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Abstract

Opportunistic computer networks are a promising environment to execute parallel ap-
plications due to the processing power supplied by the current desktop machines. Parame-
ter sweep and master-worker applications are suitable for these environments since a fail-
ure of a process does not necessarily suspend the overall application. On the other hand,
in tightly-coupled parallel applications a failure in a machine may interrupt or crash the
entire application. Thus, different application classes require different scheduling strate-
gies. Furthermore, in the context of Computational Grids, each Grid domain has its own
administrative policies, user and application profiles andresource properties. All these
reasons have motivated us to propose a flexible and extensible architecture for schedul-
ing parallel applications which relies on different services designed as plug-ins. We also
discuss the integration of this scheduling architecture inthe InteGrade project which is a
novel middleware infrastructure for Grid Computing.

1 Introduction

Despite the enormous evolution on the computers, several research areas such as Bioin-
formatics, Physics, Astronomy, Earth and Life Sciences make use of software systems that
are always in need of an increasing amount of computing powerto address complex prob-
lems. Grid Computing [9] is a technology that has been well investigated by researchers
interested in executing complex applications that demand computer resources, such as
desktop machines, clusters, supercomputers, scientific instruments and software systems,
that are spread over several administrative domains.

Computer clusters are a well-known alternative to supercomputers to achieve the high
processing power required with reasonable cost. However, although clusters provide a very
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good cost performance ratio, the computer resources neededto execute complex applica-
tions may be unavailable in a single domain. Another approach to achieve high processing
power required by complex applications is by harnessing idle CPU cycles of desktop ma-
chines. This is a low cost solution since both academic and enterprise environments hold
several powerful desktop machines that are underutilized most of the time.

An efficient scheduling scheme is one of the most important issues to make a good
use of computer resources. Scheduling parallel applications on dedicated resources is a
complex problem, and such a complexity increases significantly when we consider that
these resources are non-dedicated.

In order to execute applications on opportunistic computernetworks, the scheduler
should take into account that the machines are non-dedicated and hence interruptions to
the ongoing applications may be frequent. Depending on the application type, these in-
terruptions will result in different effects on the currentschedule and on the execution
process.

A well-known type of application is the Parameter Sweep Application (PSA), which
involves the execution of the same program over a range of different parameter values [3].
PSAs are generally used in Computational Grids mainly due tothe large number scientific
applications that require the execution the same experiment on different datasets. Further-
more, as the experiments are independent, if a machine that is executing one experiment
becomes unavailable, the execution of the other experiments may continue. As soon as
one experiment finishes or a machine becomes available, the interrupted experiment can
restart its execution - from scratch or from the last previous stored stage.

As opposed to PSAs, tightly-coupled parallel applicationsinvolve the execution of a set
of processes that need to exchange information both asynchronously and synchronously.
These applications are generally implemented using communication libraries such as Mes-
sage Passing Interface (MPI) [11], Parallel Virtual Machine (PVM) [18] or Bulk Syn-
chronous Parallel (BSP) [20]. This type of application is rarely used in opportunistic
computer environments since a failure in a machine may interrupt or crash the entire ap-
plication, and therefore the amount of wasted work is much more significant in relation to
a loss in PSAs.

Thus, as scheduling parameter sweep and tightly-coupled parallel applications require
different strategies, it is important to use a flexible and extensible scheduler so as to deal
with different class of applications. In this work we present an architecture for schedul-
ing parallel applications on opportunistic computer networks that relies on services that are
used as plug-ins by the scheduler. Here we cover aspects of both online and batch schedul-
ing strategies, use of preemption to allow malleability of parallel applications, as well as
the use of resources availability prediction for a more efficient mapping of user applica-
tions. Furthermore, we will discuss how different scheduling strategies could be applied to
execute different types of applications, in particular, parameter sweep and tightly-coupled
parallel applications. At this stage of the work, our main focus is on the dynamicity prob-
lem. Nevertheless, in this paper we provide an overview of the possible scheduling strate-
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gies to deal with both heterogeneity and scalability problems. Moreover, as case study,
we describe how to employ the proposed scheduler into InteGrade, a Grid middleware in-
frastructure that has been developed by our research group aimed at leveraging idle CPU
cycles of desktop machines [10].

The remainder of this paper is organized as follows. In Section 2 we motivate our work
based on some related work regarding the execution of parallel applications on dynamic
environments. Following, in Section 3 we present in detail the scheduler architecture, and
we also provide an overview of important services to assist the scheduler. In Section 4 we
discuss some scheduling strategies based on these services. In Section 5 we illustrate the
use of the proposed architecture in the InteGrade Grid middleware. Finally, in Section 6
we close the paper with a conclusion and proposals for futurework.

2 Related Work

Exploitation of non-dedicated machines is a well studied subject due to the vast amount
of processing power that the current desktop machines can supply. As consequence there
are several projects with different goals [1–4, 13, 16, 19, 22]. Condor is one of the most
well-known software system to harness idle CPU cycles of desktop machines [19]. This
batch system allows migration of applications, with some limitations, among machines
through the use of a Condor’s library. It schedules user applications based on matching
between computing resources and application requirements. Condor focuses mainly on
execution of independent sequential applications. However, it provides services to allow
the execution of multiple tasks with dependencies in a declarative form, as well as an
interface with PVM called Condor Application Resource Management Interface (CARMI)
[17]. CARMI permits PVM applications to dynamically allocate and release resources
depending on the availability. These PVM applications are developed through the master-
worker model [12]. Condor’s researchers also propose scheduling strategies to deal with
the impact on execution of these master-worker applications through the use of additional
machines and task replication [13].

Another project related to the scheduling of applications is the Application Level
Scheduler (AppLeS) [2]. AppLeS users develop their applications on a framework that
provides services for scheduling tasks and load balancing at the application level. The
scheduling algorithms in AppLeS rely on short-term prediction provided by the Network
Weather Service [21]. Although such an approach can providegood performance results,
the modification of existing applications consumes time andhuman resources that may not
be available. Moreover, users may not have access to application source codes.

In [22] the authors describe adaptive scheduling strategies based on both application-
level and system-level performance prediction aimed at heterogeneous non-dedicated ma-
chines. Their work focuses on parameter-sweep applications. Casanovaet al. [3] presents
heuristics for scheduling PSAs in Grid environments takinginto account file sharing is-
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sues.
Currently most research projects that investigate the problem of scheduling applica-

tions on opportunistic computer environments work with parameter sweep and master-
worker applications. Moreover, some of them require modifications on the user appli-
cations. In this context, our work is different since we alsoconsider the scheduling of
different kinds of applications on dynamic environments that do not require modification
on the application source codes.

Furthermore, in relation to the number of processors an application utilizes, our work
focuses on three classes: Rigid, Moldable and Malleable [8]. Rigid applications require a
fixed number of processors to perform the work. Moldable applications are more flexible;
the number of processors can be configured, but only at the time the application starts.
Finally, malleable applications can be executed on different number of processors along
the time. The scheduler can then shrink or expand the application during its execution
according to the resource availability provided by the environment. Consequently, the
scheduler has more flexibility to decide where to assign the applications, and it can change
the assignment dynamically.

3 The Scheduler Architecture

When we are dealing with the scheduling of parallel applications on distributed non-
dedicated resources, we need several services to assist thescheduler to make good deci-
sions. For this reason, the proposed architecture for the scheduler relies on several ser-
vices that can be dynamically plugged in to provide more information in order to improve
user application scheduling decisions (Figure 1). To exemplify, besides the scheduling
algorithms, some important services are resource prediction, migration cost definitions,
checkpoint management, resource and application monitoring and inter scheduler com-
munication. Following we present an overview of some of these services and how they
could be exploited.

Scheduling
Strategies

Resource
Prediction

Monitoring Checkpoint
Management

Inter Scheduler
Communication

Cost
Definitions

SCHEDULER

Grid Middleware

. . .

Figure 1: The scheduler module relies on plug-ins that provide services such as resource
prediction, migration cost definitions, checkpoint management, inter scheduler communi-
cation, among others.
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3.1 Support services

Resource prediction [15] is a fundamental tool for scheduling applications on non-
dedicated machines. It can avoid the assignment of applications to resources that will
be unavailable in a short period of time, thus reducing wasted work. Based on historical
data, it is possible to generate resource usage patterns to allow the scheduler to best decide
where and when applications should be executed.

When a user submits an application to the scheduler or when anapplication reschedul-
ing is needed, the scheduler can rely on resource predictionservice to discover the period
that the current available machines could be used, and a listof machines and periods in
such a way that they will be available in the future.

Fault tolerance is another essential service since machines may leave out the network
at any time, and thus failures are a rule and not an exception.In this case, at specified
time intervals, each machine must send keep-alive messagesto the server. The server then
removes a machine from its internal structures if one of themdoes not send a message
in a time interval. Note that resources are not the only pointof failure in systems. The
user applications can fail and hence a fault tolerance service could report failures to the
scheduler.

Monitoring application executions is also an important service to be considered. For
example, if an application is executing for a long time and ithas not finished yet, or no
checkpoint was generated, the scheduler can make a decisionto provide more resources
to that application. Furthermore, the monitoring service can be used to supply important
information for future application performance analysis.

3.2 Checkpoint Management

Checkpointing is a very useful feature available in some applications or provided by
software systems and libraries. Briefly, it enables an application to be restarted from its
last stored execution state [7]. In the context of opportunistic computer networks, together
with the decrease of wasted work when an application needs tobe interrupted, checkpoint-
ing can be exploited to preempt applications to other resources, as well as to enable the
execution of malleable applications.

There can be two possible interactions between the scheduler and the checkpoint cho-
sen strategy: (i) scheduler puts into action the checkpoint; and (ii) checkpoint puts into
action the scheduler. The first case relies on the capabilityof the system or application to
generate checkpoint at any time. However, such a possibility is not usual in applications
- and it is usually done by system level - and it is a complex procedure. Furthermore, it
results in several limitations - for example, it may be only possible to restart an application
on the same machine architecture where it was checkpointed.In the second approach, we
assume that applications frequently generate checkpoints, which is an usual feature avail-
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able in complex computer simulation tools. A checkpoint manager can be implemented
to, for example, report the scheduler that an application has recently generated, and based
on this information the scheduler could make a decision - as we will describe in detail in
Section 4.

The knowledge about the checkpoint frequency could assist the scheduler in the same
way the expected application completion times assist traditional schedulers. However,
defining heuristics to discover a standard behavior of the application checkpointing fre-
quencies is challenging. One possibility is the user to initially supply the checkpoint
frequency, and according to the executions, the scheduler checkpoint management ser-
vice could refine the frequency value. Nevertheless, the frequency value would only make
sense for a particular set of machines. Thus, such a value should be readjusted each time
the application migrates to another set of machines.

Another interesting issue is on checkpoint granularity. Itcould be useful if the check-
point management service could dynamically modify the granularity in which applications
store their checkpoints. With this feature the scheduler could request this service to in-
crease the frequency in which an application is generating the checkpoints, since it has the
information that the resources used by such an application will not be available for a long
time.

3.3 Cost Definitions

Naturally, migrating, shrinking and expanding the applications, as well as modifying
the checkpoint granularity brings costs that should be taken into account. For this reason,
a service to provide information about costs is important.

Changing the set of machines used by an application implies alot of communication
to redistribute the data and to balance the load depending onthe new number of machines
and their location. Unfortunately these communication costs are heavily dependent on
the applications and the target platform. In previous work [6], we considered folding
applications on specific numbers of machines to avoid complicated data redistribution. In
this scope, applications have a natural number of machinesn and can be set to execute on a
fraction of this number of processors⌈n/i⌉ wherei is an integer. With this restriction, the
data is split inn groups at compile time and the communications always concern complete
groups.

Therefore the delay induced in the schedule by a migration can sometimes be mod-
eled and predicted to increase the overall efficiency of the schedules. This prediction is
unfortunately not always possible and schedulers should thus try to minimize the number
of migrations.
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3.4 Inter Scheduler Communication

Inter scheduler communication is a service to allow user requests to be transfered
among schedulers, thus increasing the system scalability.This is essential in distributed
environments, such as Grids, where computer resources or services may not be available
in a single domain. Here we illustrate two policies to be provided by this service: (i) local
domain has preference and (ii) all domains are equivalents (Figure 2).

In the first policy a user submits an application to a known-scheduler, Scheduler 1 for
example (Step 1), then the scheduler verifies whether the resources of its domain are suit-
able to execute the application or not (Step 2). In this verification the scheduler considers
the current and future available resources - it could also verify if there will be enough
time to generate the next checkpoint. Depending on the case,the scheduler then collects
information from the other schedulers. Suppose Scheduler 1discovers that Scheduler 4
hasbetterresources to execute the application; Scheduler 1 then migrates the user request
to Scheduler 4. Note that the meaning ofbetter depends on a criterion established by
the domain administrator or by the users themselves. Thus,bettercan be resources that
either provide higher computer power or are more stable - lower probability to become
unavailable.

In the second policy where all domains have the same preference, in Step 2, instead of
checking if its own domain holds appropriate resources, Scheduler 1 requests information
from all other schedulers, or from most of them, and based on adetermined criterion it
decides thebestdomain to execute the application.

An important issue when migrating user requests is the tradeoff between transparency
and performance. In the example of the first policy, after Scheduler 1 forwards the user
request to Scheduler 4, such a user may desire to monitor the execution, or the execution
results are in order of Giga or Terabytes. Thus, users could request information and results
from their executions through Scheduler 1, which will serveas a router between the user
and Scheduler 4. On the other hand, Scheduler 1, after forwarding the user request to
Scheduler 4, should communicate to user that it has no control about the request anymore,
and all communication should be directly performed by Scheduler 4. Hence, in this second
case the performance increases by decreasing the transparency.

Remark that the scheduler interconnection structure to improve the scalability can be
implemented using different approaches. The example of Figure 2 illustrates a peer-to-
peer structure. However, other approaches, such as hierarchies of schedulers, could also
be utilized.

4 Scheduling Strategies

When we are dealing with complex distributed environments,such as Opportunistic
Grids, we have to consider several scheduling problems. Forexample, (i) the amount of
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Figure 2: Multiple schedulers coordenate themselves to best select a set of resources to
execute the user application.

applications to schedule is unknown, that is, applicationsare dynamically submitted to the
scheduler; (ii) the amount of machines may vary; (iii) thesemachines may be heteroge-
neous; and (iv) the expected application execution times may be unavailable.

Furthermore, depending on issues such as administrative policies, user and application
profiles, resource properties and services available, the scheduler can make use of different
strategies, with different complexity levels, to assign application to resources. As each
Grid domain can have its own environment settings, a definitive scheduler is not the most
suitable choice. Therefore, flexibility is a key feature in ascheduler aimed at executing
applications on Computational Grids. In this context, the proposed architecture aims to be
flexible in the sense that scheduling strategies can be developed based on the available set
of services, as those described in Section 3.

For instance, regarding the scheduling modes [14], a simple, or more sophisticated
scheduling strategy can be employed. A simple strategy is the batch mode where the
scheduler groups the applications and periodically, or based on some external event (such
as resource availability), assigns them to resources. A more sophisticated strategy is the
online mode, where the scheduler tries to assign applications to resources as soon it re-
ceives them. The advantage of batch mode is that the scheduler can consider more applica-
tions to make better scheduling decisions. Nevertheless, if a large number of applications
is required to make these decisions, the delay to schedule may be high, and this may be a
problem if we consider Quality-of-Service issues. If the batch mode is set up to schedule
applications when a certain number of resources is available, there can be too many calls to
the scheduler, or too few depending on the submitted applications. Thus the online mode
is more appropriate on these conditions.

A scheduler usually performs decisions when an event occurs. Examples of events
are: a machine joined or left the network; a user submitted anapplication or an application
has just finished; a checkpoint is generated; or also a priority of an application is modi-
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fied. Some of these events depend on services that assist the scheduler, and thus they are
responsible for reporting the scheduler when they have a newinformation.

Suppose a scenario where an ongoing application generates acheckpoint and the
checkpoint manager reports this event to the scheduler. Based on this event the sched-
uler could make decisions; for example: (i) the applicationshould be interrupted since
another application with higher priority requires its resources; (ii) based on resource pre-
diction data, the application should not be executed further since there will not be enough
time to generate the next checkpoint; (iii) the number of machines used by this application
should be reduced due to resource prediction data; or (iv) the application should wait since
new resources could be available in a short period of time.

Scheduling strategies could also consider application types as an additional criterion
to take decisions. For example, suppose the scheduler should interrupt the execution of an
application and start another one. The scheduler should rely on some criterion to chose
which application must be started. Criteria such as submission time or application priority
are generally used. However, the scheduler could also explore application types. In this
example, thus, the scheduler could firstly attempt to schedule tightly-coupled applications,
secondly the master-worker and PSAs. If none of them is possible, the scheduler could
then try sequential applications. The order established inthis example is based by the
difficulty of each application type to deal with the loss of resources.

Another issue regarding application types is the period when they are executed. If
applications do not support checkpointing, it is interesting to start the execution of tightly-
coupled parallel applications at periods when resources will be available for a long time,
at night or weekends, letting parameter sweep and master-worker applications to be ex-
ecuted at the other periods. Furthermore, in master-workerapplications, good strategies
for assigning machines to master processes is essential, since if the master process is sus-
pended, the worker processes may be suspended as well. Thus it may be worth providing
the scheduler with a personalized service tobestselect master machines.

Heterogeneity is also a common problem when scheduling applications on distributed
environments. If applications execute on different machine types, load balancing algo-
rithms must be taken into account. These algorithms could bedirectly implemented on the
application or the scheduler could provide a service to dealwith such a problem. Parameter
sweep and master-worker applications are usually more suitable to work on heterogeneous
machines by considering tightly-coupled applications. That is because tightly-coupled ap-
plications require communication among the processes. Thus, the delay of one process
causes the delay of the overall application. A simple approach to minimize this problem
with tightly-coupled applications is by grouping the machines in classes, and assigning
them to only one machine class. Note that the scheduler couldalso be informed that the
application is able to deal with heterogeneous machines.
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5 Case Study: InteGrade

The InteGrade1 project is a multi-university effort to build a novel Grid Comput-
ing middleware infrastructure aimed at leveraging idle computing power of desktop ma-
chines [10]. It supports the execution of sequential, parameter sweep and parallel appli-
cations implemented using the BSP model [5]. InteGrade relies on several components to
provide different services, including resource prediction and management of checkpoint
repositories. Figure 3 illustrates the InteGrade’s architecture and its main components on
a local network.

The two main components of the middleware core are Global Resource Manager
(GRM) and Local Resource Manager (LRM). GRM is responsible basically for scheduling
requests on a local network, while LRM aims at managing resources of the machine that
provides processing power. In order to store user application information and binaries In-
teGrade relies on an Application Repository (AR). Local Usage Pattern Analyzer (LUPA)
and Global Usage Pattern Analyzer (GUPA) are the componentsresponsible for determin-
ing resource usage patterns. Each cluster machine executesLUPA to collect data about its
local user usage patterns. Based on long series of data, it thus can derive usage patterns
for that machine. GUPA is responsible for managing the information collected by LUPA
from all network machines. Execution Manager (EM) is the component that is notified
when an application is interrupted unexpectedly in order toassist the application restart-
ing in a future through the use of checkpoint components. This interruption can be due to
an execution cancellation, which is reported by LRM, or due to a machine unavailability,
which is reported by GRM.

InteGrade also provides a checkpointing library to enable portable checkpointing mech-
anism for sequential, parameter sweep and BSP parallel applications [5]. Finally, Check-
point Repository Manager (CRM) is responsible for coordinating local checkpoint repos-
itories in order to allow a local process to access checkpoint files from other machines.
When it is necessary to store a checkpoint, the checkpointing library queries CRM re-
questing the available checkpoint repositories in order totransfer them the checkpoint
data.

As we can observe, InteGrade provides two main services to assist in the schedul-
ing decisions, which are the resource prediction and the checkpointing support. Resource
prediction service is a direct use of the LUPA and GUPA components. However, for
checkpointing management service, as the InteGrade’s components that provide check-
pointing support are scattered, they cannot be straightforwardly used by the scheduler. A
checkpoint management service could be developed to make use of the available related
components. For example, each time CRM is requested to supply the list of checkpoint
repositories, CRM could notify the scheduler that an application has recently generated a
checkpoint, and thus one of the strategies described in Section 4 could be used.

1Project homepage: http://integrade.incubadora.fapesp.br
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Figure 3: InteGrade’s architecture and its main components.

Considering the checkpoints generation frequency in BSP parallel applications, in the
current InteGrade’s version a fixed time is established to generate checkpoints, which are
performed by the coordinator process - similar to the masterprocess in master-worker
applications. Thus, basically the checkpoint service should allow the scheduler to dy-
namically configure the checkpointing frequency. Furthermore, currently the Execution
Manager is the only component that holds the information on which machine is executing
the coordinator process. Therefore, a method to supply thisinformation to the checkpoint
service should also be implemented.

6 Conclusion and Further Work

Scheduling different application classes on distributed networks is challenging, in par-
ticular when machines that comprise such an environment arenon-dedicated. In this paper
we have proposed a flexible architecture for scheduling parallel applications on oppor-
tunistic networks which relies on services that are used in the form of plug-ins. It is
important to mention that a flexible architecture is a promising approach in the context
of Computational Grids since each Grid domain can attend itsown needs such as admin-
istrative policies, user and application profiles and resource properties. Furthermore, the
scheduler can be extended by the inclusion of new, and even currently unknown services.

In this paper we have described some support and advanced services. Fault tolerance,
resource prediction, and monitoring are examples of essential services for the scheduling
of parallel applications on non-dedicated machines. Checkpointing management is a de-
sirable service to reduce wasted work generated due to the unavailability of a machine.
This service is specially important when we consider tightly-coupled parallel applications,
where an interruption of a process can crash the overall application. Exploring techniques
to dynamically modify both the checkpointing frequency andamount of resources is also
interesting for a better usage of the available resources. Also the interconnection among
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schedulers is a useful service to improve the system scalability, as well as the cooperation
among the different administrative domains that comprise the Grid.

As future work we intend to implement a prototype of the proposed scheduler using
the InteGrade Grid middleware as a testbed environment. This first prototype will mainly
explore the InteGrade’s checkpointing components. Moreover we intend to investigate
the common service interfaces of the existing Grid middleware systems. With this study
we expect to establish a set of easy-to-use interfaces to promote the use of the proposed
scheduler on several Grid middleware systems, specially those aimed at working with
opportunistic networks.
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