
Statistical Approaches to Predicting and Diagnosing Performance Problems in
Component-based Distributed Systems: An Experimental Evaluation

Sand Correa
Department of Informatics

PUC-Rio, Brazil
Email: scorrea@inf.puc-rio.br

Renato Cerqueira
Department of Informatics

PUC-Rio, Brazil
Email:rcerq@inf.puc-rio.br

Abstract—One of the major problems in managing large-
scale distributed systems is the prediction of the application
performance. The complexity of the systems and the avail-
ability of monitored data have motivated the applicability of
machine learning and other statistical techniques to induce
performance models and forecast performance degradation
problems. However, there is a stringent need for additional
experimental and comparative studies, since there is no optimal
method for all cases. In addition to a deeper comparison of
different statistical techniques, studies lack on two important
dimensions: resilience to transient failures of the statistical
techniques, and diagnostic abilities. In this work, we address
these issues, presenting three main contributions: first, we
establish the capability of different statistical learning tech-
niques for forecasting the resource needs of component-based
distributed systems; second, we investigate an analysis engine
that is more robust to false alarms, introducing a novel
algorithm that augments the predictive power of statistical
learning methods by combining them with a statistical test
to identify trends in resources usage; third, we investigate the
applicability of statistical tests for identifying the nature and
cause of performance problems in component-based distributed
systems.

I. INTRODUCTION

Current distributed applications exhibit complex behaviors
stemming from the interaction of numerous hardware and
software elements, workload, traffic conditions, and quality
guarantees. To handle this complexity, middleware stan-
dards, such as CORBA, Java RMI, and Web Services, have
been used to provide reusable services across distributed
applications. Such services include security, persistence, and
distributed connectivity. The middleware approach clearly
separates the business logic specific to each application from
the common services required across multiple systems. The
modularity and reusability provided by this solution success-
fully address complex system requirements. Nonetheless,
managing the performance of the emerging systems becomes
more difficult, as the complete system behavior is observed
only during execution. In addition, middleware technologies
have a significant runtime footprint, and the quantification of
this overhead relies on the infrastructure and implementation
provided by each technology.

In fact, it is recognized that middleware technologies

make the problem of understanding the eventual perfor-
mance of distributed applications even more difficult [1]. De-
spite this fact, providing performance guarantees is a crucial
issue for many applications. Therefore, many approaches
have been proposed to deal with this problem, most of which
try to decrease the burden on system management by de-
veloping models for capturing the dynamics of middleware-
based applications. For example, much work [2], [3], [1] has
been done in analytical modeling of system performance, in
which queuing network and control theory have been applied
to model the behavior of applications built on middleware
technologies. However, these models may require substantial
effort from human experts and may be hard to derive, as
middleware-based systems exhibit a complex relationship
with the execution environment. On the other hand, the
current monitoring and data collection tools allow measure-
ments on the various components of a distributed system.
The availability of monitored data has inspired some recent
work [4], [5], [6] to apply statistical learning techniques
(methods, algorithms) to build performance models automat-
ically. These approaches do not assume human involvement
and require little domain analysis.

Despite all efforts to apply statistical learning techniques
in the context of performance problems, the use of these
techniques for autonomic system management is still at an
early stage and there is considerable room for improvement,
since most efforts concentrate on the forecasting dimen-
sion, and evaluations are taken for individual techniques.
However, as observed by Kohavi in [7], no algorithm can
outperform all others in every case and, thus, more compar-
ative studies are important. The relevance of such studies
is also recognized by Zhang et al. in [8], in which the
authors highlight the need for reviewing the applicability
and suitability of different techniques for the autonomic
management field (see Section IV). Beyond the forecast-
ing dimension, few efforts have applied statistical learning
techniques for diagnostic purposes. Nevertheless, the main
drawback of this approach is that many machine learning
techniques are not easily interpretable, and this fact may
turn the diagnosis more difficult.

In this paper, we present an experimental evaluation

of the capability of statistical approaches to characterize
performance problems in middleware-based systems. More
specifically, the presented experiments are structured in order
to answer three questions:

• Q1: Which statistical learning methods are suitable to
forecast whether the system will meet some objective
within a given time span, based on a current set of
observed metrics?

• Q2: Considering that statistical learning methods are
subject to false alarms, can we make the prediction
process more robust against transient failures of the
learning methods?

• Q3: Whenever a period of poor performance is forecast,
can we quantify the influence of each monitored metric
on this undesirable event?

The answers to these questions will support the analysis of
performance problems in terms of three dimensions that are
relevant for any autonomic performance management tool:
prediction of performance problems, robust prediction, and
diagnosis. The first dimension enables rational allocation
of computing resources and better task scheduling. The
second dimension attempts to reduce the false alarm rate of
prediction methods, ensuring more robustness to predictions
under production settings. The third dimension enables the
identification of the cause of a problem and allows specific
adaptation decisions to be taken to repair the problem.

We implemented a vast number of experiments for which
a reference scenario was defined: a MapReduce application
built on top of a component-based middleware system.
The experiments enabled this work to make the following
contributions:

• A systematic comparison of learning methods applied
to predict performance degradation in a middleware-
based system. We examine the abilities of the major
families of classifiers in providing an online mechanism
to capture the performance behavior of middleware
based-systems.

• The design and evaluation of an analysis engine that
is more robust to false alarms. We present a perfor-
mance degradation warning algorithm that augments
the predictive power of machine learning methods,
combining them with a statistical test for trend. To
the best of our knowledge, this is the first warning
algorithm designed to achieve robustness using such
combination of approaches.

• An evaluation of statistical tests applied to identify the
nature and cause of performance problems. Statistical
tests are simple, can be computed very efficiently and
also provide a way to promote diagnosis regardless of
the statistical learning method in use by the forecast-
ing activity. To the best of our knowledge, statistical
tests have not been used for diagnosing performance
problems in any previous work.

This paper is organized as follows: in Section II, some
additional discussion about performance management in the
context of this work are provided, and the reference scenario
is introduced; in Section III, the experiments and their
results are presented; Section IV discusses related work; and
Section V concludes and describes future work.

II. THE REFERENCE SCENARIO

This work focuses on ensuring high performance of
middleware-based applications, which is defined in terms
of business objectives or service level objectives (SLO). An
example of a typical service level objective is a threshold
on the response time of a service, as this metric is directly
linked to customer satisfaction. With respect to an SLO,
a service can provide one of two states: compliance or
violation. A service is said to be in compliance with an
SLO if the performance goal is met; otherwise, it is said to
be in violation. In this work, we assume that a service in
violation of an SLO is indicative of poor performance.

In order to analyze the performance behavior of
middleware-based systems, we defined a reference scenario,
in which SCS [9], a CORBA-like component-based mid-
dleware, was used as a reference to middleware technol-
ogy. In SCS, a service is represented by one or more
application level components. Two elements of the runtime
infrastructure control the overall deployment of the appli-
cation components. The first element, known as component
container, is responsible for controlling the lifecycle and
execution of application components. The second element,
known as execution node, represents the network node in
which component containers and application components
are deployed. As described in previous work [10], SCS is
instrumented with monitoring points which measure system
(execution node), middleware (container), and application
(application component) metrics.

As a reference to component-based applications, we con-
sidered a MapReduce [11] framework implemented using
SCS components. MapReduce is a master-worker parallel
programming style, used in clusters of computers for pro-
cessing huge data sets on certain kinds of distributable prob-
lems. Throughout this paper, we assume that the framework
runs the WordCounter application, which counts the appear-
ances of each different word in a set of documents. Table I
lists the metrics collected by the monitoring infrastructure
when the WordCounter application was running. Monitoring
data were collected every 15 seconds and used in analyses
to address the questions posed in Section I.

The reference scenario described above leads us to make
two observations: first, although we chose SCS as the refer-
ence middleware technology, the results presented in the next
section can be generalized for any infrastructure presenting
equivalent abstractions (application components, containers,
and execution nodes); and, second, the time interval in which
data were collected can be changed. However, as the value

of 15 seconds was sufficient to capture compliance with and
violations of SLOs in the MapReduce application, for the
purpose of this work, we kept it as a constant.

III. EXPERIMENTS

This section focuses on addressing questions Q1, Q2 and
Q3. In the course of the investigation, we implemented
a management architecture comprising some statistical ap-
proaches to deal with each of the three questions. We named
this architecture SMART (Self-MAnaged Resource uTiliza-
tion). In SMART, a local monitor executes in each network
node where an application component is instantiated. Each
local monitor analyzes the data supplied by the SCS monitor-
ing infrastructure and periodically: constructs performance
models of the application, reliably estimates the state of
the services (compliance or violation) and, if necessary,
diagnoses the cause of a violation. Each individual node is
analyzed separately from other nodes. Bellow we describe
the approaches we implemented in SMART in order to
answer the questions and share the results we obtained. At
the end of this section, we present an additional evaluation
of the benefits and the overhead imposed by the architecture
in a specific application setting.

A. Which statistical learning methods are suitable to fore-
cast performance problems?

In order to answer question Q1, we cast the performance
degradation prediction problem as a supervised classification
problem. As described in [4], the performance degradation
prediction problem fits naturally into the supervised classi-
fication framework. In our experiments, a vector m ∈ M
is a set of values for n collected performance metrics (see
Table I) at time t, and label s is one of two states from the set
S = {s+ = 1, s− = 0}, where s+ denotes compliance with
an SLO, and s− represents violation. A log of observations
of the metrics collected from the system in operation, a set
of examples (m,s), is the training data set supplied for the
learning procedure. The learning is supervised because an
SLO indicator identifies the values of s corresponding to
each observed m. Thus, given an SLO (defined by end-
users), an SLO indicator (specified externally), and a training
data set (the log of collected metrics), we induce a model of
the relationship between M and S. Then, we use the model
to decide whether any given set of metric values is more
likely to correlate with a compliance with or violation of the
SLO. We assume that, in addition to classification, the model
provides estimated membership probabilities of the sample
in each class. This means that, given a new sample m, the
model estimates the probability of m being in compliance
(P (s+|m)) with or violation (P (s−|m)) of an SLO1.

1Note that in each training example (m,s), there is an offset l (l ≥ 0)
between the times when m and s are collected, describing how far into the
future we wish to predict[12]. For illustrative purpose, in this paper, we
considered l = 0. Analysis of different values will be explored in future
work.

We investigated the following algorithms to build this
model: decision tree (DT), Bayesian network (BN), and sup-
port vector machine (SVM). These algorithms were chosen
because they represent the major families of classifiers in
use today. We used the implementations from the Weka [13]
library. As these algorithms are well-known in the machine
learning literature, we decided to omit their details and,
instead, give more information on the used implementations.

Decision tree. We used J48, the classical algorithm for
generation of a C4.5 decision tree.

Bayesian network. We focused on restricted network
– such as Naive Bayes (NB), Tree-Augmented Naive
Bayes (TAN), and Aggregating One-Dependence Estimators
(AODE) – and full Bayesian networks (FBN). In the NB
algorithm, attributes are assumed to be independent of each
other given the class variable. The TAN classifier extends
the NB approach by relaxing the independence assumption
so that the attributes are connected to each other as a
tree. In AODE, an ensemble of TANs are learned and the
classification is produced by aggregating the classifications
of all qualified TANs. In AODE, a TAN is built for each
attribute, in which the attribute variable is set to be the
parent of all other attributes. Finally, in FBN, all variables
are dependent. In this study, we used the algorithm pro-
posed in [14] to build FBNs. Attributes in this algorithm
are assumed to be dependent on each other, and attribute
independence is captured in CPTs (conditional probability
tables) learned from decision trees. Because the effort on
structure learning is reduced by using a full network, this
algorithm demonstrates good performance.

Support vector machine. We used WLSVM [15], an
implementation of the LibSVM running under Weka envi-
ronment. We chose LibSVM because it runs much faster
than Weka SMO and supports several SVM methods. In
particular, we tested SVM with radial kernel, because this
kernel can handle the case in which the relation between
class labels and attributes is nonlinear, and it requires fewer
hyperparameters than other kernels.

Bellow we present a comparative study of the algorithms.
After describing the data set used in the evaluation, we draw
on the results.

MapReduce application log

We used a data set with 79, 319 instances or samples. It
represents a log of executions of the WordCounter appli-
cation and its behavior (performance) during such execu-
tions. The application ran on a cluster of four machines:
three running Workers, and one running the Master. All
the machines were interconnected with a 1Gbps Ethernet
link. The metrics collected in this log are listed in Table
I. During execution, one of the Workers’ nodes was sub-
mitted to stress with a workload injector. Each execution
occurred in a workload scenario that exercised one or
more resource types in different intensities. The injection

Metrics related to execution nodes
net bytes in Number of bytes received from network
net bytes out Number of bytes transmitted to network
disk bytes read Number of bytes read from disk
disk bytes write Number of bytes written to disk
nfs bytes read Number of bytes read from nfs
nfs bytes write Number of bytes written to nfs
cpu usage CPU time (system+user)
memory usage Amount of memory used

Metrics related to containers
containers avg cpu usage CPU usage per container

Metrics related to application components
avg response time Average response time
map reduce phase Processing phase (map or reduce)

Table I
METRICS COLLECTED AND USED FOR ANALYSIS

Detection False Alarm Balance Training
Rate Accuracy Time

ZR - - 34% 2s
NB 57% 13% 74% 3s

TAN 55% 8.8% 79% 19s
AODE 54% 13% 77% 3s
FBN 54% 7% 82% 91s
DT 53% 7% 82% 23s

SVM 54% 7% 83% 6500s

Table II
COMPARING ALGORITHMS AGAINST ACCURACY AND SPEED

comprised three workload patterns: CPU, disk and network.
The intensity of each workload pattern was set to 20%, 50%
and 80% of utilization. After logging, potential noises or
outliers were removed from the data set by constraining
the values of attribute avg response time to lie in the
5th and 95th percentiles of the variable. Then, the class
attribute was estimated by defining a threshold value or
SLO for variable avg response time. Each sample with
avg response time above the SLO was categorized as
a violation. The SLO was computed as a percentile of
avg response time. In the experiments carried out in this
work, SLO varied from 50 to 90 percentile. After class
estimation, the data set was discretized into five levels.

Results

In this experiment, we evaluated the applicability of the
six algorithms (DT, NB, TAN, AODE, FBN, and SVM) to
derive models to assist autonomic performance management.
To this end, we contrasted the algorithms against a variety
of characteristics that are important for building online
performance models, such as the ones bellow.
• Accuracy: establishes the predictive power of the dif-

ferent methods.
• Time requested for training and classification: estab-

lishes the computational times of the algorithms for
training and classification.

• Sensitivity to the number of samples in violation:
evaluates the algorithm behavior in data sets with a
small number of samples in violation. This test is very
important in the context of performance problems, since
performance degradation is often a rare event.

• Sensitivity to the training data set size: establishes the
algorithm behavior in small data sets. This is important
to characterize algorithms that present an adequate be-
havior even when deployed in dynamic environments,
where models have to be frequently reconstructed.

In order to establish the predictive power of the algo-
rithms, we used balanced accuracy. This metric weights

the performance of the models on each of the two classes
equally, and, is therefore more informative than straight
prediction accuracy in settings in which one of the target
classes is rare [4]. The evaluation also included the ZeroR
classifier (ZR), which predicts the mode of the labels. This
classifier was considered for the purpose of base comparison.
Table II shows the performance for each algorithm across the
MapReduce application log using 10-fold cross-validation.
The columns in the table reflect the detection rate for
violation, false alarm for violation, balance accuracy, and
time required for training attained by the indicated algorithm
averaged over the five SLO definitions (50, 60, 70, 80,
and 90 percentile of avg response time). The parameter
settings for the algorithms were as follows. NB, FBN, and
AODE used Weka default parameters. TAN used ENTROPY
as the quality score. We also tried BAYES and MDL scores,
but we found no significant improvement by changing
the quality score. DT and SVM curves were created by
performing parameter selection by cross-validation over the
parameters of the algorithms. For DT, a pruned tree with
confidence factor of 0.3 provided the best result. For SVM,
the radial kernel was used with the parameters adjusted as:
Capacity C = 32 and kernel width G = 0.5.

Except for ZR, all classifiers showed a high balance
accuracy. ZR, on the contrary, performed badly, showing
that most cases yielded non-trivial predictions. Throughout
the experiment, SVM showed the best average accuracy.
However, the accuracy came at the expense of the highest
computational time and many parameters to set. TAN, DT,
and FBN also performed well, but the computational time
of the latter was higher. NB and AODE generated more
false alarms but were, in turn, able to achieve high detection
rates and the best computational times. We also evaluated the
computational time required for classifying a single sample.
For all classifiers, this time was negligible (less than 1 ms),
except for SVM, whose classification took 5 ms.

Table II shows that the average accuracy attained by each
classifier over the SLO definitions was high. However, the

average detection rate fared worse, because it is more sensi-
tive to the SLO definition than the balance accuracy. Because
of that, in order to evaluate the sensitivity of the algorithms
in relation to the number of samples in violation, we chose to
plot the detection rate, rather than the accuracy, as a function
of the SLO definition. Figure 1(a) shows that, as expected, as
the SLO increased from 50 to 90 percentile, the detection
rate decreased. This happens because the SLO represents
a threshold on the average response time of the services.
As the percentile increases, so does the threshold, and the
number of samples in violation decreases. Computing the
slope of each curve in Figure 1(a), we observed that NB
and TAN were less sensitive to the reduction of samples in
violation than the other classifiers.

We evaluated the classifiers in relation to their sensitivity
to the training data set size. We generated new data sets
with sizes varying from 10 to 500 samples. Each new data
set was generated by randomly picking samples from the
original training data set. Then, we computed the accuracy
of all classifiers across all new data sets. Figure 1(b) plots
the result for this test until the training window reaches 150
samples. We can observe that the accuracy of the classifiers
improved over data set size but gradually saturated. In gen-
eral, starting from 60 samples, the accuracy of the classifiers
was satisfactory. Before that, for smaller data sets, SVM
performed better than the other algorithms. AODE and NB
presented the worst performance for small data sets.

Overall Evaluation

Although all six classifiers performed comparably well in
terms of accuracy, the SVM provided the best overall results,
even for small data sets. However, the time required to train
the SVM classifier was very expensive. In addition to this
cost, the time required to search the parameter values to
find the optimum performance also has to be taken account.
For example, in our experiments, it took almost one hour
for performing such search. Therefore, we considered the
SVM classifier learned here prohibitive to derive online
performance models, especially in dynamic environments
where the models have to be frequently reconstructed. The
DT and FBN classifiers provided the second-best accuracy
and the same false alarm rate provided by SVM. Indeed,
both classifiers behaved very similarly in terms of accuracy.
However, while FBN performed well in small data sets,
DT performed more poorly than expected. FBN presented
the second-worst computational time. Because of these dis-
advantages, we considered these methods less suitable for
autonomic performance management. On the other hand,
the NB, AODE and TAN classifiers, although less successful
than the other classifiers in terms of accuracy and false alarm
rate, were considerably better in terms of computational
time. In fact, these algorithms presented the best trade-off
between accuracy and computational time. In addition, these
models were also less sensitive to the number of samples in

violation available in the training data set. Particularly, we
considered TAN and AODE the winners, since they out-
performed NB while they were also computational simple.
TAN had a number of advantages over the other classifiers:
fast training time, high accuracy and little sensitivity to both,
small training data sets and few samples in violation. AODE,
in turn, is inherently incremental, as the algorithm makes no
model selection. We highlight that, for all classifiers, it was
difficult to keep the false alarm rate low enough. Indeed,
as argued by Powers et al. in [5], classification methods
generate high false alarm rates. In the next section, we will
address this problem.

B. Can we make the prediction process more robust against
failures of the learning method?

Considering the performance degradation prediction prob-
lem, a typical training data set can be obtained using stan-
dard synthetic benchmarks or data sets coming from real or
production environments. In general, synthetic benchmarks
are not sufficiently rich to produce the wide range of
system conditions that might occur in practice [4], and, the
resulting training data set consequently exhibits statistical
variations in relation to real conditions. On the other hand,
data sets coming from real or production environments are
richer but subject to noise data which manifest randomly.
Therefore, when machine learning algorithms are deployed
in production settings, they are subject to transient failures,
whether they were trained using benchmarks or real data
sets. These failures can produce an unacceptable level of
false alarms and affect the confidence on the management
solution.

A preliminary examination of the classifier results was
done by plotting them as a function of time, when the
system is submitted to an increasing CPU workload. Figure 2
shows the behavior of the workload and the probability
of violation (P (s−|m)) outputted by a TAN classifier in
a trace of approximately 75-minute run. Each point in the
graphs represents the workload intensity (Figure 2(a)) or
the probability of violation (Figure 2(b)) averaged over ten
samples, each one collected at 15-second intervals. Two ob-
servations can be made from Figure 2. Firstly, the probability
of violation increased as the workload intensity increased.
Thus, a pattern of increasing probability of violation is
indicative of performance problems. Secondly, even though
the sequence of values of P (s−|m) was an increasing trend
curve, it was not monotonic since the classifier was subject
to failures. These observations led us to investigate statistical
tests for trend as a method for monitoring the outcomes
provided by classifiers.

We used a fast and very simple nonparametric statistical
test, the reverse arrangements test [16] (or RAG test), to
monitor pi, i = 1...N , a time sequence of the most recent
values predicted for P (s−|m). Given this time sequence,
the test computes A =

∑N−1
i=1 Ai, the sum of all reverse

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90

D
et

ec
tio

n
R

at
e

SLO definition

TAN
AODE
DT
FBN
NB
SVM

(a) Detection rate in relation to SLO definition

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

A
cc

ur
ac

y

Training data set size

TAN
AODE
DT
FBN
NB
SVM

(b) Accuracy in relation to training data set size

Figure 1. Comparing accuracy against SLO definition and training data set size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

C
P

U
 W

or
kl

oa
d

(%
)

Time (s)

(a) Workload behavior

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

of
 V

io
la

tio
n

Time (s)

(b) Probability of violation behavior

Figure 2. Workload and probability of violation in a system subject to stress

arrangements, being a reverse arrangement defined as an
occurrence of pi > pj when i < j. Given a significance
level α, the hypothesis of no trend in the sequence pi is
given by the interval AN ;1−α/2 ≤ A ≤ AN ;α/2. This means
that, if the sum of all reverse arrangements, A, does not fall
into the interval, the hypothesis of trend in the sequence pi
is accepted. If A falls under the lower limit, the test indicates
an increasing trend. Conversely, if A falls above the upper
limit, the test marks a decreasing trend.

In addition to the statistical test for trend described
above, we also applied a smoothing method, the weighted
moving average or WMA approach [16], to reduce the effect
produced by random variations in the sequence pi. Given the

sequence, we compute WMA as
∑N

i=1
i∗pi∑N

i=1
i

.

Algorithm 1 represents the warning algorithm resulting
from the combination of both approaches. We keep a se-
quence of the last N probabilities of violation outputted
by the classifier. Every time a new probability is available,
it replaces the oldest one in the sequence, triggering the
computation of RAG test and WMA. The algorithm raises an

alarm when WMA reaches thUpper or the RAG test detects
increasing trend at a certain probability of violation value
(thRag). On the other hand, the alarm is disabled when
WMA decreases to thLower or RAG test detects decreasing
trend at a certain probability of violation value. The thresh-
olds and the significance level α form the parameters that
control the trade-off between robustness and fast reaction to
performance degradation.

Results
In this experiment we used two workload patterns with

high oscillations, proposed in [4], to evaluate the effec-
tiveness of the warning algorithm. Firstly, we submitted
the system running the WordCounter application to a CPU
workload resembling a sinusoid overlaid under a ramp. This
test was an approximately 2-hour run, in which the CPU load
moved back and forth steadily. The intent of this workload
was to mimic sudden and short burst of increasing workload.
The TAN classifier was used in this test and a violation
was defined as occurring when cpu usage exceeds 50%.
The warning algorithm was configured as: thUpper = 0.5,
thLower = 0.2, thRag = 0.4, N = 10 and α = 0.01.

Algorithm 1 Combining RAG test and WMA to build a
warning algorithm
Require: A time sequence pi of the most recent values

predicted for the probability of violation. Thresholds
thUpper, thLower and thRag. Significance level α

Ensure: alarm on:0 (off) or alarm on:1 (on)
1: Given pi, i = 1...N , compute A and WMA
2: if WMA ≥ thUpper or (pN ≥ thRag and A <
AN ;1−α/2) then

3: alarm on = 1;
4: else if WMA ≤ thLower or (pN ≤ thRag and A >
AN ;α/2) then

5: alarm on = 0;
6: end if

Figure 3(a) plots: i) the CPU workload, ii) the false alarms
(for violation) emitted by the classifier, iii) the moment
the warning algorithm raised the alarm, and iv) the SLO
threshold value – as a function of time. The plot shows
that, while the workload oscillated rapidly, the immediate
value of the probability also oscillated and false alarms were
outputted. Throughout all of the test, however, the warning
algorithm was able to catch the prevalent trend with no false
alarms. Figure 3(a) shows that the alarm was raised only
few seconds after the CPU utilization reaches or exceeds
the threshold value.

Secondly, using the same configurations defined in the
sinusoid workload test, we submitted the system running
the WordCounter application to a CPU workload resembling
a step. This was a 2.5-hour run of an on/off workload, in
which the CPU load consisted of 12-minute long bursts
with 12 minutes between bursts. The intent of this workload
was to mimic sudden but sustained bursts of increasingly
intense workload against a backdrop of moderate activity.
Figure 3(b) plots the result of this test. We see that, although
the warning algorithm did not issue any false alarm, it was
not able to keep the alarm raised during the time interval
in which the CPU utilization reached 50%. The cause
of this misbehavior is explained by the classifier, which
performed poorly during this interval. As the CPU utilization
reached 80%, however, the warning algorithm performed as
expected. These results suggest that the warning algorithm
helps to improve the resilience to transient failures of the
classifiers. However, the effectiveness of the algorithm is
affected by successive errors of the classifiers.

C. Can we quantify the influence of each monitored metric
on a given performance problem?

Although some classification algorithms, such as Bayesian
networks and decision trees, answer questions about which
attributes and variables are the most important in a decision,
many classification methods, like neural networks and SVM,
do not have such interpretability properties. Motivated by

this limitation, we investigated machine learning indepen-
dent alternatives to the problem. In this subsection, we
introduce three statistical tests we applied to answer question
Q3: reverse arrangements test, z-scores and chi-square.
Typically, the first two tests attempt to learn the difference
between two populations or, in our case, the population in
compliance with an SLO, and the population violating an
SLO. The chi-square test, in turn, is applied to estimate the
independence of two variables, that is, to test the hypothesis
that two attributes (in our case, an ordinary attribute and
the class variable) are independent. We assumed that the
diagnostic algorithms are triggered when the warning algo-
rithm raises an alarm for performance degradation and that
the most recent samples used for forecasting performance
problems are kept in memory. We denoted these samples as
warning data set. We also assumed that a reference data set,
taken from the compliance population, is kept in memory.
The reference data never change, but the warning data does
since it is the last samples in use in the warning algorithm.

Reverse arrangements test. To apply the reverse ar-
rangements test for the purpose of diagnosis, we use the
warning data set and compare it to the reference data. For
each attribute, we apply the test for both data sets: warning
and reference. Based on the assumption that a pattern
of increasing attribute values is indicative of performance
degradation, the attributes which correlate more with a vio-
lation condition are those that present significant increasing
trend for the warning data set and no trend for the reference
data. Then, we rank these attributes (candidate attributes)
by their number of reverse arrangements computed using
the warning data set. The lower the number, the greater the
degree of correlation with a violation condition is.

Z-scores test. In the z-scores test, the warning data set is
also compared to the reference data. For each attribute, we
compute z as:

z =
mv −mc√
σ2

v

nv
+ σ2

c

nc

(1)

In Equation 1, mv , σ2
v are the mean and variance of the

attribute in the warning data, mc and σ2
c are the mean and

variance of the attribute in the reference data, nv is the
number of samples in the warning data set and nc is the
number of samples in the reference data. The z-scores test
compares the mean values of each attribute in both data sets.
Large positive z-scores indicate that the attribute is higher
in the population of violation.

Chi-square test. In order to use the chi-square test for
the purpose of diagnosis, we combine the warning and
reference data and apply the test to the resulting data set. The
chi-square algorithm [16] evaluates attributes individually
by measuring the chi-square statistic with respect to the
class variable. Using a contingency table, i.e., a frequency
table where a sample is classified according to two different

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000

P
er

ce
nt

ag
e

Time
CPU workload

Classifier false alarm
Warning algorithm alarm

CPU threshold

(a) Robustness test for sinusoid workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
er

ce
nt

ag
e

Time
CPU workload

Classifier false alarm
Warning algorithm alarm

CPU threshold

(b) Robustness test for step workload

Figure 3. Testing the robustness against false alarms in the warning algorithm

attributes, the chi-square statistic is computed as:

χ2 =
∑
i,j

(fij −N × πij)2

N × πij
(2)

In Equation 2, fij and N × πij are, respectively, the
observed and expected frequencies in the i, jth cell of the
contingency table. N is the number of samples and πij is the
probability, in the population, that an individual selected at
random will fall into attribute values xi and yj . The greater
the chi-square value, the greater the degree of correlation is
between the attribute and the class.

Results

We evaluated the accuracy of the statistical tests for diag-
nosing metrics related to performance degradation. We tested
the methods using data collected from the execution of the
WordCounter application in different workload scenarios.
Altogether, we created five data sets, each representing 12.5
minutes of system data, taken at 15 second intervals. Each
data set was created from a workload scenario comprising
three consecutive workload components, 〈c1, c2, c3〉, with
durations of 300, 225, and 225 seconds, respectively. Each
workload component exercises one or more resource types
at different intensities. A workload component ck=ic:id:in,
k = 1, 2, 3, denotes a pattern of ic CPU, id disk and in
net workload intensity. The five data sets and the workload
scenarios from which they were derived are shown in the
first five lines of Table III. The reference data comprised
50 random samples taken from a log of execution of the
WordCounter application with no stress applied to the sys-
tem. The warning data sets were taken to be the 50 samples
of each data set. Additionally, we tested the methods using
the warning data set available when the warning algorithm
(described in subsection III-B) raises an alarm. This data
set was collected from the step workload experiment (see
Figure 3(b)) and consisted of the last 50 samples collected
before the alarm being activated.

In order to evaluate the accuracy of the proposed tests,
we defined two sets: Rank, the set of the first three metrics
ranked by an algorithm, and Stress, the set of resources
(i.e. CPU, disk, etc) stressed in a given experiment. We
defined Srank =

∑3
i=1(4− i) ∗hi as the score an algorithm

accumulates when diagnosing the causes of a performance
degradation. In this case, the term (4 − i) is the reward
associated to the ith metric of Rank, and hi is an indicator
function that evaluates to 0 if the ith metric of Rank is not
related to any resource of Stress; otherwise, the function
evaluates to 1.

We evaluated each method across the six data sets (listed
in Table III). Table IV demonstrates the results for disk,
cpu-net and cpu-step data sets. For disk data set, for ex-
ample, we see that reverse arrangements incorrectly ranked
memory usage as the metric most related to violations.
The second metric, disk bytes read is closely related to
disk usage, but the third metric is not. Thus, considering
disk data set, the Srank score for reverse arrangements
was 3 × 0 + 2 + 1 × 0 = 2. This score was lower than
the scores of the other two algorithms, as the first two
metrics selected by these tests are closely related to disk
usage. In general, the chi-square test exhibited the best
scores across the first five data sets, followed by z-scores
and, then, reverse arrangements. However, the attempt at
diagnosing in the cpu-step data set painted a quite different
picture, and the chi-square test fared worse. The cause for
this poor performance is the small number of samples in
violation in cpu-step data set. Since this data set comprises
the last samples before the alarm being raised, there is a
preponderance of non-violation in most samples. z-scores
and reverse arrangements, in turn, are not sensitive to the
number of samples in violation, since they quantify trends
in time sequences. Nonetheless, the reverse arrangements
test performed more poorly than z-scores. We believe that
the time-order information required by reverse arrangements
was not important for diagnosing performance problem. To

confirm this suspicion, we will investigate other statistical
tests which make no assumption about time-order. We also
evaluated the computational time of the algorithms. Reverse
arrangements, z-scores and chi-square took, respectively,
231, 415 and 425 seconds. These numbers represent the
average time needed for each algorithm to perform a di-
agnosis in each of the six data sets when the reference and
the warning data set each has 50 samples. All the three tests
took less than one second to perform diagnosis, confirming
the efficiency of statistical tests. These experiments support
the conclusion that z-scores is more appropriate to our
diagnostic engine.

D. Additional remarks on experiments

In addition to the previous experiments, we evaluated the
potential benefits of SMART in capturing the performance
behavior of component-based applications. In this exper-
iment, the MapReduce framework employed the inferred
performance information provided by SMART to make
scheduling decisions and improve the overall application
execution time. To this end, we endowed the framework with
two scheduling policies: CPU-based, and SMART-based.
In the first policy, a pool of idle Workers is sorted by
the increasing values of the CPU utilization of the nodes.
In the second policy, the pool is sorted by the increasing
values of the violation probability. We used five nodes from
the cluster described in Subsection III-A: one running the
Master, and four running Workers. One of the Workers nodes
was submitted to a workload pattern of 50% of CPU and
50% of disk. TAN was defined as the classifier, and the
SLO was set to 80 percentile of avg response time. In
these conditions, the application running with the SMART-
based policy took 183.80 seconds to complete, while the
application running with the CPU-based policy took 207.80
seconds. Each execution time is the average of ten execu-
tions. The performance of the application running with the
SMART-based policy was approximately 11% better than
the other application. This result provided empirical support
for concluding that, even relatively simple component-based
applications, such as MapReduce applications, are too com-
plex for being modeled by simple rules, such as the CPU
utilization. The analysis engine provided by SMART, in turn,
is more suitable to capture the behavior of such applications.

We also evaluated the overhead imposed by SMART.
Using the same nodes and parameter settings of the previous
experiment, except for the workload injection, we evaluated
the performance of the MapReduce application in three
settings: i) monitoring and analysis services disabled, ii) only
the monitoring service enabled, and iii) monitoring and
analysis services (SMART) enabled . It took 139.44, 142.06
and 145.52 seconds to execute the application in settings i,
ii, and iii, respectively. Each execution time is the average
of ten executions. We observe that the overhead imposed by
the monitoring service over the MapReduce framework was

approximately 2%, and increased to 4% when the analysis
service was considered. Therefore, SMART imposed no
expressive performance loss to applications.

IV. RELATED WORK

Much work has been done on performance character-
ization of distributed systems, and there are two prin-
cipal schools in the literature. The first school consists
of approaches concerning analytical models on network
queue [2], [1] or control theory [3] to model the application
behavior. Analytical models have the following disadvan-
tages: they require substantial effort from human experts and
may be subject to mistakes or unrealistic assumptions; and,
because they are difficult to derive, most models limit to de-
scribe the application behavior in terms of CPU utilization.

The second school consists of approaches applying data
mining and machine learning techniques to induce perfor-
mance models from instrumentation data. Unlike those in the
first school, theses approaches assume little domain knowl-
edge and can be programmatically updated. Probabilistic and
machine learning-based models have been successfully used
in forecasting system resource utilizations and performance.
Among these works, Andrzejak et al. [12] use machine learn-
ing methods to predict performance degradation caused by
software aging, and Sahoo et al. [17] apply time series and
Bayesian network to predict system utilization. Statistical
learning techniques have also been applied successfully in
diagnostic tasks, such as performance debug [6] and attribut-
ing performance problems to low-level system features [4],
among others. There have been few works concentrating
on evaluating the fit and applicability of different statistical
learning techniques to deal with performance problems. A
comparative study of Bayesian network and neural networks
for modeling response time in service-oriented systems is
presented by Zhang et al. in [8]. However, only Bayesian
network and neural networks are considered in the study and
the effect of different instantiations and parametrizations is
not explored in the work. A more detailed work is presented
by Powers et al. in [5], in which the authors compare the
performance of regression methods and Bayesian network
classifiers to forecast performance problems. Our work
differs from the above in various way. We analyze the
performance problem under three dimensions: prediction,
robustness and diagnosis. Under the prediction dimension,
the major families of classifiers are investigated through a
wide range of characteristics. Under the diagnosis dimension
we propose the use of statistical tests and we make the
diagnosis problem independent of the classifier used in the
prediction process. Finally, none of the above works deal
with the robustness dimension.

V. CONCLUSION

In this paper we have addressed the characterization of
performance problems under three dimensions. First, we

Data Set Scenario
cpu 〈20:00:00,50:00:00,80:00:00〉
disk 〈00:20:00,00:50:00,00:80:00〉
net 〈00:00:20,00:00:50,00:00:80〉

cpu-disk 〈20:20:00,50:50:00,50:80:00〉
cpu-net 〈20:00:20,50:00:50,50:00:80〉
cpu-step step workload experiment

Table III
DATA SETS FOR DIAGNOSTIC EVALUATION

reverse arrangements z-scores chi-square
Data Set Attributes Srank Attributes Srank Attributes Srank

memory usage disk bytes write disk bytes read
disk disk bytes read 2 disk bytes read 5 disk bytes write 5

net bytes in nfs bytes write net bytes in
memory usage net bytes out net bytes in

cpu-net cpu usage 3 cpu usage 5 cpu usage 6
net bytes in disk bytes read net bytes out
net bytes in cpu usage disk bytes write

cpu-step net bytes out 0 containers avg 5 nfs bytes write 1
nfs bytes read net bytes in cpu usage

Table IV
METRICS SELECTED BY THE STATISTICAL TESTS

examined the abilities of the major families of classifiers in
capturing the performance behavior of middleware based-
systems. The evaluation showed that most of the charac-
teristics considered in the study favor Bayesian networks,
especially TAN and AODE. The evaluation also confirmed
that classification methods generate high false alarm rates.
Motivated by this fact, we added another dimension to the
problem: robustness. We presented a warning algorithm that
has proven to be effective in augmenting the robustness
of learning methods against false alarms. Finally, we an-
alyzed the problem under the diagnosis dimension. Our
study showed the applicability and efficiency of statistical
tests, especially the z-scores test, for characterizing the
potential change in metric trends automatically. Although
the presented results were obtained from experiments with
a specific application on top of a specific component-based
middleware, we believe these results can be generalized to
other applications and middleware technologies. Future work
includes evaluating the approaches presented in this paper
along with other types of systems.

REFERENCES

[1] S. Chen, Y. Liu, I. Gorton, and A. Liu, “Performance predic-
tion of component-based applications,” J. Syst. Softw., vol. 74,
no. 1, pp. 35–43, 2005.

[2] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni, “A
regression-based analytic model for capacity planning of
multi-tier applications,” Cluster Computing, vol. 11, no. 3,
pp. 197–211, 2008.

[3] D. Kusic and N. Kandasamy, “Risk-aware limited lookahead
control for dynamic resource provisioning in enterprise com-
puting systems,” Cluster Computing, vol. 10, no. 4, pp. 395–
408, 2007.

[4] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase,
“Correlating instrumentation data to system states: a building
block for automated diagnosis and control,” in Proceedings
of OSDI 2004. USENIX Association, 2004, pp. 231–244.

[5] R. Powers, M. Goldszmidt, and I. Cohen, “Short term perfor-
mance forecasting in enterprise systems,” in Proceedings of
KDD ’05. ACM, 2005, pp. 801–807.

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using
Magpie for request extraction and workload modelling,” in
Proceedings of OSDI 2004. Berkeley, USA: USENIX
Association, 2004, pp. 259–272.

[7] R. Kohavi, “Scaling up the accuracy of nave-bayes classi-
fiers: A decision-tree hybrid,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data
Mining. AAAI Press, 1996, pp. 202–207.

[8] R. Zhang and A. J. Bivens, “Comparing the use of bayesian
networks and neural networks in response time modeling
for service-oriented systems,” in Proceedings of SOCP ’07.
ACM, 2007, pp. 67–74.

[9] Tecgraf/PUC-Rio, “SCS - software component system.”
[Online]. Available: http://www.tecgraf.puc-rio.br/scs/

[10] E. Fonseca, S. Correa, and R. Cerqueira, “Experimenting
middleware-level monitoring facilities to observe component-
based applications,” in II Brazilian Symp. on Software Com-
ponents, Architectures, and Reuse. EDIPUCRS, pp. 96–106.

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of OSDI 2004.
USENIX Association, 2004, pp. 137–150.

[12] A. Andrzejak and L. M. Silva, “Using machine learning for
non-intrusive modeling and prediction of software aging,” in
NOMS. IEEE, 2008, pp. 25–32.

[13] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2005.

[14] J. Su and H. Zhang, “Full bayesian network classifiers,” in
ICML ’06: Proceedings of the 23rd international conference
on Machine learning. ACM, 2006, pp. 897–904.

[15] Y. EL-Manzalawy and V. Honavar, WLSVM: Integrating
LibSVM into Weka Environment, 2005, software available at
http://www.cs.iastate.edu/∼yasser/wlsvm.

[16] NIST/SEMATECH, “e-handbook of statistical methods.”
[Online]. Available: http://www.itl.nist.gov/div898/handbook/

[17] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira,
S. Ma, R. Vilalta, and A. Sivasubramaniam, “Critical event
prediction for proactive management in large-scale computer
clusters,” in Proc. of KDD ’03. ACM, 2003, pp. 426–435.

