A Flexible Architecture for Scheduling Parallel
Applications on Opportunistic Computer Networks*

Marco A. S. Nettdt, Alfredo Goldman, Pierre-Frangois Dutét

{netto, gold}@ime.usp.br, dutot@loria.fr
!Depart. of Computer Science, University of Sdo Paulo, Brazi
2UHP, Nancy 1, LORIA France

Abstract

Opportunistic computer networks are a promising environtte execute parallel ap-
plications due to the processing power supplied by the aililesktop machines. Parame-
ter sweep and master-worker applications are suitableiese environments since a fail-
ure of a process does not necessarily suspend the overditappn. On the other hand,
in tightly-coupled parallel applications a failure in a miaice may interrupt or crash the
entire application. Thus, different application classeguire different scheduling strate-
gies. Furthermore, in the context of Computational GridssheGrid domain has its own
administrative policies, user and application profiles amdource properties. All these
reasons have motivated us to propose a flexible and exteraithitecture for schedul-
ing parallel applications which relies on different sersgcdesigned as plug-ins. We also
discuss the integration of this scheduling architecturéh@ InteGrade project which is a
novel middleware infrastructure for Grid Computing.

1 Introduction

Despite the enormous evolution on the computers, sevesgdreh areas such as Bioin-
formatics, Physics, Astronomy, Earth and Life Sciencesemae of software systems that
are always in need of an increasing amount of computing ptmeaadress complex prob-
lems. Grid Computing [9] is a technology that has been wekstigated by researchers
interested in executing complex applications that demamdputer resources, such as
desktop machines, clusters, supercomputers, scientfiiiments and software systems,
that are spread over several administrative domains.

Computer clusters are a well-known alternative to supepraers to achieve the high
processing power required with reasonable cost. Howelleouagh clusters provide a very

* Research supported by a grant from CNPq, Brazil - grant nuna5e0094/2005-9
* LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP)
t Supported by a CAPES fellowship.

good cost performance ratio, the computer resources needeecute complex applica-
tions may be unavailable in a single domain. Another apgréaachieve high processing
power required by complex applications is by harnessing @PU cycles of desktop ma-
chines. This is a low cost solution since both academic atefgmse environments hold
several powerful desktop machines that are underutilizest wf the time.

An efficient scheduling scheme is one of the most importasuds to make a good
use of computer resources. Scheduling parallel applicatim dedicated resources is a
complex problem, and such a complexity increases significarhen we consider that
these resources are non-dedicated.

In order to execute applications on opportunistic compuotgworks, the scheduler
should take into account that the machines are non-dedicaie hence interruptions to
the ongoing applications may be frequent. Depending on pipdcation type, these in-
terruptions will result in different effects on the curresthedule and on the execution
process.

A well-known type of application is the Parameter Sweep Agaion (PSA), which
involves the execution of the same program over a range fefrdift parameter values [3].
PSAs are generally used in Computational Grids mainly dtlegddarge number scientific
applications that require the execution the same expetioredifferent datasets. Further-
more, as the experiments are independent, if a machinestleatecuting one experiment
becomes unavailable, the execution of the other expersnaay continue. As soon as
one experiment finishes or a machine becomes availablentielpted experiment can
restart its execution - from scratch or from the last presisiored stage.

As opposed to PSAs, tightly-coupled parallel applicatiomslve the execution of a set
of processes that need to exchange information both asymohsly and synchronously.
These applications are generally implemented using conuation libraries such as Mes-
sage Passing Interface (MPI) [11], Parallel Virtual Maeh{(i®VM) [18] or Bulk Syn-
chronous Parallel (BSP) [20]. This type of application isesha used in opportunistic
computer environments since a failure in a machine mayrimpéor crash the entire ap-
plication, and therefore the amount of wasted work is muchers@nificant in relation to
alossin PSAs.

Thus, as scheduling parameter sweep and tightly-coupladlgaapplications require
different strategies, it is important to use a flexible anteegible scheduler so as to deal
with different class of applications. In this work we presan architecture for schedul-
ing parallel applications on opportunistic computer neksdahat relies on services that are
used as plug-ins by the scheduler. Here we cover aspectsitobbline and batch schedul-
ing strategies, use of preemption to allow malleability afgllel applications, as well as
the use of resources availability prediction for a more igffit mapping of user applica-
tions. Furthermore, we will discuss how different schealyibtrategies could be applied to
execute different types of applications, in particulargpaeter sweep and tightly-coupled
parallel applications. At this stage of the work, our maiou® is on the dynamicity prob-
lem. Nevertheless, in this paper we provide an overview @pibssible scheduling strate-

gies to deal with both heterogeneity and scalability protde Moreover, as case study,
we describe how to employ the proposed scheduler into laté€;a Grid middleware in-
frastructure that has been developed by our research gnmgal at leveraging idle CPU
cycles of desktop machines [10].

The remainder of this paper is organized as follows. In $a@iwe motivate our work
based on some related work regarding the execution of paeplications on dynamic
environments. Following, in Section 3 we present in dekald¢cheduler architecture, and
we also provide an overview of important services to askesstheduler. In Section 4 we
discuss some scheduling strategies based on these seivi@sxction 5 we illustrate the
use of the proposed architecture in the InteGrade Grid revdalle. Finally, in Section 6
we close the paper with a conclusion and proposals for futon.

2 Related Work

Exploitation of non-dedicated machines is a well studidgjestt due to the vast amount
of processing power that the current desktop machines gamysuAs consequence there
are several projects with different goals [1-4, 13, 16, 29, Zondor is one of the most
well-known software system to harness idle CPU cycles oktdgsmachines [19]. This
batch system allows migration of applications, with sonmatitions, among machines
through the use of a Condor’s library. It schedules useriegjgbns based on matching
between computing resources and application requireméuador focuses mainly on
execution of independent sequential applications. Howevprovides services to allow
the execution of multiple tasks with dependencies in a datile form, as well as an
interface with PVM called Condor Application Resource Mgaaent Interface (CARMI)
[17]. CARMI permits PVM applications to dynamically alldeaand release resources
depending on the availability. These PVM applications aneetbped through the master-
worker model [12]. Condor’s researchers also propose sdingdstrategies to deal with
the impact on execution of these master-worker applicatibrough the use of additional
machines and task replication [13].

Another project related to the scheduling of applicationghie Application Level
Scheduler (AppLeS) [2]. AppLeS users develop their appboa on a framework that
provides services for scheduling tasks and load balandiniyeaapplication level. The
scheduling algorithms in AppLeS rely on short-term praditiprovided by the Network
Weather Service [21]. Although such an approach can prayodel performance results,
the modification of existing applications consumes timelanaan resources that may not
be available. Moreover, users may not have access to appficource codes.

In [22] the authors describe adaptive scheduling strasdegsed on both application-
level and system-level performance prediction aimed a&rbgeneous non-dedicated ma-
chines. Their work focuses on parameter-sweep applicatidasanovat al.[3] presents
heuristics for scheduling PSAs in Grid environments takirtg account file sharing is-

sues.

Currently most research projects that investigate thelpnolof scheduling applica-
tions on opportunistic computer environments work withapaeter sweep and master-
worker applications. Moreover, some of them require madliii®s on the user appli-
cations. In this context, our work is different since we atemsider the scheduling of
different kinds of applications on dynamic environmentst ttho not require modification
on the application source codes.

Furthermore, in relation to the number of processors anegifn utilizes, our work
focuses on three classes: Rigid, Moldable and MalleableR&jid applications require a
fixed number of processors to perform the work. Moldableiappbns are more flexible;
the number of processors can be configured, but only at the ttie application starts.
Finally, malleable applications can be executed on differeimber of processors along
the time. The scheduler can then shrink or expand the apiplicduring its execution
according to the resource availability provided by the ewinent. Consequently, the
scheduler has more flexibility to decide where to assign pipdi@ations, and it can change
the assignment dynamically.

3 The Scheduler Architecture

When we are dealing with the scheduling of parallel applcest on distributed non-
dedicated resources, we need several services to assgtitbeuler to make good deci-
sions. For this reason, the proposed architecture for thedsder relies on several ser-
vices that can be dynamically plugged in to provide morerimfation in order to improve
user application scheduling decisions (Figure 1). To exXdmesides the scheduling
algorithms, some important services are resource predictnigration cost definitions,
checkpoint management, resource and application momgi@nd inter scheduler com-
munication. Following we present an overview of some of ¢hesrvices and how they
could be exploited.

SCHEDULER - scheduling

Strategies

! Resource | ! Cost ! iMonitoring ! | Checkpoint | ! Inter Scheduler |

' Prediction 3 ! Definitions [' 1Management ! 1Communication !
Figure 1: The scheduler module relies on plug-ins that pi®gervices such as resource
prediction, migration cost definitions, checkpoint mamagat, inter scheduler communi-
cation, among others.

3.1 Support services

Resource prediction [15] is a fundamental tool for schedulpplications on non-
dedicated machines. It can avoid the assignment of apjoiisato resources that will
be unavailable in a short period of time, thus reducing whaterk. Based on historical
data, it is possible to generate resource usage patterievctlae scheduler to best decide
where and when applications should be executed.

When a user submits an application to the scheduler or whapglitation reschedul-
ing is needed, the scheduler can rely on resource predisginmce to discover the period
that the current available machines could be used, and aflistachines and periods in
such a way that they will be available in the future.

Fault tolerance is another essential service since maghiag leave out the network
at any time, and thus failures are a rule and not an exceptiothis case, at specified
time intervals, each machine must send keep-alive mestagesserver. The server then
removes a machine from its internal structures if one of tlie®s not send a message
in a time interval. Note that resources are not the only paoirfailure in systems. The
user applications can fail and hence a fault tolerance serauld report failures to the
scheduler.

Monitoring application executions is also an importaniveer to be considered. For
example, if an application is executing for a long time anldas$ not finished yet, or no
checkpoint was generated, the scheduler can make a detospyovide more resources
to that application. Furthermore, the monitoring serviae be used to supply important
information for future application performance analysis.

3.2 Checkpoint Management

Checkpointing is a very useful feature available in somdiegions or provided by
software systems and libraries. Briefly, it enables an appbn to be restarted from its
last stored execution state [7]. In the context of oppodiimcomputer networks, together
with the decrease of wasted work when an application neduks tterrupted, checkpoint-
ing can be exploited to preempt applications to other resmjras well as to enable the
execution of malleable applications.

There can be two possible interactions between the scheghdiethe checkpoint cho-
sen strategy: (i) scheduler puts into action the checkpaimd (ii) checkpoint puts into
action the scheduler. The first case relies on the capabilitye system or application to
generate checkpoint at any time. However, such a possgilslitot usual in applications
- and it is usually done by system level - and it is a complexedure. Furthermore, it
results in several limitations - for example, it may be onbggible to restart an application
on the same machine architecture where it was checkpoilrtékde second approach, we
assume that applications frequently generate checkpevhish is an usual feature avail-

able in complex computer simulation tools. A checkpoint agar can be implemented
to, for example, report the scheduler that an applicatiarbeently generated, and based
on this information the scheduler could make a decision -@svill describe in detail in
Section 4.

The knowledge about the checkpoint frequency could asmst¢heduler in the same
way the expected application completion times assist ticail schedulers. However,
defining heuristics to discover a standard behavior of th@iegtion checkpointing fre-
quencies is challenging. One possibility is the user taalt supply the checkpoint
frequency, and according to the executions, the schedbkskpoint management ser-
vice could refine the frequency value. Nevertheless, tliufracy value would only make
sense for a particular set of machines. Thus, such a valuddshe readjusted each time
the application migrates to another set of machines.

Another interesting issue is on checkpoint granularitgolild be useful if the check-
point management service could dynamically modify the glaunity in which applications
store their checkpoints. With this feature the scheduletccoequest this service to in-
crease the frequency in which an application is generatiegheckpoints, since it has the
information that the resources used by such an applicatibnet be available for a long
time.

3.3 Cost Definitions

Naturally, migrating, shrinking and expanding the applaas, as well as modifying
the checkpoint granularity brings costs that should bertaki account. For this reason,
a service to provide information about costs is important.

Changing the set of machines used by an application impliesa communication
to redistribute the data and to balance the load dependitiggomew number of machines
and their location. Unfortunately these communicationsa@se heavily dependent on
the applications and the target platform. In previous wdk fve considered folding
applications on specific numbers of machines to avoid carafdd data redistribution. In
this scope, applications have a natural number of machia@sl can be set to execute on a
fraction of this number of processofs/i| wherei is an integer. With this restriction, the
data is splitinn groups at compile time and the communications always cormmnplete
groups.

Therefore the delay induced in the schedule by a migrationscanetimes be mod-
eled and predicted to increase the overall efficiency of thedules. This prediction is
unfortunately not always possible and schedulers shouklittly to minimize the number
of migrations.

3.4 Inter Scheduler Communication

Inter scheduler communication is a service to allow useuests to be transfered
among schedulers, thus increasing the system scalabiilii is essential in distributed
environments, such as Grids, where computer resourceswicese may not be available
in a single domain. Here we illustrate two policies to be jmted by this service: (i) local
domain has preference and (ii) all domains are equival&igsi(e 2).

In the first policy a user submits an application to a knowmesiuler, Scheduler 1 for
example (Step 1), then the scheduler verifies whether tloairess of its domain are suit-
able to execute the application or not (Step 2). In this \e&ifon the scheduler considers
the current and future available resources - it could alsdy# there will be enough
time to generate the next checkpoint. Depending on the tasecheduler then collects
information from the other schedulers. Suppose Schedutkscbvers that Scheduler 4
hasbetterresources to execute the application; Scheduler 1 therategthe user request
to Scheduler 4. Note that the meaningbatter depends on a criterion established by
the domain administrator or by the users themselves. Tdeitercan be resources that
either provide higher computer power or are more stable etqwobability to become
unavailable.

In the second policy where all domains have the same preferamStep 2, instead of
checking if its own domain holds appropriate resourcese8aler 1 requests information
from all other schedulers, or from most of them, and based detarmined criterion it
decides théestdomain to execute the application.

An important issue when migrating user requests is the tfddetween transparency
and performance. In the example of the first policy, aftere8cier 1 forwards the user
request to Scheduler 4, such a user may desire to monitox#uoeigon, or the execution
results are in order of Giga or Terabytes. Thus, users ceglgast information and results
from their executions through Scheduler 1, which will sesgea router between the user
and Scheduler 4. On the other hand, Scheduler 1, after fdmethe user request to
Scheduler 4, should communicate to user that it has no datiomt the request anymore,
and all communication should be directly performed by Salexdl. Hence, in this second
case the performance increases by decreasing the tranepare

Remark that the scheduler interconnection structure t@akgthe scalability can be
implemented using different approaches. The example afrEig illustrates a peer-to-
peer structure. However, other approaches, such as heraraf schedulers, could also
be utilized.

4 Scheduling Strategies

When we are dealing with complex distributed environmesiish as Opportunistic
Grids, we have to consider several scheduling problemsefample, (i) the amount of

RESOURCES
Domain 4

RESOURCES
Domain 2

RESOURCES
Domain 3

USER
NE
Y ,
P (2) Verify local resources
T -
(1) Submits (3) Look for resource

application in other domains if necessary

RESOURCES

RESOURCES A
Domain 5

Domain 1

Figure 2: Multiple schedulers coordenate themselves tbdmact a set of resources to
execute the user application.

applications to schedule is unknown, that is, applicatemesdynamically submitted to the
scheduler; (ii) the amount of machines may vary; (iii) thesgchines may be heteroge-
neous; and (iv) the expected application execution timeslmeainavailable.

Furthermore, depending on issues such as administratiegso user and application
profiles, resource properties and services availablectiedsiler can make use of different
strategies, with different complexity levels, to assigmplagation to resources. As each
Grid domain can have its own environment settings, a defengcheduler is not the most
suitable choice. Therefore, flexibility is a key feature ischeduler aimed at executing
applications on Computational Grids. In this context, th@ppsed architecture aims to be
flexible in the sense that scheduling strategies can bea@s@lbased on the available set
of services, as those described in Section 3.

For instance, regarding the scheduling modes [14], a singslenore sophisticated
scheduling strategy can be employed. A simple strategyesbtich mode where the
scheduler groups the applications and periodically, oetb@as some external event (such
as resource availability), assigns them to resources. Aersophisticated strategy is the
online mode, where the scheduler tries to assign applitatio resources as soon it re-
ceives them. The advantage of batch mode is that the scmednleonsider more applica-
tions to make better scheduling decisions. Nevertheleadarge number of applications
is required to make these decisions, the delay to schedwylidmhbigh, and this may be a
problem if we consider Quality-of-Service issues. If théchanode is set up to schedule
applications when a certain number of resources is avail#idre can be too many calls to
the scheduler, or too few depending on the submitted agita Thus the online mode
is more appropriate on these conditions.

A scheduler usually performs decisions when an event ocdaxamples of events
are: a machine joined or left the network; a user submittempgtication or an application
has just finished; a checkpoint is generated; or also a pyriofian application is modi-

fied. Some of these events depend on services that assishiduser, and thus they are
responsible for reporting the scheduler when they have amfenmation.

Suppose a scenario where an ongoing application generatbeckpoint and the
checkpoint manager reports this event to the scheduleredBas this event the sched-
uler could make decisions; for example: (i) the applicastould be interrupted since
another application with higher priority requires its resmes; (ii) based on resource pre
diction data, the application should not be executed futhrece there will not be enough
time to generate the next checkpoint; (iii) the number of naes used by this application
should be reduced due to resource prediction data; or @ayiplication should wait since
new resources could be available in a short period of time.

Scheduling strategies could also consider applicatioesygs an additional criterion
to take decisions. For example, suppose the schedulerdsimbeitrupt the execution of an
application and start another one. The scheduler shouldoresome criterion to chose
which application must be started. Criteria such as subamssne or application priority
are generally used. However, the scheduler could also explaplication types. In this
example, thus, the scheduler could firstly attempt to sdeddyhtly-coupled applications,
secondly the master-worker and PSAs. If none of them is plesghe scheduler could
then try sequential applications. The order establishethisiexample is based by the
difficulty of each application type to deal with the loss cdwoarces.

Another issue regarding application types is the periodnmhey are executed. If
applications do not support checkpointing, it is interggto start the execution of tightly-
coupled parallel applications at periods when resourcéseiavailable for a long time,
at night or weekends, letting parameter sweep and mastéewapplications to be ex-
ecuted at the other periods. Furthermore, in master-wapgplications, good strategies
for assigning machines to master processes is essemnizg, ifthe master process is sus-
pended, the worker processes may be suspended as well.tThawg be worth providing
the scheduler with a personalized servicbéstselect master machines.

Heterogeneity is also a common problem when schedulingagtioins on distributed
environments. If applications execute on different maehypes, load balancing algo-
rithms must be taken into account. These algorithms couttireetly implemented on the
application or the scheduler could provide a service towéhlsuch a problem. Parameter
sweep and master-worker applications are usually moratdaito work on heterogeneous
machines by considering tightly-coupled applicationsaflif because tightly-coupled ap-
plications require communication among the processess,Tthe delay of one process
causes the delay of the overall application. A simple apgrda minimize this problem
with tightly-coupled applications is by grouping the maes in classes, and assigning
them to only one machine class. Note that the scheduler @sitdbe informed that the
application is able to deal with heterogeneous machines.

5 Case Study: InteGrade

The InteGrade project is a multi-university effort to build a novel Grid @gut-
ing middleware infrastructure aimed at leveraging idle patmng power of desktop ma-
chines [10]. It supports the execution of sequential, patansweep and parallel appli-
cations implemented using the BSP model [5]. InteGradesaln several components to
provide different services, including resource predictamd management of checkpoint
repositories. Figure 3 illustrates the InteGrade’s aeddtitre and its main components on
a local network.

The two main components of the middleware core are Globabites Manager
(GRM) and Local Resource Manager (LRM). GRM is responsibidally for scheduling
requests on a local network, while LRM aims at managing nessuof the machine that
provides processing power. In order to store user appbicatiformation and binaries In-
teGrade relies on an Application Repository (AR). Local gs®attern Analyzer (LUPA)
and Global Usage Pattern Analyzer (GUPA) are the compomesp®nsible for determin-
ing resource usage patterns. Each cluster machine exédiiedsto collect data about its
local user usage patterns. Based on long series of dataisitchn derive usage patterns
for that machine. GUPA is responsible for managing the mfation collected by LUPA
from all network machines. Execution Manager (EM) is the ponent that is notified
when an application is interrupted unexpectedly in ordeadsist the application restart-
ing in a future through the use of checkpoint componentss Fterruption can be due to
an execution cancellation, which is reported by LRM, or dua tnachine unavailability,
which is reported by GRM.

InteGrade also provides a checkpointing library to enabtégble checkpointing mech-
anism for sequential, parameter sweep and BSP paralldgtapphs [5]. Finally, Check-
point Repository Manager (CRM) is responsible for coortimgalocal checkpoint repos-
itories in order to allow a local process to access checkgid@s from other machines.
When it is necessary to store a checkpoint, the checkpgititimary queries CRM re-
questing the available checkpoint repositories in ordetrdaasfer them the checkpoint
data.

As we can observe, InteGrade provides two main servicesdistan the schedul-
ing decisions, which are the resource prediction and thekgunting support. Resource
prediction service is a direct use of the LUPA and GUPA congpdst However, for
checkpointing management service, as the InteGrade’s aoemps that provide check-
pointing support are scattered, they cannot be straighéfiaily used by the scheduler. A
checkpoint management service could be developed to makefuke available related
components. For example, each time CRM is requested tostipplist of checkpoint
repositories, CRM could notify the scheduler that an aggilbe has recently generated a
checkpoint, and thus one of the strategies described inoBettould be used.

!Project homepage: http://integrade.incubadora.fapesp.

10

Server Machine

N

Desktop Machine Desktop Machine

‘ Checkpoint Checkpmm
Reposnory _____ Rep05|tory

Grid Application Grid Application
Checkpoint Library Checkpoint Library

Figure 3: InteGrade’s architecture and its main components

Considering the checkpoints generation frequency in BS&llphapplications, in the
current InteGrade’s version a fixed time is established tegee checkpoints, which are
performed by the coordinator process - similar to the mgstecess in master-worker
applications. Thus, basically the checkpoint service khaillow the scheduler to dy-
namically configure the checkpointing frequency. Furthamen currently the Execution
Manager is the only component that holds the information bitlvmachine is executing
the coordinator process. Therefore, a method to supplyrtfusmation to the checkpoint
service should also be implemented.

6 Conclusion and Further Work

Scheduling different application classes on distributetivorks is challenging, in par-
ticular when machines that comprise such an environmemaraledicated. In this paper
we have proposed a flexible architecture for schedulingllebmpplications on oppor-
tunistic networks which relies on services that are usedhénform of plug-ins. It is
important to mention that a flexible architecture is a prangsapproach in the context
of Computational Grids since each Grid domain can attenoWits needs such as admin-
istrative policies, user and application profiles and reseyproperties. Furthermore, the
scheduler can be extended by the inclusion of new, and eveently unknown services.

In this paper we have described some support and advancedeser-ault tolerance,
resource prediction, and monitoring are examples of esdaetrvices for the scheduling
of parallel applications on non-dedicated machines. Ob@&icking management is a de-
sirable service to reduce wasted work generated due to theauability of a machine.
This service is specially important when we consider tiglatbupled parallel applications,
where an interruption of a process can crash the overalicgtigin. Exploring techniques
to dynamically modify both the checkpointing frequency amdount of resources is also
interesting for a better usage of the available resourcéso the interconnection among

11

schedulers is a useful service to improve the system stiifahs well as the cooperation
among the different administrative domains that comptiseGrid.

As future work we intend to implement a prototype of the pisgmbscheduler using
the InteGrade Grid middleware as a testbed environmens firet prototype will mainly
explore the InteGrade’s checkpointing components. Maeae intend to investigate
the common service interfaces of the existing Grid middlevwsystems. With this study
we expect to establish a set of easy-to-use interfaces toqieothe use of the proposed
scheduler on several Grid middleware systems, speciatlgettaimed at working with
opportunistic networks.

References

[1]

[2]

[3]

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and Drihener. Seti@home: an
experiment in public-resource computingommunications of the ACM5(11):56—
61, 2002.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, MeFaan, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, Nin§pA. Su, and
D. Zagorodnov. Adaptive Computing on the Grid Using AppLEEE Transactions
on Parallel and Distributed Systenik4(4):369-382, 2003.

H. Casanova, D. Zagorodnov, F. Berman, and A. Legranduridics for schedul-
ing parameter sweep applications in grid environmentsPrbteedings of the 9th
Heterogeneous Computing Workshppge 349, Washington, DC, USA, 2000. IEEE
Computer Society.

[4] A.Chien, B. Calder, S. Elbert, and K. Bhatia. Entropiechatecture and performance

[5]

[6]

[7]

of an enterprise desktop grid systedournal of Parallel and Distributed Computing
63(5):597-610, 2003.

R. Y. de Camargo, A. Goldchleger, F. Kon, and A. Goldmaime€kpointing-based
rollback recovery for parallel applications on the intetggrid middleware. 1#Pro-
ceedings of the 2nd workshop on Middleware for grid compgpages 35-40, New
York, NY, USA, 2004. ACM Press.

P.-F. Dutot, M. A. S. Netto, A. Goldman, and F. Kon. Schigay moldable BSP
tasks. InProceedings of the 11th Workshop on Job Scheduling Stestégr Paral-

lel Processing (JSSPP 200%)ecture Notes in Computer Science, pages 157-172,
Cambridge, MA, 2005. Springer.

E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. JohnsonA survey of
rollback-recovery protocols in message-passing systé&@s84 Computing Surveys
34(3):375-408, 2002.

12

[8] D. G. Feitelson and L. Rudolph. Towards convergence imgohedulers for paral-
lel supercomputers. IHPPS '96: Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processingages 1-26, London, UK, 1996. Springer-Verlag.

[9] I. Foster and C. Kesselmahhe Grid: Blueprint fora New Computing Infrastructure
Morgan-Kaufman, San Francisco, CA, 1999.

[10] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. GzBrra. InteGrade:
Object-Oriented Grid Middleware Leveraging Idle Compgtirower of Desktop
Machines. Concurrency and Computation: Practice and Experient&(5):449—
459, March 2004.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-perfance, portable im-
plementation of the MPI message passing interface standRadhllel Computing
22(6):789-828, September 1996.

[12] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptseheduling for
master-worker applications on the computational grid.Ptaceedings of the First
IEEE/ACM International Workshop on Grid Computing (GRIDOR) Bangalore,
India, December 2000.

[13] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Evaloatiof strategies to
reduce the impact of machine reclaim in cycle-stealingremvnents. IrProceedings
of the 1st International Symposium on Cluster Computing thedGrid page 320,
Washington, DC, USA, 2001. IEEE Computer Society.

[14] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy amasy of grid resource
management systems for distributed computBgftware: Practice and Experience
32(2):135-164, 2002.

[15] J. Liang, K. Nahrstedt, and Y. Zhou. Adaptive multi-vesce prediction in dis-
tributed resource sharing environment. Rroceedings of 4th IEEE International
Symposium the Cluster Computing and the Gpiaiges 293-300, 2004.

[16] V. S. Pande, I. Baker, J. Chapman, S. Elmer, S. M. LargoN. Rhee, M. R. Shirts,
C. D. Snow, E. J. Sorin, and B. Zagrovic. Atomistic proteitdiog simulations on
the submillisecond time scale using worldwide distributeohputing.Peter Kollman
Memorial Issue, Biopolymer68(1):91-109, 2003.

[17] J. Pruyne and M. Livny. Interfacing condor and pvm torfems the cycles of work-
station clusterskFuture Generation Computer Systerh2(1):67-85, 1996.

[18] V. S. Sunderam. PVM: a framework for parallel distrigdicomputingConcurrency,
Practice and Experien¢&(4):315-340, 1990.

13

[19] D. Thain, T. Tannenbaum, and M. Livny. Distributed cartipg in practice: The
condor experienceConcurrency and Computation: Practice and ExperiericK2-
4):323-356, 2005.

[20] L. G. Valiant. A bridging model for parallel computatio Communications of the
ACM, 33(8):103-111, 1990.

[21] R. Wolski, N. T. Spring, and J. Hayes. The network weas®vice: a distributed
resource performance forecasting service for metacomguti-uture Generation
Computer System$5(5-6):757-768, 1999.

[22] M. Wu and X.-H. Sun. A general self-adaptive task schiedusystem for non-
dedicated heterogeneous computingPtaceedings of the IEEE International Con-
ference on Cluster Computingage 354, Hong Kong, China, 2003. IEEE Computer
Society.

14

