN, which are

responsible for managing cNode (i.e. client devices) in a domain.

7.1.1
Client Node (cNode)

The cNode is an Android service shared among applications that runs

in a device. cNode is implemented in a service called CMS, which runs in a

different process of context consumers and providers. cNode implements the

following AIDL1 interface:

interface ICMS {

void publish(IContext context);

void register(IContextInterest interest);

void addListener(IContextInterest interest,

IInterestListener listener);

void unregister(IContextInterest interest);

1Android IDL language

Context Management for Distributed and Dynamic Context-Aware Computing

78

Figure 7.1: Interaction among consumers, providers and the CMS service in
the Android implementation

}

As any Android service, the access to the CMS uses interprocess commu-

nication to implement the communication between the service and any con-

sumer or provider. Figure 7.1 shows the interaction of this service and context

providers and consumers, through the architectural layers of Android OS.

In Android service, parameter passing in interprocess communication is

implemented through serialization/deserialization of objects. Android remote

objects allow parameters as Java/Dalvik basic types, parcelable objects or re-

mote objects. In the latter case, an object is not serialized and an invocation

of its methods corresponds to another remote method invocation. A parce-

lable object is the Android’s implementation of serializable objects with two

differences: they must have a parcelable interface (in a corresponding AIDL)

at development time, and serialization/deserialization must be explicitly pro-

grammed by the developer. Since each context type stub is developed and

deployed latter than the cNode, its interface cannot be predicted and cannot

be used in the interface of the CMS service. For this reason, the middleware

also implements the context type and interest as remote objects, based on the

interfaces IContext and IContextInterest, below.

interface IContext {

Context Management for Distributed and Dynamic Context-Aware Computing

79

String getId();

String getDomain();

long getTimestamp();

boolean isLocal();

String getPublisherExpressionImpl();

}

interface IContextInterest {

void addListener(IInterestListener listener);

String getInterestImpl();

void register();

void unregister();

}

The methods getPublisherExpressionImpl() and getInterestImpl()

from interfaces IContext and IContextInterest, respectively, return the

query for publishing and consuming context. These queries are environment-

specific: an Android stub for a cNode uses SQL queries targeting the Android’s

SQLLite internal database, where context information is stored. A stub for a

CMN uses XPath, as described in the next section.

7.1.2
Context Management Node (CMN)

The CMN uses specific stubs that implement context publishing and in-

terest registration through XML and XPath, respectively. In the CMN, con-

text information is serialized in XML documents and then stored in a XML

database. Currently, the CMN adopts XIndice as the database. Figure 7.2

depicts a diagram of the communication mechanisms among internal CMN

components and external entities. As mentioned in the previous chapter, com-

munication between a CMN and a client is implemented through UDP messages

using raw bytes, i.e. without object serialization in the communication chan-

nel, in special, because object serialization of Dalvik VM is incompatible with

serialization of Java VM2. The CMN runs inside a EJB container and uses RMI

for communication among CMN instances, in different domains.

Each client proxy corresponds to a unique session of communication to

Naradabrokering, with a respective Naradabrokering client id, as shown in

Figure 7.2. Each consumer and provider proxy is implemented as a respec-

tive Naradabrokering consumer and provider, built in the same client session.

2At least, until version 0.9 of Android SDK.

Context Management for Distributed and Dynamic Context-Aware Computing

80

Figure 7.2: CMN implementation

When a client device migrates to another domain, CMN closes the respec-

tive Naradabrokering session and eventually starts another session with the

Naradabrokering of the new CMN.

7.2
Testing Scenario

The testing scenario is composed of instances of CMN running in a

same local network. To simulate several domains in a same local network,

the discovery service was disabled. Client devices were simulated as processes

in a same machine, statically configured with a specific domain.

Functional tests used the Android emulator as a client device, since there

is a few offer of real Android-based devices3 The Android emulator is based

on the QEMU, an open source processor emulator. The testing script was

developed to run with Apache’s JMeter4. The testing environment is composed

of Pentium 4 and two Core 2 Duo machines, each one with 1Gb in memory,

connected through a 100Mbps local network.

7.3
Scalability Tests

This section analyses the performance of the middleware based on the

results of scalability tests. These tests are organized in two categories:

– Tests of performance of the middleware in stress conditions, which

involves connection with a large number of clients in a CMN.

3The first device was presented in November, 2008 and is sold only in United States.
4jakarta.apache.org/jmeter

Context Management for Distributed and Dynamic Context-Aware Computing

81

– Effect of the mobility in the service, in terms of the cost of migrating

proxies between CMNs.

7.3.1
Service Performance

Management of Proxies in a CMN

Management of proxies in a CMN is one of the most important tasks of

the middleware, since interest registration and matching is delegated to the

event service (Naradabrokering). It interferes directly in the scalability with

clients of the middleware, since each client has a correspondent proxy in a

CMN. A proxy may be composed of several consumer and provider proxies.

The impact in mobility is analysed in Section 7.3.2.

As a preparation step for this test, another test showed that Naradabro-

kering cannot deal with more than 200 concurrent clients. When managing

more than 200 clients, the Naradabrokering protocol for client initialization

performs with long delays that cause message timeout and the consequent dis-

connection of clients. For this reason, all of the following tests use this limit

number of clients in a CMN.

The test evaluated the delay of creation of client, consumer and provider

proxies, as depicted in Figures 7.3, 7.4(a) and 7.4(b), respectively. Both

consumers and providers depend on a previous existing client proxy. Figure 7.3

shows a linear behavior for creation of proxies in a CMN. Figures 7.4(a)

and 7.4(b) shows that the delay of creating proxies for consumers and providers

do not have a significant delay, considering that the delay also includes remote

calls to a CMN. In fact, delay for creation of client proxies is significant,

since it causes a creation of a new connection between a CMN and the

Naradabrokering, whereas the creation of a consumer and a provider proxy

does not produce new Naradabrokering connections.

Access to context maintained in distributed domains

This test evaluates the performance of a CMN in serving context con-

sumers, in terms of the delay of receiving notifications of interest match. This

evaluation is composed of two parts: a test of dissemination using a single CMN

and using a small network of CMNs.

A network of CMNs has a corresponding network of Naradabrokering

nodes. A network of Naradabrokering nodes is based on a hierarchical con-

struction of node relationships. In a Naradabrokering network, each node has

an address composed of four 5-bit numbers, for example, 23.20.31.14. Each

Context Management for Distributed and Dynamic Context-Aware Computing

82

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160 180 200

D
el

ay
 in

 m
s

Number of client proxies

Creation of client proxies

Figure 7.3: Delay of client proxy creation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 in

 m
s

Number of context consumers

Creation of context consumers on a CMN

50 clients
100 clients
150 clients
200 clients

7.4(a): Delay of consumer proxy creation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 in

 m
s

Number of context providers

Creation of context providers on a CMN

5 clients
10 clients
50 clients

100 clients
150 clients
200 clients

7.4(b): Delay of provider proxy creation

Figure 7.4: Delay for creation of provider and consumer proxies

Context Management for Distributed and Dynamic Context-Aware Computing

83

Figure 7.5: Example of a Naradabrokering network (extracted from [1])

part of the address has a limit of 32. A Naradabrokering network is a hierar-

chical network of nodes, aggregated in clusters according to node’s addresses.

The lower-level node is called unit. A network of 32 nodes comprehends a clus-

ter, which is controlled by one of its nodes called cluster controller. A network

of 32 clusters is controlled by a super-cluster controller, whereas a network

of 32 super-clusters is controlled by a super-cluster controller, as illustrated

by Figure 7.5. The nodes 23.20.31.14 and 23.20.31.21 are part of a same

network that is controlled by the cluster controller that has the same cluster

prefix 23.20.31.

A node in clusters, super-clusters or super-super-clusters controller is

responsible for disseminating events on the network it controls.

The network of nodes in a cluster follows no previously defined organi-

zation. During the deployment of the nodes, the user chooses the more appro-

priate organization of nodes and selects special nodes (or dedicated machines

without nodes) to act as brokers, i.e. gateways among nodes and clusters, re-

sponsible for event dissemination. To facilitate the test, the testing scenario

adopted a network configuration where each node in a cluster has a direct

connection to the broker, and there is only one broker for a cluster, as shown

in Figure 7.6. In this organization, the max height of the hierarchy tree is

four, and thus, the max distance among two nodes in the network is seven

Naradabrokering connections.

This test used eight hosts to simulate a larger distance among nodes.

In order to increase the load in each node, each CMN will serve 100 clients,

Context Management for Distributed and Dynamic Context-Aware Computing

84

Figure 7.6: Max distance between two Naradabrokering nodes

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

N
ot

ifi
ca

tio
n

de
la

y
in

 m
s

Number of Consumers

Delay of accessing context in a CMN

1 CMN
Network of 8 CMN

Figure 7.7: Delay of accessing context in a CMN

from 50 to 1000 consumers. Another parameter is the complexity if the interest

expression. To simulate this complexity, the test used a simple context type

with string attributes. Each attribute of the context type will participate in the

expression. The tests used context types with number of attributes changing

from 1 to 20, but no relevant difference was found. Figure 7.7 shows the result

of the tests for a type with 20 attributes and all of them introduced in the

constraint of the context interest.

7.3.2
Mobility Impact

This test evaluates the impact of mobility in the middleware performance,

in terms of the overhead of moving client proxies from one CMN to another

CMN. The test moves constantly proxies between CMNs in a scenario with no

providers to avoid the interference of context dissemination in proxy migration.

A transference of a proxy comprehends the stop and restart of a Naradabro-

kering session, the serialization/deserialization of the client proxy, and update

in the Entity Home where the proxy has interests. The test ignores the delay

introduced by the last task. Figure 7.8 shows the results of the tests with 10,

Context Management for Distributed and Dynamic Context-Aware Computing

85

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200 250 300 350 400 450 500

D
el

ay
 in

 m
s

Proxy Size (number of consumer proxies)

Inter-domain hand-off delay

10 clients
50 clients

100 clients

Figure 7.8: Hand-off processing delay

50 and 100 concurrent clients. Each of these tests used the proxy size (number

of consumers) assuming the values of 50, 100, 250 and 500. The results show an

exponential grow of the hand-off delay. The results confirm a prediction during

the development of the middleware: Naradabrokering does not offer suitable

APIs to implement a hand-off. There is no primitive to interrupt a connec-

tion with a broker, serialize all Naradabrokering consumers and providers and

restart the connection with another Naradabrokering service. As result, the

implementation of the hand-off became inefficient by requiring the removal

and construction of all consumers and providers in the new Naradabrokering

context. However, in the practice, client tends to have a smaller number of

proxies than the numbers used in the test. For example, a proxy with size of

50 consumers implies in a single device with 50 context interests.

7.4
Limitations

In spite of its several benefits, the proposed middleware for context

management has some intrinsec limitations, discussed in the following sections.

7.4.1
Basic mechanism for context-based adaptation

The mechanism of interest registration and notification is a basic mech-

anism for context-based adaptation. However, complex context-aware appli-

cations demand higher-level abstractions for adaptation, such as adaptation

profiles (e.g., as adopted in MobiPADS [55] and CARISMA [44]) and PACE’s

preferences [37]. These abstractions can be implemented at the basis of interest

Context Management for Distributed and Dynamic Context-Aware Computing

86

registrations and notifications. For example, an adaptation profile is essentially

an abstraction of a set of pre-defined interests. In a distributed scenario, how-

ever, the implementation of a context management middleware that supports

such high-level abstractions is a challenging task, because they cannot be eas-

ily shared through the concept of context domains and the usage of some of

them (e.g., preferences) is restricted to a specific user scope. Hence, the pro-

posed middleware aims at providing just a basic mechanism for supporting

context-aware applications in distributed environments. This thesis suggests

that higher-level abstraction should be supported at higher layers of context

management middleware.

7.4.2
Chain of providers and consumers causes delays of context reasoning

The efficiency of the distributed context manangement is based on the

data-oriented modeling approach (Section 4.1). As a result, the inference of new

context information must be based on the implementation of inference agents,

which act as consumers of a context and providers of the inferred context.

The implementation of complex context reasoning, produced by a sequence of

inferences, may require the introduction of a chain of inference agents (pairs

of consumer-providers). This chain cases delay in interest notification, which

may hinder fast triggering of context-based adaptations.

7.4.3
Context domains strongly based on network domain

The proposed implementation of context domains is strictly based on

network domains. This approach eases the implementation of domain discovery,

which in the proposed middleware is based on SLP. However, in some scenarios,

a context domain would be more appropriately mapped to a physical area,

instead of a network domain. For example, in the usage scenario of Chapter 5,

to switch to the domain rio.downtown.mnba, the user needs to connect to

MNBA’s local network. Thus, if the user carries a device (e.g. a mobile phone)

that has no WiFi connectivity, then he will not be able to switch to the more

specific domain, even if the application scenario requires such location-specific

context access.

7.4.4
Interoperability among domains enforced by the adoption of standards

The distributed approach for context management is also strongly based

on the assumption that the context models of each domain promotes concept

Context Management for Distributed and Dynamic Context-Aware Computing

87

sharing and extension in subdomains.

The requirements discussed in Section 2.3 cannot be achieved if the mo-

dels of different domains are not based on concepts of a common superdomain.

Moreover, this thesis does not propose any methodology to promote such

appropriate context modeling or to evaluate the adequacy of a distributed

model.

8
Conclusions

Middleware systems for dynamic context-aware ecosystems have several

implementation challenges. As the ecosystem grows in size, diversity of sensors

and devices, and complexity, middleware systems have to absorb the environ-

ment’s evolution and to keep the consistency of application’s interests. In such

a scenario, an ecosystem should be a composition of interrelated environments

for context-aware computing, instead of a set of isolated environments.

Most of current middleware systems make restrictive assumptions about

enabling distributed context-aware computing such as the adoption of a single

context model and that context interests must be statically linked to CMSs.

These assumptions restrict the description of context interests to ecosystems

with predictable and well-known structure, behavior and distribution. Hence,

these middleware systems may cause disruptions or inconsistencies in applica-

tions that have cross-environment interests. Current federation-based systems

hinder scalability and manageability, since they also adopt a unified context

model for a whole ecosystem.

This thesis advocates that dynamic context-aware ecosystems require a

new class of context interests, called context interests of variable wideness.

This class of context interests is particularly difficult to implement in current

middleware systems, because it requires an interest delivery layer that dynami-

cally discovers which CMSs and context types satisfies each interest. Chapter 5

described a usage scenario that demonstrates how such interests enable the de-

velopment of simpler and generic applications, in terms of interaction with a

diversity of context providers.

This thesis described an architecture to support context interests of vari-

able wideness, in which an ecosystem is a set of hierarchically and dynamically

composed context domains. Each context domain may have particular context

providers and models, thus enabling heterogeneous modeling. The architecture

supports contextual interoperability through the establishment of subtyping

relationships among models of different domains. A context interest can span

a variable set of CMS/domains and types, according to the need of the context

consumer. The feasibility of this approach is based on two fundamental assump-

Context Management for Distributed and Dynamic Context-Aware Computing

89

tions. Firstly, the approach assumes that management of context instances and

context models are loosely-coupled, i.e. the context modeling approach does

not support the description of rules to infer new context instances. Instead,

only context providers can publish new instances. In addition, the idea of Entity

Home provides an efficient mechanism to dynamically discover which domains

contain context for a given entity. Chapter 6 described the implementation of

a middleware that supports context domains.

According to the classification proposed in Chapter 3, a middleware based

on context domains is a distributed middleware system. However, differently

from other approaches, the CMS discovery is highly dynamic and distributed,

whereas state-of-the-art work (e.g. PACE) adopts a centralized registry of

CMSs.

One of the fundamental characteristics of a context-aware ecosystem

is the adoption of heterogeneous context models. Indeed, the support of

model heterogeneity enables each CMS to manage types that are relevant

to an environment or administration domain. Federation-based and bridging-

based approaches adequately deal with interoperability issues of heterogeneous

CMS (i.e. heterogeneous primitives). However, their mechanisms for model

management are clearly not scalable, since they map models of each CMS to

a unified model.

The context domain approach for context management aims at providing

a basic lower-level layer for context management. In this sense, more complex

adaptation abstractions, such as preferences of PACE middleware, and context

modeling constructions should be provided on top of the proposed middleware.

For this reason, this thesis adopted a lower-level concept of context informa-

tion, based on the concept originally proposed in ContextToolkit. Currently,

research in context-aware computing adopts a more comprehensive concept of

context information, defining context as a part of a process, instead of just a

state [56]. However, for lower-level context management, the definition adopted

in this thesis is appropriate.

In order to implement the basic tasks of a CMS, middleware systems

usually adopt general-purpose asynchronous event-based systems. The pro-

posed middleware adopted Naradabrokering as the basic asynchronous com-

munication mechanism. The experience of designing middleware for dynamic

ecosystems has shown that such general purpose systems lack three impor-

tant characteristics. Firstly, they do not support an extensible, distributed,

and flexible data model that enables the mapping of context models through

distributed domains. Moreover, their subscription paradigms do not enable the

implementation of interests that comprehend event providers in a dynamic set

Context Management for Distributed and Dynamic Context-Aware Computing

90

of nodes in distributed event system. However, there is also a trade-off between

expressiveness and the scalability of a general-purpose distributed event-based

system [57]. Finally, they usually do not provide a lightweight communication

protocol to use with resource-constrained portable devices.

In face of such limitation, the proposed middleware used a flexible event

type (XML), to enable the mapping of context types and interests in the scope

of the Naradabrokering system. A clear consequence of this design decision

is the performance degradation of interest (i.e. event) matching. Therefore,

middleware for dynamic context-aware ecosystems calls for an event-based

system that enables object-oriented events, distributed object type models,

and dynamic deployment of nodes. There is not distributed event-based system

that satisfies such requirements.

8.1
Summary of Contributions

This thesis presents four main contributions:

Concept of context domains Context domains are a novel architecture for

organizing distributed context-aware systems in an integrated and dynamic

ecosystem. Differently from other approaches, context domains enable the idea

of scope in context-aware computing, both in terms of promoting the adequacy

of environment to the particularities of an administrative domain, as well, to

enable applications to restrict the domains where their context interests will

be applied.

Primitive for describing context interests of variable wideness This thesis

advocates that applications demand for primitives to describe consistent and

comprehensive context interests, despite the dynamic and distributed charac-

teristics of a context-aware ecosystem. The proposed primitive enable applica-

tions to describe context interests of variable wideness, which in turn describes

an interest comprising open, close or relative domains of context management

systems, and more specific or abstract context types. The proposed primitive

allows the development of applications that are both more generic and, at the

same time, simpler.

Design of a middleware based on context domains In order to demonstrate

the feasibility of the proposed approach, this thesis described the design

and implementation of a distributed middleware based on the concept of

context domains. The middleware adopts a dual mode of context management

Context Management for Distributed and Dynamic Context-Aware Computing

91

that integrates consumers and providers that are either of a same device or

distributed in different domains. The feasibility of the middleware execution

on portable devices was verified through tests in an emulated Android-based

device.

Categorization of architectures for supporting distributed context-aware

computing This thesis also presents an original classification of architectures

for distributed context-aware computing. According to this classification, dis-

tributed middleware adopts one of the following approaches for context man-

agement: distributed middleware systems, peer-to-peer approaches, federation-

based approaches or bridging approaches. The proposed classification is useful

to understand the trade-offs and limitations of each approach.

8.2
Future Work

This work provides fundamental concepts and mechanisms to deal with

dynamic context-aware ecosystems. Future research work can explore these

basic mechanisms to promote the use of the middleware in more realistic

scenarios, and to promote efficiency, security and manageability. This section

describes some of future research efforts that can be developed as a direct

extension of this thesis.

8.2.1
Context domains based on physical location

In the proposed architecture, the implementation of context domains is

strictly based on network domains, i.e. a change of network topology implies

in a domain change. As discussed in Section 7.4.3, this approach for defining

context domains introduces limitations for the usage of the middleware in

real scenarios. A direct extension of this thesis is to relax the assumptions

described in Section 4.2, and provide means to describe context domains based

on physical location of devices and users.

8.2.2
Extension of constraint operation in a context interest

The context tool maps an interest constraint to an expression based on

SQL or XPath operators, depending if the stub is used in a cNode or a CMN.

Hence, the complexity of a constraint is bounded by the operators of these

query languages. Although they provide a comprehensive set of operators for

basic language types (e.g. integer, string), a context type may demand the

Context Management for Distributed and Dynamic Context-Aware Computing

92

description of specific operators. For example, a location type could provide

operations such as distance, proximity and containment of a location in an

area. Such type-specific operators increase code readability and decrease the

chance of misinterpretation of type semantics. As a future work, an extension of

the context modeling approach could enable the description of context-specific

operators through the inclusion of the code of an operator in a DCMML file

of a type.

8.2.3
Composition of notifications based on context meta-attributes

Another aspect to explore in a future work is the introduction of meta-

attributes in the modeling of a context, to enable consumers to indicate

additional restrictions to an interest based on properties of the provider or the

context publication. Consider that several providers publish a same abstract

context for a given entity, causing thus several notifications to a consumer. A

consumer may indicate in the interest expression the properties of the more

appropriate notification to the consumer needs. For example, the consumer

may indicate a preference for notifications from the provider of the most precise

data or even with a minimum precision. In this example, precision is a property

of the provider, which must be previously indicated to the middleware to be

checked against consumer’s interests. Research in context-aware computing

calls quality of context the usage of these meta-attributes to define preferences

or requirements of a consumer.

8.2.4
Implementation policies for optimized context access

The context meta-information, obtained from the context model, enables

the middleware to choose the most suitable mechanisms to handle certain

context information. For example, consider a context attribute declared as

static, i.e. an attribute that has a constant value (e.g. the OS type/version

running at a device). When deploying this context, the context management

infrastructure is configured so as to disseminate and update this attribute only

at the first time when an application requests the context. The context tool

uses these meta-information to implement optimized stubs.

8.2.5
Security mechanisms for inter-domain context management

The proposed middleware requires the introduction of the following

security mechanisms:

Context Management for Distributed and Dynamic Context-Aware Computing

93

– Authentication and validation of providers that publish context for

a given entity. This authentication can avoid malicious provides to

disseminate false context information.

– Authentication of consumers and clients (device).

– Validation of domains, to guarantee that the interaction among domains

and the algorithm for context dissemination (described Section 6.2.3)

performs correctly. Otherwise, a malicious or fake CMN could manipulate

messages to the Entity Home to deceive mechanism for controlling context

access (e.g. for privacy concerns).

Moreover, support for privacy is an important requirement for context-

aware architectures, which is beyond the focus of this thesis. However, the usage

of a Entity Home provides an interesting approach for control privacy of context

access, since it is a central point of access for a given entity’s context. A user

can control the dissemination context for some consumers through the Entity

Home. Hesselman [58] proposed a similar mechanism for privacy control based

on the idea of a home node, responsible for controlling all context information

of a given user.

8.2.6
Enhanced model of interaction among providers, consumers and CMS

The proposed middleware adopts a simple model of interaction among

providers, consumers and the CMS. In this model, providers are always

active elements that publish context constantly, independently of existing

consumers. On one hand, the context information is more accurate, in terms of

freshness, if a provider publishes in a higher rate. On the other hand, constant

publications increase the number of messages sent through network, even if

there is no consumer for the aforementioned information. For some providers,

a publication is a costly operation, in terms of battery usage (e.g. WiFi scanner)

and messages sent through the network.

Hence, in a future work, the middleware could introduce an additional

model of interaction, enabling providers to publish on demand, i.e. when there

is a corresponding consumer. This model demands a previous registration by

each provider of which entity it may publish context, in order to include the

provider in the Entity Home table and, thus, enabling its discovery.

Bibliography

[1] PALLICKARA, S.; FOX, G.. Naradabrokering: a distributed mid-

dleware framework and architecture for enabling durable peer-

to-peer grids. In: MIDDLEWARE ’03: PROCEEDINGS OF THE ACM/I-

FIP/USENIX 2003 INTERNATIONAL CONFERENCE ON MIDDLEWARE,

p. 41–61, New York, NY, USA, 2003. Springer-Verlag New York, Inc. (docu-

ment), 6.2.1, 7.5

[2] DEY, A. K.; ABOWD, G. D. ; SALBER, D.. A conceptual framework

and a toolkit for supporting the rapid prototyping of context-

aware applications. Human-Computer Interaction, 16(2, 3 & 4):97–166,

2001. 1, 1.2, 2, 2.1.1, 3

[3] WANT, R.; HOPPER, A.; FALCAO, V. ; GIBBONS, J.. The active badge

location system. ACM Trans. Inf. Syst., 10(1):91–102, 1992. 1, 1.1

[4] NASCIMENTO, F. N. D. C.. A service for location inference of

mobile devices based on IEEE 802.11. Master’s thesis, Departamento

de Informática, PUC-Rio, Jan 2006. (in portuguese). 1, 1.1, 2.1.1, 2.1.3

[5] DEY, A. K.. Providing Architectural Support for Building

Context-Aware Applications. PhD thesis, College of Computing, Geor-

gia Institute of Technology, December 2000. 1

[6] JULIEN, C.; ROMAN, G.-C.. EgoSpaces: facilitating rapid develop-

ment of context-aware mobile applications. Software Engineering,

IEEE Transactions on, 32(5):281–298, May 2006. 1

[7] VAN KRANENBURG, H.; BARGH, M.; IACOB, S. ; PEDDEMORS, A.. A

context management framework for supporting context-aware

distributed applications. Communications Magazine, IEEE, 44(8):67–

74, Aug. 2006. 1, 3.1, 3.1.6

[8] GROSSMANN, M.; BAUER, M.; HONLE, N.; KAPPELER, U.-P.; NICKLAS,

D. ; SCHWARZ, T.. Efficiently managing context information for

Context Management for Distributed and Dynamic Context-Aware Computing

95

large-scale scenarios. In: PERVASIVE COMPUTING AND COMMUNI-

CATIONS, 2005. PERCOM 2005. THIRD IEEE INTERNATIONAL CONFER-

ENCE ON, p. 331–340, 8-12 March 2005. 1, 2.1.6, 3.3.2

[9] HONG, J. I.; LANDAY, J. A.. An infrastructure approach to context-

aware computing. Human-Computer Interaction, 16(2, 3 & 4):287–303,

2001. 1, 3.1.3

[10] RIVA, O.. Contory: A middleware for the provisioning of con-

text information on smart phones. In: ACM/IFIP/USENIX 7TH IN-

TERNATIONAL MIDDLEWARE CONFERENCE (MIDDLEWARE’06), Mel-

bourne (Australia), November 2006. 1, 1.2, 3.2.1

[11] YAU, S. S.; KARIM, F.; WANG, Y.; WANG, B. ; GUPTA, S. K. S.. Recon-

figurable context-sensitive middleware for pervasive computing.

IEEE Pervasive Computing, 1(3):33–40, 2002. 1, 2

[12] HENRICKSEN, K.; INDULSKA, J.; MCFADDEN, T. ; BALASUBRAMA-

NIAM, S.. Middleware for distributed context-aware systems. Lec-

ture Notes in Computer Science, 3760:846–863, 2005. 1, 1.2, 2, 2.1.5, 3.1,

3.1.2

[13] ROMAN, M.; HESS, C.; CERQUEIRA, R.; RANGANATHAN, A.; CAMP-

BELL, R. ; NAHRSTEDT, K.. A middleware infrastructure for ac-

tive spaces. Pervasive Computing, IEEE, 1(4):74–83, Oct.-Dec. 2002. 1,

3.1, 3.1.1

[14] CHEN, H.; FININ, T. W. ; JOSHI, A.. Using OWL in a pervasive

computing broker. In: WORKSHOP ON ONTOLOGIES IN OPEN

AGENT SYSTEMS (OAS), p. 9–16, Melbourne, Australia, July 2003. 1

[15] HENRICKSEN, K.; INDULSKA, J. ; RAKOTONIRAINY, A.. Modeling

context information in pervasive computing systems. In: PER-

VASIVE ’02: PROCEEDINGS OF THE FIRST INTERNATIONAL CON-

FERENCE ON PERVASIVE COMPUTING, p. 167–180, London, UK, 2002.

Springer-Verlag. 1, 3.1.2

[16] BOLCHINI, C.; CURINO, C. A.; QUINTARELLI, E.; SCHREIBER, F. A. ;

TANCA, L.. A data-oriented survey of context models. SIGMOD

Rec., 36(4):19–26, 2007. 1, 2.1.2

[17] CHEN, H.. An Intelligent Broker Architecture for Pervasive

Context-Aware Systems. PhD thesis, University of Maryland, Baltimore

County, December 2004. 1, 2, 2.1.2

Context Management for Distributed and Dynamic Context-Aware Computing

96

[18] KINDBERG, T.; FOX, A.. System software for ubiquitous comput-

ing. Pervasive Computing, IEEE, 1(1):70–81, Jan-Mar 2002. 1, 1.1, 2.3.1

[19] THE NEW YORK TIMES. T-Mobile tests dual wi-fi and cell service.

Home page, Oct 2006. Available at: http://www.nytimes.com/2006/10/

24/technology/24mobile.html. Accessed on Jun, 28, 2008. 1

[20] WEISER, M.. Some computer science issues in ubiquitous com-

puting. Commun. ACM, 36(7):75–84, 1993. 1.1

[21] HIGHTOWER, J.; BORRIELLO, G.. Location systems for ubiquitous

computing. Computer, 34(8):57–66, 2001. 1.1, 2.1.1

[22] DAVIES, N.; GELLERSEN, H.-W.. Beyond prototypes: challenges in

deploying ubiquitous systems. Pervasive Computing, IEEE, 1(1):26–35,

Jan-Mar 2002. 1.2

[23] HONG, J. I.; LANDAY, J. A.. An architecture for privacy-sensitive

ubiquitous computing. In: MOBISYS ’04: PROCEEDINGS OF THE

2ND INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLI-

CATIONS, AND SERVICES, p. 177–189, New York, NY, USA, 2004. ACM

Press. 1.2, 2, 3.1.3

[24] GIBBONS, P.; KARP, B.; KE, Y.; NATH, S. ; SESHAN, S.. Irisnet: an

architecture for a worldwide sensor web. Pervasive Computing, IEEE,

2(4):22–33, Oct.-Dec. 2003. 1.2

[25] CHEN, G.; LI, M. ; KOTZ, D.. Design and implementation of a

large-scale context fusion network. In: MOBILE AND UBIQUITOUS

SYSTEMS: NETWORKING AND SERVICES, 2004. MOBIQUITOUS 2004.

THE FIRST ANNUAL INTERNATIONAL CONFERENCE ON, p. 246–255,

22-26 Aug. 2004. 1.2, 2.1.6, 3

[26] DEARLE, A.; KIRBY, G. N. C.; MORRISON, R.; MCCARTHY, A.; MULLEN,

K.; YANG, Y.; CONNOR, R. C. H.; WELEN, P. ; WILSON, A.. Architec-

tural support for global smart spaces. In: MDM ’03: PROCEEDINGS

OF THE 4TH INTERNATIONAL CONFERENCE ON MOBILE DATA MAN-

AGEMENT, p. 153–164, London, UK, 2003. Springer-Verlag. 1.2, 3.3.3

[27] KIANI, S. L.; RIAZ, M.; ZHUNG, Y.; LEE, S. ; LEE, Y.-K.. A distributed

middleware solution for context awareness in ubiquitous sys-

tems. In: 11TH IEEE INTERNATIONAL CONFERENCE ON EMBED-

DED AND REAL-TIME COMPUTING SYSTEMS AND APPLICATIONS

Context Management for Distributed and Dynamic Context-Aware Computing

97

(RTCSA’05), p. 451–454, Los Alamitos, CA, USA, 2005. IEEE Computer

Society. 1.2

[28] BUCHHOLZ, T.; KRAUSE, M.; LINNHOFF-POPIEN, C. ; SCHIFFERS, M..

CoCo: Dynamic composition of context information. In: FIRST

ANNUAL INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUI-

TOUS SYSTEMS: NETWORKING AND SERVICES (MobiQuitous’04), p.

335–343, 2004. 1.2, 3.3.4

[29] SPRINGER, T.; KADNER, K.; STEUER, F. ; YIN, M.. Middleware

support for context-awareness in 4g environments. In: WOWMOM

’06: PROCEEDINGS OF THE 2006 INTERNATIONAL SYMPOSIUM ON

ON WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS,

p. 203–211, Washington, DC, USA, 2006. IEEE Computer Society. 1.2, 3.2.2

[30] HESSELMAN, C.; BENZ, H.; PAWAR, P.; LIU, F.; WEGDAM, M.; WIB-

BLES, M.; BROENS, T. ; BROK, J.. Bridging context management

systems for different types of pervasive computing environments.

In: FIRST INTERNATIONAL CONFERENCE ON MOBILE WIRELESS MID-

DLEWARE, OPERATING SYSTEMS AND APPLICATIONS (MOBILWARE),

Innsbruck, Austria, February 2008. ACM Press. 1.2, 3.4

[31] DA ROCHA, R. C. A.; ENDLER, M.. Evolutionary and efficient con-

text management in heterogeneous environments. In: MPAC’05:

PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP ON MID-

DLEWARE FOR PERVASIVE AND AD-HOC COMPUTING, p. 1–7, New

York, NY, USA, 2005. ACM Press. 1.2

[32] DA ROCHA, R. C. A.; ENDLER, M.. Context management in het-

erogeneous, evolving ubiquitous environments. IEEE Distributed

Systems Online, 7(4), April 2006. art. no. 0604-o4001. 1.2

[33] UNDERCOFFER, J.; PERICH, F.; CEDILNIK, A.; KAGAL, L. ; JOSHI,

A.. A secure infrastructure for service discovery and access in

pervasive computing. Mob. Netw. Appl., 8(2):113–125, 2003. 2

[34] EUGSTER, P. T.; FELBER, P. A.; GUERRAOUI, R. ; KERMARREC, A.-

M.. The many faces of publish/subscribe. ACM Comput. Surv.,

35(2):114–131, 2003. 2, 2.1.5

[35] WYCKOFF, P.; MCLAUGHRY, S.; LEHMAN, T. ; FORD, D.. TSpaces.

IBM Systems Journal, 37(3), 1998. 2

Context Management for Distributed and Dynamic Context-Aware Computing

98

[36] SACRAMENTO, V.; ENDLER, M.; RUBINSZTEJN, H. K.; LIMA, L. S.;

GONCALVES, K. ; DO NASCIMENTO, F. N.. MoCA: A middleware

for developing collaborative applications for mobile users. IEEE

Distributed Systems Online, 5(10), Oct. 2004. 2

[37] HENRICKSEN, K.; INDULSKA, J.. Developing context-aware perva-

sive computing applications: Models and approach. Pervasive and

Mobile Computing, 2(1):37–64, February 2006. 2, 3.1.2, 7.4.1

[38] ORR, R. J.; ABOWD, G. D.. The smart floor: a mechanism for natu-

ral user identification and tracking. In: CHI ’00: CHI ’00 EXTENDED

ABSTRACTS ON HUMAN FACTORS IN COMPUTING SYSTEMS, p. 275–

276, New York, NY, USA, 2000. ACM. 2.1.1

[39] STRANG, T.; LINNHOFF-POPIEN, C.. Service interoperability on

context level in ubiquitous computing environments. In: PRO-

CEEDINGS OF INTERNATIONAL CONFERENCE AN ADVANCES IN

INFRASTRUCTURE FOR ELECTRONIC BUSINESS, EDUCATION, SCI-

ENCE, MEDICINE, AND MOBILE TECHNOLOGIES ON THE INTERNET,

L’Aquila, Italy., 2003. 2.1.2, 3.3.4

[40] STRANG, T.; LINNHOFF-POPIEN, C.. A context modeling survey.

In: FIRST INTERNATIONAL WORKSHOP ON ADVANCED CONTEXT

MODELLING, REASONING AND MANAGEMENT, Nottingham, England,

Sept. 2004. 2.1.2

[41] HENRICKSEN, K.; LIVINGSTONE, S. ; INDULSKA, J.. Towards a hybrid

approach to context modelling, reasoning and interoperation. In:

1ST INTERNATIONAL WORKSHOP ON ADVANCED CONTEXT MOD-

ELLING, REASONING AND MANAGEMENT, p. 54–61, Orlando, Florida,

March 2004. 2.1.2

[42] LAMARCA, A.; CHAWATHE, Y.; CONSOLVO, S.; HIGHTOWER, J.;

SMITH, I.; SCOTT, J.; SOHN, T.; HOWARD, J.; HUGHES, J.; POTTER,

F.; TABERT, J.; POWLEDGE, P.; BORRIELLO, G. ; SCHILIT, B.. Place

Lab: Device positioning using radio beacons in the wild. In: 3RD

INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING, Munich,

Germany, 2005. 2.1.3

[43] MÜHL, G.; FIEGE, L. ; PIETZUCH, P.. Distributed Event-Based

Systems. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2006. 2

Context Management for Distributed and Dynamic Context-Aware Computing

99

[44] CAPRA, L.; EMMERICH, W. ; MASCOLO, C.. CARISMA: context-

aware reflective middleware system for mobile applications. IEEE

Transactions on Software Engineering, 29(10):929–945, oct 2003. 2.1.5, 7.4.1

[45] JUDD, G.; STEENKISTE, P.. Providing contextual information to

pervasive computing applications. In: PERVASIVE COMPUTING

AND COMMUNICATIONS, 2003. (PERCOM 2003). PROCEEDINGS OF

THE FIRST IEEE INTERNATIONAL CONFERENCE ON, p. 133–142, 23-26

March 2003. 3.1, 3.1.4

[46] MENESES, F.. Context management in ubiquitous systems. PhD

thesis, Escola de Engenharia, Universidade do Minho, Portugal, 2007. (in

portuguese). 3.1, 3.1.5

[47] SEGALL, B.; ARNOLD, D.; BOOT, J.; HENDERSON, M. ; PHELPS, T..

Content Based Routing with Elvin4. Proceedings AUUG2K, Canberra,

Australia, June, 2000. 3.1.2

[48] GARLAN, D.; SIEWIOREK, D.; SMAILAGIC, A. ; STEENKISTE, P..

Project aura: toward distraction-free pervasive computing. Per-

vasive Computing, IEEE, 1(2):22–31, April-June 2002. 3.1.4

[49] MENESES, F.. Advances in pervasive computing, chapter Context

management for heterogeneous administrative domains, p. 73–79. Austrian

Computer Society, Vienna, 2004. 3.1.5

[50] KIANI, S. L.; RIAZ, M.; LEE, S. ; LEE, Y.-K.. Context awareness

in large scale ubiquitous environments with a service oriented

distributed middleware approach. In: ICIS ’05: PROCEEDINGS OF

THE FOURTH ANNUAL ACIS INTERNATIONAL CONFERENCE ON COM-

PUTER AND INFORMATION SCIENCE (ICIS’05), p. 513–518, Washington,

DC, USA, 2005. IEEE Computer Society. 3.3.1

[51] WALDO, J.. The Jini architecture for network-centric computing.

Communications of the ACM, 42(7):76–82, 1999. 3.3.1

[52] BUCHHOLZ, T.; LINNHOFF-POPIEN, C.. Towards realizing global

scalability in context-aware systems. LNCS: Location- and Context-

Awareness, 3479:26–39, 2005. 3.3.4

[53] HESSELMAN, C.; EERTINK, H.; WIBBELS, M.; SHEIKH, K. ; TOK-

MAKOFF, A.. Controlled disclosure of context information across

ubiquitous computing domains. Sensor Networks, Ubiquitous and

Context Management for Distributed and Dynamic Context-Aware Computing

100

Trustworthy Computing, 2008. SUTC ’08. IEEE International Conference on,

p. 98–105, June 2008. 3.4

[54] GUTTMAN, E.; PERKINS, C.; VEIZADES, J. ; DAY, M.. Service Location

Protocol, Version 2. Technical Report IETF RFC 2608, IETF, June 1999.

www.ietf.org/rfc/rfc2608.txt. 6.2.4

[55] CHAN, A. T. S.; CHUANG, S.-N.. MobiPADS: a reflective middleware

for context-aware mobile computing. IEEE Transactions on Software

Engineering, 29(12):1072–1085, Dec 2003. 7.4.1

[56] COUTAZ, J.; CROWLEY, J. L.; DOBSON, S. ; GARLAN, D.. Context is

key. Commun. ACM, 48(3):49–53, 2005. 8

[57] CARZANIGA, A.; ROSENBLUM, D. S. ; WOLF, A. L.. Achieving scala-

bility and expressiveness in an internet-scale event notification

service. In: PROCEEDINGS OF THE NINETEENTH ANNUAL ACM SYM-

POSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, p. 219–227,

Portland, Oregon, July 2000. 8

[58] HESSELMAN, C.; EERTINK, H. ; WIBBELS, M.. Privacy-aware con-

text discovery for next generation mobile services. International

Symposium on Applications and the Internet Workshops (SAINTW’07), 00:3,

2007. 8.2.5

