Middleware for Ubiquitous Context-Awareness’

Ricardo Couto A. da RochaT , Markus Endler, Thiago Senador de Siqueira
Department of Informatics
Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
R. Marqués de S&o Vicente, 225
22453-900 - Rio de Janeiro, Brazil

{rcarocha, endler, thiago}@Iac.inf.puc-rio.br

ABSTRACT

This position paper discusses the challenges and trade-offs of
implementing a middleware that supports ubiquitous context-
awareness, i.e., a scenario where context-aware applications
may move throught network environments without suffering
disruptions in their context-based interactions. We present
a middleware approach based on the concept of context do-
mains that satisfy some of the requirements of this scenario.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless Communications; C.2.4
[Computer-Communication Networks|: Distributed Sys-
tems— Distributed applications; D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures

General Terms

Design, Performance, Reliability

Keywords

Middleware, Context-awareness, Ubiquitous Computing, Con-
text management

1. INTRODUCTION

Most middleware platforms for context-awareness are appli-
cation-oriented and restricted to specific scenarios, such as
smart meeting/classrooms [4, 16], smart touristic guides,
and web content adaptation. Hence, these platforms either
work only for certain environments, or at best, let the mo-
bile clients experience disruptions of context access when

*Supported by the CNPq-BMBF Brazilian-German Collab-
oration Programme (CNPq grant 490817/2006-8) and CNPq
grant 474188/2007-8.

JfSupported by CNPq.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

MPAC' 08 December 1-5, 2008 Leuven, Belgium

Copyright 2008 ACM 978-1-60558-364-8/08/12 ...$5.00.

they migrate between different environments, be they logi-
cal or physical environments. Thus, currently environments
enabling some form of context-awareness are isolated and in-
dependent, and do not support any application-transparent
handover among each other. We call these isolated environ-
ments context-aware islands, because they hinder the imple-
mentation of applications with cross-environmental interest
in context information, i.e., the context-aware interest of an
application is a combination of contextual situations pro-
vided by context sources of different environments.

Some middleware systems support such a scenario by of-
fering distributed platforms for context management [12,
10, 8, 3], federations of context-aware systems [7, 14, 2],
or through bridges [11] between context-aware systems. Ho-
wever, we argue that such middlewares do not provide ef-
fective solutions, because their generality or scalability is
limited. On one hand, more generic and flexible solutions
usually only work properly with a small client base, since
they impose high complexity on the context management
mechanism. On the other hand, solutions that scale with the
number of clients often support only lower-level abstractions
for context usage for a specific application domain.

We characterize this challenge as the development of a
middleware that supports ubiquitous context-awareness. Ubi-
quitous context-awareness is thus the capability of a con-
text-aware system or middleware to provide anytime access
to heterogeneous, distributed, and un-anticipated context
information in global scale and for distinct scenarios, allo-
wing clients to discover new context types and information,
restricted to a specific environment, and without compro-
mising semantic context interoperability. In order to sup-
port this scenario, research in middleware must tackle issues
such as: (context) generality, extensibility, computing and
communication costs, portability, evolution support, and
scalability [5]. There is a trade-off between these aspects
and, unfortunately, there is not a single solution that ade-
quately satisfies all these requirements.

This paper discusses the challenges, requirements and trade-
offs of developing a middleware that provides ubiquitous
context-awareness. We present an approach for context ma-
nagement that deals with some of these challenges and dis-
cuss some of our design decisions.

2. UBIQUITOUS CONTEXT-AWARENESS

Ubiquitous context-awareness is the ability to dynamically
discover contezt-aware computational environments associa-
ted with the physical environment, and to keep both the
access to context sources and the feasibility of the corre-

sponding context-based adaptations, despite client mobility
and environment heterogeneity. A contexrt-aware computa-
tional environment is a logical domain that comprises con-
text types and their instances (e.g. context data), that are
limited to this domain.

In order to provide ubiquitous access to context instances,
a context-aware system must provide an infrastructure for
efficient access to context data in a large-scale scenario. In
addition, we may need to restrict the scope of a context to a
specific environment, to confer scalability, security and ap-
plication performance. For example, consider the following
scenario:

A user that has a smart phone executing a
ubiquitous communicator. This hypothetical ap-
plication enables communication with a group
of people, integrating functionalities of a mobile
phone and of an instantaneous communicator,
and has the ability to adapt the communication
mechanism (e.g. text, voice, video, asynchronous
messages) to restrictions imposed by the current
physical environment and the available compu-
tational (and communication) resources. Hence,
when the user enters an environment that es-
tablishes restrictions to communication mode at
specific dates and times, the application would
adapt itself to start converting voice messages to
text messages, and switch itself to silent mode.
For example, if the user is inside a theater hall
during a movie projection, all the received calls
are converted to text messages and stored in the
user’s text messages inbox at the device.

To adapt their communication modes in virtually any en-
vironment, applications need to deal with context seman-
tics that may be specific to an environment. For example,
a communication restriction may be associated with a spe-
cific location inside the environment and, in this case, an
application may also need to deal with a particular loca-
tion semantic (e.g. Room2, Hall, Cafeteria). In another
environment (e.g. home, work, hospital) both the commu-
nication restrictions and the location semantics may change.
Research in context-aware middleware has not yet explored
these aspects of the proposed scenario.

So far, no middleware for context-aware computing pro-
perly satisfies all the requirements related to ubiquitous and
dynamic context-aware environments. For example, some
middleware platforms offer flexible solutions for dealing with
context heterogeneity, i.e., co-existence of different context
types, applications or administrative domains. In general,
these solutions are not scalable in the number of clients or
the volume of context information to be distributed. On the
other hand, some middleware offer a scalable solution for
handling and disseminating context, but restrict the types
or domains of context information.

We argue that a middleware must satisfy 12 requirements
to support adequately ubiquitous context-awareness scenar-
ios. In the following sections we discuss these requirements
(R1 to R12) for middleware for ubiquitous context-aware-
ness. We omitted some other requirements that have been
extensively discussed in literature such as communication
paradigms, mobility management and common requirements
for mobile computing middleware.

R1: Distributed context management. Distributed con-
text management promotes efficiency and scalability, since
it decreases the number of clients under responsibility of
a middleware infrastructure, and the network distance be-
tween a client and the management infrastructure. In order
to enable efficient dissemination, context information should
be delivered by the instance of the middleware’s context
management service that is currently closest to the client.
A query to a distributed context must be decomposed in
sub-queries, each one executed at the corresponding context
management service, and the query results must be dynam-
ically aggregated and delivered to the client. Distributed
management also demands that clients dynamically discover
context management services.

R2: Support for context evolution. A middleware for
ubiquitous context awareness must support the dynamic in-
clusion of new context types without causing disruption in
the executing application clients [5] or demanding redeploy-
ment of the system [6]. Evolution of context types may
be necessary after deployment of new sensors and inference
mechanisms. The challenge of this requirement is to enable
applications to seamlessly continue their context-based op-
erations, without requiring any redevelopment or redeploy-
ment.

R3: Dynamic Context Discovery. Context discovery is
the ability of a system to detect context types associated
with the new environment to which a client has moved, and
identify their relationship/similarity with the context types
used so far by an application. One of the responsibilities of
context discovery is to support on-the-fly resolution of type-
specific conflicts and ambiguities among context instances
that satisfy an application’s interest. For example, if an
application is interested in a more precise location infor-
mation for a specific device, the context-aware middleware
must provide means for dynamically verifying which one sat-
isfies the application’s requirement, among several context
information providers that may be currently available. This
dynamic checking is required because the precision of con-
text may vary dynamically and the information availability
may change accordingly to the client’s location. Moreover,
some applications may be interested in context data pro-
vided by the more specific domain where a client is currently
located. For example, a guide application (e.g. for a theater
or museum) based on symbolic locations probably will use
the location information provided within the environment
where the user is being guided, even if it is less precise or
accurate than other available location providers (e.g. GPS
global positioning).

R4: Scope of context perception. Certain context infor-
mation or privisioning mechanisms may be restricted in the
domain of a physical environment or an application. For e-
xample, a research institute may use active badges to track-
ing the location of each employee but the usage of this in-
formation may be restricted to the institute’s applications.

A developer may need to model such a restriction to con-
text usage, which we call the scope of context perception.
Such scope should transparently restrict the context ac-
cess so that an application may automatically start access-
ing/perceiving the context as soon as the user enters in con-
text scope. The ability to specify scopes of context percep-

tion decreases the number of context types and instances
that a middleware has to manage and, consequently, con-
tributes to the system’s scalability. Moreover, scopes also
allow for the implementation of security mechanisms for con-
text access and distribution.

R5: Multiple mechanisms and policies for accessing
context. In heterogeneous environments, where an applica-
tion may be running on different devices, a middleware must
offer mechanisms for adapting the policies for context access
according to the available device/network resources or appli-
cation requirements. For example, an adaptation may allow
on-demand access to context, and the usage of optimistic or
conservative policies [6].

R6: Extensible abstractions for accessing and using
context. Different sorts of context information demand for
specific abstractions of usage, such as specific events to which
an application is supposed to react, queries with a context-
specific semantics, or particular kinds of precision specifi-
cation. For example, for the location context type, spatial
queries such as "which users are less than 100 meters from
me” are very particular, and do not have any equivalent for
other kinds of context. MiddleWhere [15] is an example of
middleware that implements a rich set of specific abstrac-
tions for location context. These abstractions specify an in-
terface of context usage. They promote the correct usage of
the context and its reuse for other applications with similar
context-awareness requirements. Middleware systems must
allow the specification of such abstractions, without limiting
the evolution of the context systems (see R2).

R7. Management of application dynamic loading. In
the same way as certain context information can be lim-
ited to a scope, context-aware applications also may make
sense only in a certain environment. When a user moves to
a new environment, he/she must be capable of discovering
new applications and services as well. Middleware systems
should manage the registration of environment-specific ser-
vices, and allow automatic downloading of these software
components when the user enters or leaves a certain domain.
The main goal of this requirement is to avoid that the man-
agement of application loading monopolize user’s attention
by demanding his explicit input always he moves to another
environment. Of course, these decisions are largely depen-
dent on the user’s interest, preferences and security policies.

R8: Abstract handling of context interest. In a ubiqui-
tous environment, the interest of a user for a kind of con-
text may remain unchanged, even when he continues to use
the same application on another device. In this case, it is
necessary to identify the real entity interested in the con-
text, which may be either an application instance or a user.
Hence, a middleware should handle context interests in a
more abstract way, for example, adopting a user-centered
approach for delivering context information.

R9: Architectural independence. In heterogeneous en-
vironments, one of the most elementary requirements for
middleware systems is platform and hardware independence.
In the specific case of a middleware for ubiquitous context-
awareness, this translates into the support for executing ap-

plications on different architectures, as well as allowing the
access to context information from different programming
languages. Another requirement is the possibility to use dif-
ferent mechanisms for network communication (e.g. RMI,
SOAP, etc.) to access context information.

R10: Decoupling between context management and
inference mechanisms. A general-purpose context-aware
architecture must support the modeling of complex context
information and context reasoning. Most advanced mode-
ling approaches adopt ontologies to describe context infor-
mation and context reasoning, i.e., rules to infer a context
from a more basic context. Ontologies provide a expressive
modeling mechanism, but they require computational power
to verify the model’s consistency and execute inference rules.
As a result, they may hardy be used in large-scale ubiqui-
tous environments. To overcome these limitations, recently
some research groups have proposed approaches of hybrid
context modeling (e.g. [20]), which make use of ontologies
combined with other techniques of modeling and processing,
in a attempt combine the benefits of each model. However,
those approaches are application-specific or context-specific.

To deal with this trade-off, we argue that mechanisms for
context inference must be decoupled from context manage-
ment infrastructures, i.e., should be implemented as exter-
nal entities, such as an application component or context
providers.

R11: Easyincremental deployment, distributed admin-
istration and standardization. Global scale context-aware
solutions must enable the incremental addition of new envi-
ronments and enable a decentralized environment adminis-
tration. For example, a context-aware environment of an in-
stitution forms a specific administrative domain, controlled
by the institution’s administrator, although the environ-
ment may be a part of a global environment. An approach
for ubiquitous context-awareness must also offer simple me-
chanisms to establish standards to be followed by most of
the environments. Such standards enforce interoperability
among distributed environments.

R12: Suitable programming tools for context discov-
ery. Ubiquitous environments also demand new application
development tools to ease the discovery of the available con-
text models and to choose which context is more appropriate
to implement a particular adaptation.

3. STATE OF THE ART

Research in context-aware computing has produced dis-
tributed middlewares that satisfy partially some of the re-
quirements discussed in the previous section. According to
how they promote application ubiquity, we can classify mid-
dlewares in two categories: (a) middlewares that promote
localized ubiquity, i.e. the ubiquity is limited to a physical
or application domain; and (b) middlewares that promote
global ubiquity, i.e., support context access for a wide-scope
physical and application domain. Sections 3.1 and 3.2 dis-
cuss how middlewares in each of these cathegories satisfy
the requirements previously discussed.

3.1 Localized Ubiquity

Middlewares that promote localized ubiquity focus in of-

fering programming abstractions and context models that
adequately deal with the ubiquity requirements in the cho-
sen domain. In these middlewares, any concern about the
performance is restricted to localized scalability, as defined
n [18]. Confab [12], Gaia [16], AURA CIS [13] e PACE [10]
are the most relevant representatives of these middlewares.

In general, these middlewares adopt distributed infras-
tructures to efficiently disseminate context information (req.
R1). For example, PACE adopts a distributed publish/su-
bscribe system. In most cases, though, either the application
must previously know which infrastructure provides the con-
text it needs (e.g. Confab) or applications must use a unique
and central point of access (e.g. Gaia). In the first case, ap-
plications may become more complex, whereas in latter case,
there is a central point of failure, which hinders the use of the
system in highly distributed environments. Some middle-
wares support the concept of a dynamic environment where
applications access context and share services, and support
the migration between these environments. For example,
in Gaia, an active space is a physical area (e.g. a room)
in which heterogeneous network devices, such as PDAs and
printers, can discover themselves, self-configure and interact
with each other. However, when an application migrates to
another active space, it cannot continue context-aware inter-
actions started in the previous active space. Hence, appli-
cations experience disruptions after a migration. However,
Gaia allows applications to access files created in other ac-
tive spaces.

Each middleware proposes a different approach to deal
with heterogeneity (req. R9). Some systems have specific
implementations for portable devices (e.g. Confab), while
others support user-centered computing, as Gaia. In Gaia,
for example, a user can continue the same interaction in the
active space even if he changes the device in use. An inte-
resting approach is the generation of stubs and libraries for
access to context information from a descriptive model of
context. This approach is adopted in PACE and RCSM [21]
and provides means of transparent access to the context
management infrastructure, as well as independence of a
programming language.

3.2 Global Ubiquity

A common approach for promoting global ubiquity is to
use a federation of context-aware computing systems, as pro-
posed in Nexus and CAMUS. In CAMUS [14], federations
are composed of environments based on CAMUS services,
which distribute context information through tuples. All
the services of an environment must be registered with the
Jini discovery service. An environment with a minimum set
of CAMUS services for providing and using of context is
called context domain. The several Jini services responsi-
ble for different domains form a federation. Thus, to access
context information or use a service of a specific domain,
a client must query the Jini federation, passing parame-
ters such as the name and location of the target domain.
Through this organization, applications access context by
performing distributed queries. A similar approach is also
adopted in SCaLaDE [1]. Nexus [9] supports federations
of heterogeneous context-aware systems through a common
abstract interface that each system must implemented. A
context-aware system must also be registered in a service
called Area Service Register, which assumes a similar role
of DNS. As soon as the federation is built, clients can use a

single query language called AWQL to access context infor-
mation.

CoCo [2] and Strang et al [19] propose a similar federation
approach, through an abstract language for the description
and interoperability of context-aware systems. CoCo sup-
ports the description of workflows that specify inferences
and context relationships among environments. Strang et
al [19] propose a standard ontology to describe the facts
and concepts of different domains, while suggesting the use
of a middleware to implement the interoperability between
two or more domains. We argue that none of the federation-
based approaches is sufficient, because they are strictly lim-
ited to information dissemination and interoperability. More-
over, such approaches may cause an overload of context
types when context-aware environments are integrated in
global scale. Therefore, the solution hardly meets the re-
quirements R3 and R4. In particular, federations of context-
aware systems should be able to automatically discover and
recognize new consumers, producers, and types of context
information, as soon as they are deployed.

Hesselman et al [11] have proposed a bridging mechanism
among heterogeneous context management systems (CMS),
enabling a mapping between concepts of two different CMSs.
The bridging approach allows mapping concepts such as
identity, query translation, context adaptation, and con-
text reasoning. Using this approach, an context interest de-
scribed according to one CMS’s interface may include con-
text information provided by any CMS that maintains a
bridge with the aforementioned CMS. Despite enabling in-
teroperability, this approach suffers from performance and
scalability limitations, since each CMS represents a central
point of access and a bridge may introduce communication
delays.

4. TOWARDSA MIDDLEWARE FOR UBI-
QUITOUS CONTEXT-AWARENESS

We propose a novel middleware approach for context-
aware computing that satisfies the requirements R1, R2, R3,
and R4. The main goal of the proposed middleware is to e-
nable applications to seamlessly interact with distributed
and dynamic environments for accessing context informa-
tion according to statically defined expressions of context
interest. The associated context management approach is
based on context domains, each of which defines: (i) a set
of context types; (ii) the kind and place for storage of con-
text instances; (iii) the form of managing clients inside the
domain; and (iv) relationship to sub-domains.

A context domain establishes a context-aware environ-
ment that applies to a specific network domain. The context
types related to a context domain define a set of context con-
cepts that are specific to a logical location, and are neither
shared nor visible to context consumers outside the host do-
main. Thus, each context domain maintains its own context
type system. However, a concept of one domain may be re-
lated to a concept of its super-domain, through a sub-typing
relationship.

A Context Management Node (CMN) is responsible for
managing a context domain and implementing the required
services for storing context and disseminating it to context
consumers (e.g. context-aware applications or services). Ap-
plications interact with the CMN responsible for their cur-
rent domain, but this is handled transparently by a domain

=

Context Broker |

Dy D D.

r\;/;\ Context provider

Figure 1: Component Interaction

discovery service. To enable efficient access to local context ,
each device runs a local node that is responsible for storing
context published locally and for disseminating it to local
applications.

Essentially, three components interact to create, disse-
minate and use context information: context providers (e.g.,
a sensor), context consumers (e.g., an application) and the
Context Broker, as shown in Figure 1. The Context Broker
is an abstraction of the distributed set of Context Manage-
ment Nodes. Both context providers and consumers interact
with the Context Broker through stubs generated by a con-
text model processing tool, for each context type. The stub
maintains all the details of how the context is retrieved, and
by such enables transparent context access for providers and
consumers, independently if the context information is local
or not to its current domain.

Through its modularity and well-defined component inter-
actions, the architecture manages to separate the inference
mechanisms from the context model management, i.e., any
context-processing agent is implemented as an external com-
ponent that consumes some context required for the infer-
ence and publishes the produced/inferred context through
the Context Broker. This approach avoids the use of com-
plex context models that usually hinder efficient context dis-
semination.

4.1 Management of Evolvableand Distributed
Context Type Systems

The relationship between context types, mentioned ear-
lier, is the basis to implement context interoperability. For
example, if a consumer describes its interest in a more gen-
eral context, it may receive context instances of any of its
several sub-types. Formally, a consumer interested in a con-
text T of a domain D may receive context of types T3 of do-
main Dp and of type T of domain D3, if both T3 and T> are
subtypes of T'. In this case, D1 and D2 must be sub-domains
of D. In the proposed architecture, of course, context inte-
roperability is based on the assumption that concepts in a
domain are compliant with standard concepts defined in its
super-domains. Moreover, the root context domain, which
is the super-domain of any existing domain, must define
accurately its concepts in order to allow global context in-
teroperability (see R11).

In the underlying communication system, context infor-
mation is distributed among context management nodes,
and is also stored in context repositories as XML objects.
Thus, stubs hide from the application any changes in the
context type system, for example, as the result of the con-
text type evolution.

4.2 Middleware Architecture
The Context Management Node (CMN) is the basic ele-

[interest processor 11 provision interface |

1
Domain mﬁg&tg;
consumer proxies " ’ provider proxies II (Configurationy
Service
8 (DCs) Context
E Delivery
2 Service
@
bl Context Context Type Node e
2 Event Reposito System X
a Service P i Manager Discovery
Service
NDS
CORE SERVICES {)

Figure 2: Architecture of a Context Management
Node

ment responsible for managing a domain in our middleware.
The current context domain of a context consumer corres-
ponds to the domain defined at its current point of net-
work connectivity. Thus, when a context consumer moves
and changes the network segment where it is connected, the
domain where it is included will also change. The CMN
intermediates any context-aware interaction between a con-
sumer and the rest of the system. In order to disseminate
context to a specific consumer, the CMN uses a distributed
event service based on publish/subscribe paradigm. The res-
ponsibility for delivering context to consumers is delegated
to the event service of the node currently responsible for the
context consumer.

A CMN is composed of the basic elements shown in Figu-
re 2. The Event Service is responsible for providing asyn-
chronous communication, delivering context information and
contextual events to interested consumers. The Event Ser-
vice adopts a publish/subscribe paradigm and offers a spe-
cialized API to handle subscriptions for contextual events.
The Type System Manager maintains the dynamic context
type system, solving and recognizing context types at run-
time for a specific domain. The Context Repository main-
tains the database of context data. Proxies are the represen-
tatives of context consumers and context providers accessing
a domain node, and implement the protocol that maintains
the state of the connection to each consumer and provider.
When a client migrates to another domain, the correspon-
ding proxy migrates to the domain node, as a part of the
interdomain handover protocol.

The Context Delivery Service (CDS) is the key service
to enable efficient discovery of context information in a dis-
tributed environment. CDS maintains Entity Homes, i.e., a
database that records any context data that describes a spe-
cific entity (e.g. a device, a person, a place). Each entity has
its own home address, where the CDS obtains the domains
with context instances that satisfy the consumer require-
ments (in terms of context type and constrains). Through
the entity home, a user can dynamically inspect and control
how consumers may access context for a specific entity he
owns (e.g. his devices).

4.3 Implementation Issues and Testing Sce-
nario

We have implemented the proposed architecture in Java
(mixed JVM and Dalvik environments). Since our proto-
cols are IP-based, we adopted the Service Location Pro-
tocol for discovering CMNs, whenever a mobile device be-
comes connected to a new network access point. The Event
Service is based on the Naradabrokering® distributed pu-
blish/subscribe service. Our test scenario is composed of

"http://www.naradabrokering.org/

clients based on Android Platform, using the platform emu-
lator and the Nokia N800 device. Currently, we are finishing
the implementation of our testing application: a location-
based application that adapts to the most specific context
model and location providers, according to its current loca-
tion. In this application, when the user moves to a different
location, the middleware disseminates location information
(either GPS coordinates or symbolic location) provided for
the more specific scope (current context domain), enabling
the application to show different types of maps and objects
that represent places. As basic infrastructure for access to
raw context data (e.g. the device’s and quality of its con-
nectivity), as well as symbolic locations, we are using our
previous context provisioning middleware MoCA [17].

5. REFERENCES

[1] P. Bellavista, A. Corradi, R. Montanari, and
C. Stefanelli. A mobile computing middleware for
location- and context-aware internet data services.
ACM Trans. Inter. Tech., 6(4):356—-380, 2006.

[2] T. Buchholz and C. Linnhoff-Popien. Towards
realizing global scalability in context-aware systems.
LNCS: Location- and Context-Awareness, 3479:26-39,
2005.

[3] G. Chen, M. Li, and D. Kotz. Design and
implementation of a large-scale context fusion
network. In Mobile and Ubiquitous Systems:
Networking and Services, 2004. MOBIQUITOUS
2004. The First Annual International Conference on,
pages 246-255, 22-26 Aug. 2004.

[4] H. Chen. An Intelligent Broker Architecture for
Pervasive Context-Aware Systems. PhD thesis,
University of Maryland, Baltimore County, December
2004.

[5] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan.
Context is key. Commun. ACM, 48(3):49-53, 2005.

[6] R. C. A. da Rocha and M. Endler. Context
management in heterogeneous, evolving ubiquitous
environments. IEEE Distributed Systems Online, 7(4),
April 2006. art. no. 0604-04001.

[7] A. Dearle, G. N. C. Kirby, R. Morrison, A. McCarthy,
K. Mullen, Y. Yang, R. C. H. Connor, P. Welen, and
A. Wilson. Architectural support for global smart
spaces. In MDM ’03: Proceedings of the 4th
International Conference on Mobile Data
Management, pages 153-164, London, UK, 2003.
Springer-Verlag.

[8] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan.
Irisnet: an architecture for a worldwide sensor web.
Pervasive Computing, IEEE, 2(4):22-33, Oct.-Dec.
2003.

[9] M. Grossmann, M. Bauer, N. Honle, U.-P. Kappeler,
D. Nicklas, and T. Schwarz. Efficiently managing
context information for large-scale scenarios. In
Pervasive Computing and Communications, 2005.
PerCom 2005. Third IEEE International Conference
on, pages 331-340, 8-12 March 2005.

[10] K. Henricksen, J. Indulska, T. McFadden, and
S. Balasubramaniam. Middleware for distributed
context-aware systems. Lecture Notes in Computer
Science, 3760:846-863, 2005.

[11] C. Hesselman, H. Benz, P. Pawar, F. Liu, M. Wegdam,

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

M. Wibbles, T. Broens, and J. Brok. Bridging context
management systems for different types of pervasive
computing environments. In First International
Conference on Mobile Wireless Middleware, Operating
Systems and Applications (MOBILWARE), Innsbruck,
Austria, February 2008. ACM Press.

J. I. Hong. The context fabric: an infrastructure for
context-aware computing. In CHI ’02: CHI ’02
extended abstracts on Human factors in computing
systems, pages 554-555, New York, NY, USA, 2002.
ACM Press.

G. Judd and P. Steenkiste. Providing contextual
information to pervasive computing applications. In
Pervasive Computing and Communications, 2003.
(PerCom 20083). Proceedings of the First IEEE
International Conference on, pages 133-142, 23-26
March 2003.

S. L. Kiani, M. Riaz, S. Lee, and Y.-K. Lee. Context
awareness in large scale ubiquitous environments with
a service oriented distributed middleware approach. In
ICIS ’05: Proceedings of the Fourth Annual ACIS
International Conference on Computer and
Information Science (ICIS’05), pages 513-518,
Washington, DC, USA, 2005. IEEE Computer Society.
A. Ranganathan, J. Al-Muhtadi, S. Chetan,

R. Campbell, and D. Mickunas. MiddleWhere: a
middleware for location awareness in ubiquitous
computing applications. In Proceedings of the 5th
ACM/IFIP/USENIX international conference on
Middleware, pages 397-416, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt. A middleware
infrastructure for active spaces. Pervasive Computing,
IEEE, 1(4):74-83, Oct.-Dec. 2002.

V. Sacramento, M. Endler, H. K. Rubinsztejn, L. S.
Lima, K. Goncalves, and F. N. do Nascimento. MoCA:
A middleware for developing collaborative
applications for mobile users. IEEFE Distributed
Systems Online, 5(10), Oct. 2004.

M. Satyanarayanan. Pervasive computing: vision and
challenges. IEEE Personal Communications,
8(4):10-17, Aug. 2001.

T. Strang and C. Linnhoff-Popien. Service
interoperability on context level in ubiquitous
computing environments. In Proceedings of
International Conference an Advances in
Infrastructure for Electronic Business, Education,
Science, Medicine, and Mobile Technologies on the
Internet, 1’ Aquila, Italy., 2003.

M. Strimpakou, I. Roussaki, C. Pils, N. Kalatzis, and
M. Anagnostou. Hybrid context modeling: A
location-based scheme using ontologies. In 3rd
International Workshop on Advanced Context
Modelling, Reasoning and Management, Pisa, Italy,
March 2006.

S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S.
Gupta. Reconfigurable context-sensitive middleware
for pervasive computing. I[EEE Pervasive Computing,
1(3):33-40, 2002.

