
OGST: An Opportunistic Grid Simulation Tool

Gilberto Cunha Filho
Universidade Federal do Maranhão

Programa de Pós-Graduação
Departamento de Engenharia de Eletricidade

São Luı́s, MA, Brazil
gilberto.cunha@gmail.com

Francisco José da Silva e Silva
Universidade Federal do Maranhão

Departamento de Informática
São Luı́s, MA, Brazil
fssilva@deinf.ufma.br

Abstract

Simulation tools play a fundamental role on the develop-
ment of Grid middlewares since they provide a controllable
and low cost environment for validating new concepts and
implementations that address aspects such as heterogeneity,
scalability, security and the dynamism of Grid environ-
ments.

This paper describes the motivation, design principles,
architecture, and implementation of the Opportunistic Grid
Simulation Tool - OGST, an object-oriented discrete event
simulator whose main objective is to assist developers of
opportunistic Grid middlewares on validating new concepts
and implementations under different execution environment
conditions and scenarios. The preliminary motivation for
OGST development was to provide a way for evaluating
the behavior of adaptive and autonomic mechanisms for
opportunist Grids, such as adaptive scheduling approaches
and dynamic re-scheduling of applications.

1 Introduction

A computer grid comprises a hardware and software
infra-structure that allows integration and sharing of dis-
tributed resources, such as software, data and peripherals,
inside and among institutions. Computational grids have
become an attractive alternative for execution of applica-
tions that demand huge computational power and have been
used to solve problems in varied areas of scientific, en-
terprise, and industrial activities, such as: computational
biology, image processing for medical diagnosis, weather
forecast, high energy physics, marketing simulations, and
oil prospection.

Since its first developments in the early to mid 1990s,
several research groups have been addressing the complex-
ity of building the Grid software infrastructure, facing chal-
lenges such as the support for huge resource heterogeneity;

high scalability of distributed resources; efficient resource
allocation and management; dynamic resource scheduling,
transparent code mobility, in order to promote load balanc-
ing and support for non-dedicated nodes; distributed fault-
tolerance; security services and policies that must spread
through different administrative domains, and so on.

During the development of Grid middlewares,
researchers often employ simulation tools and techniques
for validating new concepts and implementations.
Simulation tools play a fundamental role on the
development of Grid middlewares since: (a) researchers
often do not have access to huge Grid testbed environments,
limiting the capacity for evaluating situations that demand
high amount of resources; (b) it is difficult to explore in
large scale application and resources scenarios involving
several users in a repetitive and controlled way, due to
the dynamic nature of Grid environments; (c) real Grid
applications usually consume great amount of time, ranging
from a few hours to even weeks.

During the last four years, our research group has
taken part on the development of the InteGrade project1

[12], a multi-university effort to build a novel grid
computing middleware infrastructure to leverage the
idle computing power of personal workstations for
the execution of computationally-intensive parallel
applications. Recognizing that the dynamic nature of
the grid infrastructure, its high scalability, and great
heterogeneity has turn impracticable its configuration,
maintenance, and recovery in case of failures solely by
human beings, we are currently involved on developing
autonomic mechanisms that can be applied on Grid
middlewares [18]. Regarding self-optimization, we are
investigating adaptive scheduling approaches and dynamic
re-scheduling of applications on InteGrade. In order
to be considered successful, this work must provide
answers to fundamental questions, such as: is it worth

1Homepage:www.integrade.org.br



to perform dynamic adaptations to the Grid scheduling
policy? What are the costs/benefits involved? When
adaptive actions should be applied? What are the adaptive
actions that should be considered? For finding answers
to those questions, we are making extensive use of
simulations, evaluating the behavior of several scheduling
algorithms commonly used on Grid environments on
different execution environments conditions. We are also
investigating how parameters used on those algorithms
can be dynamically adjusted as the execution environment
changes.

This paper describes the motivation, design principles,
architecture, and implementation of the Opportunistic Grid
Simulation Tool - OGST, a simulator we developed
for evaluating adaptive scheduling approaches for
opportunistic Grid middlewares. It also presents the
results and conclusions obtained with a first set of
simulations performed. This paper is organized as follows:
Section 2 discusses opportunistic Grids concepts and
gives an overview of the InteGrade middleware; Section 3
presents the requirements, architecture, and implementation
of OGST; Section 4 presents simulations performed and
their analysis; Section 5 presents a brief overview of other
Grid simulation tools, highlighting the differences from our
approach, while on Section 6 we drove the conclusions of
our work and discuss some future steps of our research.

2 Opportunistic Grids and the InteGrade
Middleware

Currently private and public institutions have a large
number of computing resources, such as personal comput-
ers and workstations, with great capacity for data processing
and storage. Computers are idle most of the time and, even
when they are in use, usually only a low percentage of their
computing capacity is effectively used [17]. Opportunistic
Grids are computing systems that provide the means for
using an installed base of regular computers for executing
high performance computing applications, leveraging the
available idle computing power [12]. The focus of an op-
portunistic Grid middleware is not on the integration of ded-
icated computer clusters (e.g. Beowulf) or supercomputing
resources, but on taking advantage of idle computing cycles
of regular computers and workstations that can be spread
through several administrative domains.

Developers of an opportunistic Grid middleware must
deal with several challenges, such as: (a) great instability,
since nodes are usually not dedicated and applications do
not execute on a controlled environment; (b) high hetero-
geneity of computing resources and network links, since
computers are usually spread through different administra-
tive domains; (c) the middleware should not interfere on
the regular use of computing resources or, at least, should

provide minimum impact on the performance perceived by
its users, otherwise it will be difficult to obtain their consent
for resource usage; (d) it is desirable the provision of mech-
anisms to predict the time-span on which a machine will be
idle in the future, minimizing the need for code migration.

2.1 InteGrade Overview

The InteGrade middleware is a fully object oriented
system that provides a robust and flexible software infra-
structure for opportunistic Grid computing. An InteGrade
Grid basic architectural unit is a cluster, a collection of
machines usually connected by a local network. Clusters
can be organized in a hierarchy, allowing to encompass
a large number of machines. Each cluster contains a
Cluster Manager node that executes InteGrade components
responsible for managing the cluster computing resources
and for inter-cluster communication. Other cluster nodes
are calledWorkstations, which export part of its resources
to Grid users. They can be shared or dedicated machines.

InteGrade currently allows the execution of three ap-
plication classes: (a) regular applications, where the exe-
cutable code is assigned to a single Grid node; (b) paramet-
ric or BoT (Bag of Tasks) applications, where several copies
of the executable code (tasks) are assigned to different Grid
nodes and each of them processes a subset of the input
data independently and without exchanging data; (c) par-
allel applications following the BSP or MPI models, whose
processes occasionally exchange data between themselves.

3 OGST

OGST (Opportunistic Grid Simulation Tool) is a simula-
tion utility whose main objective is to assist developers of
opportunistic Grid middlewares on validating new concepts
and implementations under different execution environment
conditions and scenarios. The preliminary motivation for
OGST development was to provide a way for evaluating
the behavior of scheduling algorithms commonly used on
Grid environments under different execution environment
conditions and the investigation of adaptive scheduling ap-
proaches and dynamic re-scheduling of applications.

Considering the simulation engine taxonomy described
by Sulistio et al [19], OGST is an object-oriented discrete
event simulator (DES). OGST allows the simulation of large
scale applications and resources scenarios involving several
users in a repetitive and controlled way. It was build on top
of the GridSim [4] simulation toolkit.

We defined OGST design principles in accordance with
the characteristics of opportunistic Grids, establishingthe
following requirements for its development: (1) it must
provide support for defining Grid environments that exhibits
high heterogeneity of machines and network links; (2) it



must allow the definition of heterogeneous applications,
ranging from regular to bag-of-tasks and parallel applica-
tions, that consume great amount of time, varying from a
few hours to even weeks; (3) it must allow the simulation of
frequent join and leave of nodes, since nodes are usually not
dedicated on opportunistic Grids; (4) it must allow node and
link failure injection, due to the common instability of op-
portunistic Grids; (5) it must provide support for simulating
application fault tolerance mechanisms commonly applied
on opportunistic Grids (e.g. restarting, checkpointing, and
replication [10]) in order to ensure the application execu-
tion progress even in an unstable execution environment;
(6) it must allow the simulation of variant availability of
each Grid node, considering different usage periods; (7)
it must allow the scheduling algorithm to obtain several
informations concerning the applications and the execution
environment, such as the estimated task completion time
and input files size and Grid nodes processing capacity and
load, in order to ease the development of a wide range
of scheduling algorithms; (8) it must allow the dynamic
replacement of the scheduling algorithm and/or dynamic
adjustment of scheduling parameters during the simulation
in order to allow the evaluation of adaptive scheduling ap-
proaches; (9) it must allow the use of traces collected from
real environments (such as node availability) in addition to
synthetic data; (10) it must provide the storage of relevant
simulation data, such as applications submission and con-
clusion timestamps.

3.1 OGST Architecture

We developed OGST architecture as an object-oriented
system. It was developed in the context of the InteGrade
project, but was designed to allow the simulation of generic
opportunistic Grids in order to be applied by other Grid
middleware research projects.

Figure 1 illustrates OGST main components. The
Feature Generator (FG) is a utility used for
defining the simulated Grid environment (nodes and
network links) and applications with their arrival rate.
OGST currently allows the simulation of regular and
bag-of-tasks applications. For each application task, its
length (in million instructions) must be provided. The
Application Submission and Control Tool
(ASCT) represents the Grid user and is responsible for
application submission, receiving notification about its
conclusion.

TheGlobal Resource Manager (GRM) receives
application submissions from the ASCT and runs the
Scheduling Strategy (SS). The scheduling
algorithm uses data about the availability of Grid
resources provided by theTrader Manager (TM). Each
application task is then mapped for execution on a specific

Figure 1. OGST Main Components

Grid node. Each Grid node runs aLocal Resource
Manager (LRM), responsible for the instantiation and
execution of application tasks scheduled to the node,
maintaining a list of tasks waiting for execution. It is
also responsible for varying the local resource load. The
SimulationDataRecordManager (SDRM) uses a
relational database for storing the simulation collected data,
such as each task start and conclusion timestamps. The TM
component is also responsible for simulating node failure
and recovery. OGST allows the simulation of application
execution replication, commonly used on opportunistic
Grid environments in order to circumvent eventual
node failures. TheApplication Replication
Manager (ARM) is responsible replica management.

3.2 OGST Implementation Highlights

OGST was written in Java and is an extension of the
GridSim [4] toolkit which, by its turn, inherits event man-
agement and threaded entity features from SimJava [14],
adding to this simulator networking and event delivery fea-
tures that allows synchronous and asynchronous communi-
cation for service access and delivery. GridSim provides
a base class calledGridSim that provides the commu-
nication between OGST components based on an event-
driven approach. This subsection describes the extensions
to GridSim provided by OGST.

OGST allows the automatic creation of simulated
Grid environments composed of a large amount of highly
heterogeneous nodes. This feature is provided by the
generateMachines() method of the Feature
Generator utility, which receives as input parameters
the path where a text file containing the description of the
generated machines should be stored, the desired amount
of nodes, and the processing capacity of the slowest and
fastest Grid nodes. Nodes are generated according to an



uniform distribution. A node processing capacity is defined
in MIPS (Millions Instruction Per Second) as per SPEC
(Standard Performance Evaluation Corporation) CPU
(INT) 2000 benchmark rating2.

GridSim does not explicitly define an application ex-
ecution model. The provided examples assume that all
tasks of a given application execute on a single parallel
machine at a user provided arrival time. OGST explicitly
defines three application execution models: regular, bag-of-
tasks, and parallel, using the same semantics presented on
Section 2. Our current implementation allows the definition
of only regular and bag-of-tasks applications. OGST pro-
vides the automatic generation of synthetic applications,a
feature provided by thegenerateRegularApp() and
generateBoTApp() methods of theFeature Genera-
tor utility. The first method receives as input parame-
ters the path where a text file containing the description
of the generated applications should be stored, the desired
amount of applications, the desired application arrival rate
per minute, and the minor and major application length to
be generated. The generated applications length, defined in
MI (Million Instructions), follows an uniform distribution.
The generateBoTApp() receives the same first three
parameters, a value that defines the amount of tasks to be
generated for each application, the average task length, and
a value that defines a variation percentage based on the
provided average task length, allowing the generation of
tasks with different lengths in order to simulate task het-
erogeneity. The generated tasks lengths follows an uniform
distribution while the tasks arrival time follows a Poisson
distribution, since the superposition of a large number of
independent renewal processes is approximately a Poisson
process, as stated by the Palm-Khintchine theorem [13].

GridSim failure injection architecture assumes that the
average amount of resources that should fail must be de-
fined at the beginning of the simulation [5]. The amount
of failing nodes, their failure time, and the failure duration
time follow a hyper-exponential distribution and are gen-
erated before the simulation start. Since our objective is
to evaluate scheduling heuristics under different execution
environment conditions (such as different failure rates),we
alter this behavior by allowing the definition of a desired
simulation mean time between node failures. Node failure
and its recovery are, then, generated during the simulation
execution and follow a exponential distribution.

Concerning fault tolerance mechanisms, GridSim allows
the simulation of an automatic restart of failed tasks. OGST
extends GridSim fault tolerance mechanism by providing
support for simulating the use of checkpoint and replication,
other common techniques used on opportunistic Grids. The
simulated checkpoint mechanism is based on a globally

2http://www.spec.org/osg/cpu2000/results/
res2003q2/cpu2000-20030422-02132.html

available distributed stable storage (as provided on Inte-
Grade [8]), allowing a fast task restart on another Grid
machine in case of node failure. OGST also allows the sim-
ulation of task migration, necessary when a user requests
the use of a Grid resource, since regular non-dedicated
machines are used.

GridSim provides the necessary support for implement-
ing scheduling heuristics, delegating this task to the user.
OGST provides a library of scheduling algorithms currently
composed of four scheduling heuristics: InteGrade, OLB,
MCT, and Min-min [16, 3]. A simulation scheduling strat-
egy is currently instantiated by theSS class, using the strat-
egy pattern [11]. On-going work is in curse for providing
support for dynamic replacement of scheduling algorithms.

GridSim can collect for each simulation execution statis-
tical data that are stored on a text file, which can be used
for generating an execution report. However, querying and
finding data relations on a large amount of statistical data
by manipulating a text file can become an arduous task.
For simplifying the query and analysis of a large amount
of generated data, OGSTSDRM uses a relational database.
SDRM also allows the automatic generation of graphs from
data collected through several simulation executions, such
as the average application completion time as a function of
the mean time between node failures or as a function of the
arrival rates. These graphs are generated using the gnuplot
tool 3.

Since an opportunistic Grid make use of regular non-
dedicated machines, its execution environment exhibits a
variant availability of each Grid node, considering different
usage periods. To simulate this usual behavior, GridSim
allows the definition of the local workload for each resource
according to peak hour, off-peak hour, weekends, and holi-
days. We are currently working on the support for allowing
the definition of resources work load based on trace files.

4 Simulations

Scheduling on opportunistic Grids is a challenging prob-
lem due to several factors, such as the existence of a non
predetermined and dynamic resource pool, high intercon-
nection and node heterogeneity, high scalability, and a non-
controllable environment composed of non-dedicated per-
sonal computing nodes. These characteristics justify the
importance of investigating efficient application scheduling
heuristics that takes into consideration aspects such as fault
tolerance, migration, information management, load bal-
ancing, adaptive scheduling, and application re-scheduling.

This Section describes the simulations we performed
using OGST with the aim of analysing the performance of
different scheduling algorithms (MCT, Min-min, OLB, In-
teGrade) under different execution environment conditions,

3Homepage:http://www.gnuplot.info



considering the objective of minimizing the applications
average completion time.

The simulated Grid environment was composed of 100
machines with an average processing power equivalent to a
Pentium 4 with 2.8 GHz (1000 MIPS), which was consid-
ered a representative value for regular personal computers.
In order to take into consideration the environment hetero-
geneity, Grid nodes were generated according to an uniform
distributionU(222, 1776) MIPS, having the fastest machine
a processing power 8 times higher then the slowest one.

We simulated the execution of 1500 regular applications,
synthetically generated with a variant length (in millionsof
instructions) through an uniform distributionU(3015×104,

30150× 104) MI, which takes approximately 5 to 50 hours
of execution on an Pentium 4 with 2.8 GHz.

The simulations took into consideration the variability
of two execution environment parameters: the applications
arrival rate and the mean time between node failures. Simu-
lations were performed for each scheduling algorithm being
evaluated considering the following arrival rates per minute:
0.025 (low) and 0.25 (high). The applications arrival time
were generated according to a Poisson distribution. For
each arrival rate, we also observed each scheduling algo-
rithm behavior considering the following mean time be-
tween node failures: 1, 2, 4, 6, 8, 10, 12, and 14 hours.
Failures were generated according to an exponential distri-
bution and node recovery followed an uniform distribution
U(6, 48) hours, in order to characterize short and long fails,
ranging from network failures to a machine crash.

For each combination of scheduling algorithm, arrival
rate and mean time between node failures previously de-
scribed, we also took into consideration the use of two
different fault tolerance mechanisms: restart and check-
pointing, leading to a total of 128 different simulations that
were performed on an Intel Pentium 4 2.8 GHz with 2 GB
RAM running the Linux kernel version 2.6.24-19. Each
simulation was repeated 30 times, resulting on 3840 exper-
iments. For each experiment, we measured the completion
time per application and calculated the average completion
time of the 1500 applications. We, then, calculated the
average of the average application completion time for each
of the 30 applications set that, for the reminder of this
Section, will be called just as the average completion time
per application.

Figure 2 shows the average completion time per ap-
plication as a function of the mean time between failures
when the applications arrival rate was 0.025 per minute and
applications were just restarted for execution on another
node in case of a node failure. With a short interval be-
tween failures (1 hour), OLB achieved the best performance
(lower average completion time per application) since it
only schedules one task per machine reducing the required
number of tasks resubmissions in case of a node failure, an

advantage when the environment exhibits a high failure rate.

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

1 2 4 6 8 10 12 14

A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n
 T

im
e

 [
h

]

Mean Time Between Node Failures [h]

InteGrade MCT Min−min OLB

Figure 2. Average application completion
time with restart and an arrival rate of 0.025
applications per minute.

As the failure rate becomes lower (2 to 14 hours of mean
time between node failures), MCT and Min-min performed
better than OLB, since they can perform a better task map-
ping by using information about the estimated application
completion time. MCT performed better than Min-min
since in this simulation set the application arrival rate was
low (0.025 per minute) and MCT uses an on-line approach,
scheduling the tasks as soon as they arrive to the scheduler,
while Min-min uses a batch approach, which collects a set
of tasks and perform their mapping only at prescheduled
interval times called a mapping event. On our simulations,
Min-min uses a 2 minutes interval time between mapping
events.

Considering the same application arrival rate of 0.025
per minute, we also evaluated the scheduling heuristics
when checkpoint is used for restarting failed applications
from their last saved state. In this case, even when the
failure rate is high (one hour interval between failures),
MCT and Min-min performed better than OLB, since the
lower number of tasks resubmissions obtained with OLB
becomes less relevant, due to the fact that the tasks do not
need to be restarted from scratch.

Figure 3 shows the simulations results when the envi-
ronment exhibits a high arrival rate (0.25 applications per
minute) and checkpoint is used for task recovery. In this
case, Min-min obtained the best results, since the higher
number of tasks maintains the Grid resources busy and more
applications compose the mapping event set, allowing the



comparison of their estimated completion time, which leads
to a better task mapping. Using task restarting instead of
checkpointing, the performance ordering of the evaluated
algorithms is the same, with Min-min obtaining the best
results, emphasizing the better performance of batch algo-
rithms when the Grid resources are stressed.

 280

 290

 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 470

1 2 4 6 8 10 12 14

A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n
 T

im
e

 [
h

]

Mean Time Between Node Failures [h]

InteGrade MCT Min−min OLB

Figure 3. Average application completion
time with checkpointing and an arrival rate of
0.25 applications per minute.

This first set of simulations highlighted that scheduling
heuristics perform differently under diverse execution en-
vironment conditions and gave preliminary answers about
when one approach is better than the other and how much
can be gain by switching the scheduling heuristic, strength-
ened the benefits that can be achieved by applying an adap-
tive scheduling approach.

5 Related Work

Tools for simulating Grid and volunteer computing are
emerging as they provide a controllable and low cost en-
vironment for evaluating new architectures and approaches
that copes with the challenges of providing a reliable, highly
distributed, and large scale environment running computer
intensive long term applications.

SimBOINC4 [15] is a simulator for heterogeneous and
volatile desktop Grid and volunteer computing systems
based on SimGrid [6]. As BOINC, the simulator follows
a client/server model that runs bag-of-tasks applications,
whose tasks execute independently, without exchanging

4Homepage:http://simboinc.gforge.inria.fr

data between themselves. The simulator uses a pull
approach, where clients request work from servers, execute
the task and return the results. SimBOINC was used to
evaluate scheduling heuristics that runs locally on each
client machine [1]. It also simulates a local checkpoint
mechanism that allows tasks to be automatically restarted
when a failed machine returns to work. OGST is based
on the push model, where the scheduler is responsible
for mapping tasks to resource providers, but it also
allows the implementation of local scheduling heuristics
and application re-scheduling approaches. Regarding
fault-tolerance, OGST was designed to provide three
mechanisms: restart, checkpoint, and replication. The
simulated checkpoint mechanism is based on a globally
available distributed stable storage (as provided on
InteGrade [9]), allowing a fast task restart on another
Grid machine in case of node failure. OGST also allows
the simulation of task migration, necessary when a
user requests the use of a Grid resource, since regular
non-dedicated machines are used.

SimGrid [6] is a simulation framework written in C,
that provides a generic evaluation tool for large-scale dis-
tributed computing. Like GridSim, it allows the evalua-
tion of cluster, Grid, and P2P algorithms through compo-
nents that model and simulate Grid resources, applications,
schedulers, and users. It provides a scalable and extensible
trace-driven simulation engine that allows the simulation
of arbitrary network topologies, resource availability, and
failures. OGST, on the other hand, focus on providing
support for simulating the dynamics of opportunistic Grids,
modelling the frequent join and leave of nodes, different ap-
plication models (regular, bag-of-tasks, and parallel), differ-
ent fault-tolerance mechanisms, and code migration. OGST
is event-driven and on-going work is in course for providing
support for trace-driven.

OptorSim [2] allows the simulation of Data Grid envi-
ronments, where very large data sets are processed in a dis-
tributed way. The simulator architecture is based on the EU
DataGrid5. OptorSim objective is to investigate the stability
and transient behavior of replication optimization methods.
It focus on data replication, which evolves replica creation
and management in different geographical locations and
methods for minimizing data access cost. The simulator
was used to compare several replication strategies, such as
LRU-based strategies and economic based approach.

6 Conclusion and Future Work

This paper described OGST, an object-oriented discrete
event simulator whose main objective is to assist developers
of opportunistic Grid middlewares on validating new con-

5Homepage:http://www.edg.org



cepts and implementations under different execution envi-
ronment conditions and scenarios. It was developed in the
context of the InteGrade project, but was designed to allow
the simulation of generic opportunistic Grids in order to be
applied by other Grid middleware research projects.

OGST was carefully designed to take into consideration
the dynamics of opportunistic Grids, providing a set of
features that hasten the development of simulations that
takes into consideration the dynamism of the execution en-
vironment. Since the preliminary motivation for OGST de-
velopment was to provide a way for evaluating the behavior
of scheduling algorithms commonly used on Grid environ-
ments under different execution environment conditions and
the investigation of adaptive scheduling approaches, this
paper also described a first set of simulations performed that
strengthened the benefits that can be achieved by switching
from different scheduling heuristics considering a variant
execution environment.

Ongoing work includes the use of traces that will allow
the use of real data concerning resource availability, the
support for dynamic replacement of scheduling heuristics,
and the simulation of predictions of resource availability
based on resource usage patterns, using as foundation the
work described in [7].

7 Acknowledgments

This work, as part of the InteGrade project, is supported
by the Brazilian Federal Research Agency, CNPq, grant
No.55.0895/2007-8.

References

[1] D. Anderson. BOINC: A System for Public-Resource
Computing and Storage.Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, pages 4–10,
2004.

[2] W. Bell, D. Cameron, A. Millar, L. Capozza, K. Stockinger,
and F. Zini. Optorsim: A Grid Simulator for Studying
Dynamic Data Replication Strategies.International Journal
of High Performance Computing Applications, 17(4):403,
2003.

[3] T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen,
et al. A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems.Journal of Parallel and
Distributed Computing, 61(6):810–837, 2001.

[4] R. Buyya and M. Murshed. GridSim: a toolkit for the
modeling and simulation of distributed resource manage-
ment and scheduling for Grid computing.Concurrency and
Computation: Practice and Experience, 14(13-15):1175–
1220, 2002.

[5] A. Caminero, A. Sulistio, B. Caminero, C. Carrion, and
R. Buyya. Extending GridSim with an architecture for

failure detection.International Conference on Parallel and
Distributed Systems, 2:1–8, 2007.

[6] H. Casanova, A. Legrand, and M. Quinson. Simgrid: A
generic framework for large-scale distributed experiments.
Tenth International Conference on Computer Modeling and
Simulation, pages 126–131, April 2008.

[7] D. Conde. Anlise de padrões de uso em grades computa-
cionais. Master’s thesis, Department of Computer Science -
University of São Paulo, Brasil, SP, January 2008.

[8] R. Y. de Camargo, R. Cerqueira, and F. Kon. Strategies
for storage of checkpointing data using non-dedicated
repositories on grid systems. InACM/IFIP/USENIX 3rd
International Workshop on Middleware for Grid Computing,
Grenoble, France, November 2005.

[9] R. Y. de Camargo and F. Kon. Design and implementation of
a middleware for data storage in opportunistic grids. In7th
IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’07), Rio de Janeiro, Brazil, 2007.

[10] S. A. de Sousa, F. J. da Silva e Silva, and R. F. Lopes.
A flexible fault-tolerance mechanism for the integrade grid
middleware. InICNS ’07: Proceedings of the Third Inter-
national Conference on Networking and Services, page 26,
Washington, DC, USA, 2007. IEEE Computer Society.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Professional Computing Series, page 395,
1995.

[12] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and
G. C. Bezerra. Integrade: Object-oriented grid middleware
leveraging idle computing power of desktop machines.
Concurrency and Computation: Practice & Experience. Vol.
16, pp. 449-459, 2004.

[13] D. Heyman and M. Sobel. Stochastic models in operations
research. Vol. I: Stochastic processes and operating charac-
teristics. 1982.

[14] F. Howell and R. McNab. SimJava: A Discrete Event Sim-
ulation Package For Java With Applications In Computer
Systems Modelling.Proceedings of the First International
Conference on Web-based Modelling and Simulation, 1998.

[15] D. Kondo. Simboinc: A simulator for desktop grids and
volunteer computing systems.

[16] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund. Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems.
In HCW ’99: Proceedings of the Eighth Heterogeneous
Computing Workshop, page 30, Washington, DC, USA,
1999. IEEE Computer Society.

[17] M. Mutka and M. Livny. The available capacity of a
privately owned workstation environment.Performance
Evaluation, 12(4):269–284, 1991.

[18] M. A. S. Sallem and S. A. de Sousa. Autogrid: Towards an
autonomic grid middleware. InWETICE ’07: Proceedings
of the 16th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
pages 223–228, Washington, DC, USA, 2007.

[19] A. Sulistio, C. Yeo, and R. Buyya. A taxonomy of
computer-based simulations and its mapping to parallel and
distributed systems simulation tools.Software- Practice and
Experience, 34(7), 2004.


