
Middle-R - A User Level Middleware for Statistical
Computing

Rodrigo A. Dias, Alfredo Goldman, Roberto Hirata Jr.

1Instituto de Mateḿatica e Estatı́stica - Universidade de São Paulo (USP)
Rua do Mat̃ao, 1010, S̃ao Paulo - SP, BRAZIL

{rdias,gold,hirata}@ime.usp.br

Abstract. In this work we present middle-R, a user-level middleware for statis-
tical computing. It has been developed to distribute R (a language and environ-
ment for statistics) in commodity computers running Microsoft Windows. The
solution is simple because it uses Alchemi, a grid middlewaredeveloped using
Microsoft .NET technology in the University of Melbourne. The implemented so-
lution uses Alchemi as a low-level middleware and makes it possible to execute
R scripts in a grid environment. The solution has been successfully implemented
and tested in two different environments: the didactic laboratories of a college
and of a high school. The main application reported in this paper is a combi-
natorial task for finding molecular markers of a few genes to classify correctly
samples of acute lymphoblastic leukemia against acute myeloid leukemia.

1. Introduction
Bioinformatics poses some huge computational problems, forinstance: DNA sequence
analysis, finding molecular classifiers of few genes to predict cancer, or assessing the con-
fidence of statistical tests (that may require the use of a known statistical technique called
bootstrap). The typical time frame to complete one of these tasks in a high-performance
computer is measured in weeks. To facilitate this kind of computation, cluster and grid
computing fits very well, mainly when the analysis can be broken in thousands of small
independent processes with slightly varying inputs, a kindof parallelism usually referred
to as “embarrassingly parallel” computing [Foster 1995].

Unix solutions to distribute scientific applications are not new and there are sev-
eral successful histories based mainly on MPI [Dongarra et al. 1993, Snir and Otto 1998]
and PVM [Geist et al. 1994]. However, these solutions are mainly based on proprietary
clusters or on grid middleware.

Our work is motivated by the following reasons: To avoid the acquisition costs of
large clusters or the possible overhead of using an existentmiddleware we choose a vol-
unteer computing approach. Moreover, due to the large availability of desktops running
Microsoft Windows systems we propose a Windows based solution (which also can also
be extended to run on heterogeneous machines).

We have started our own grid project to use the computer facilities of our collab-
orators, college and high school computing laboratories with commodity computers. Our
project have initially faced four boundary conditions: (1)practically all labs’ computers
run Windows, so should the grid, (2) the software must run without affecting the daily ac-
tivities of the users, (3) the grid software has to easily communicate with other software,

and (4) the grid has to be able to communicate with other grids. A suitable platform to
be used under those conditions is naturally .NET [Platt 2002], mainly if we consider that
nowadays the majority of the stations run Microsoft operating systems, and that most grid
solutions available are for Unix or Linux platforms.

We firstly considered creating our own .NET grid solution butthen we
have found a .NET middleware called Alchemi [Akshay Luther and Venugopal 2003,
Akshay Luther and Venugopal 2005, A. Luther and Venugopal 2005] that helped us with
conditions (1) and (4) and let us concentrate on our bioinformatics problems. Alchemi
is a grid middleware entirely developed using Microsoft .NET Framework at University
of Melbourne as part of the Gridbus project. We have chosen touse Alchemi as the low
level grid middleware because it was developed targeting this kind of demand, increasing
the technology acceptance by private companies and common users. For condition (2),
the natural way to go is to make Alchemi work as a Windows service that should be easy
to install, start, stop and with no necessity of user interaction. Alchemi is an open source
project under GNU’s LGPL so we had no problem adapting it to our needs. We later
contributed this modification back to Alchemi’s project andit has been incorporated to
the official distribution.

The solution to condition (3) and an application of the solution are the main
subject of this paper. An important environment to do bioinformatics nowadays is the
R [R Development Core Team 2006] software, an open source implementation of S lan-
guage and environment. R has been compiled to several platforms as: Linux, Win-
dows, MacOS and Solaris. R can be integrated with several languages (C, Fortran, etc)
but has no support for .NET. However, it can communicate withother processes using
Microsoft COM [Baier and Neuwirth 2006] technology by using a contributed package
called RCOM. To solve our problem of using R in a grid environment, we propose middle-
R, a user level middleware that uses Alchemi as a low-level middleware and makes it
possible to execute R scripts in a grid environment. The layer has been implemented and
used in our bioinformatics activities.

1.1. Related Work

There are several packages to parallelize R processes [Rossini et al. 2003, Yu 2006,
Li and Rossini 2006, Markus Schmidberger and Mansmann 2009].All of them have been
implemented and are suitable for Linux but can be adapted to Windows with some lim-
itations. However, they are used better in a small dedicatednetwork of computers (a
cluster, for instance) than in a large infrastructure. Besides that, the user has to manage
the computer names and distribution of work for each one in the R script. There is no
mechanism of logging, ressubmission and others, that are usually found in grid middle-
ware. Condor [Douglas Thain and Livny 2005] is another workload management system
to distribute workloads in a network. There are some noticesof groups using R under
Condor for Windows but there is no paper or report available. Asystem of volunteer grid
computing is an alternative solution recently presented for interpreted applications within
BOINC infrastructure [Gonźalez et al. 2008].

1.2. Paper Organization

After this Introduction, in Section 2 we introduce some of the technologies involved in
the solution, in Section 3 we present middle-R, in Section 4 wepresent an example of

application and in the Conclusion we discuss some future steps we think will improve the
work.

2. Involved Technologies

In this Section, we outline the major technologies involvedin the proposed solution, i.e.,
R and Alchemi.

2.1. R

The most popular open software project for statistical analysis and computing nowadays
is the R language and environment [R Development Core Team 2006]. The project has
been originally developed by Robert Gentleman and Ross Ihaka of the Statistics De-
partment of the University of Auckland and later it has been made freely available un-
der GNU’s GPL. The project’s source code and binaries to several supported platforms
(Linux, Unix, Windows and MacOS) are freely available through the project’s website:
www.r-project.org. As an environment, R offers to the user data handling and
storage methods, matrix computation operators, a large setof tools for data analysis
and graphics generation, implemented statistical analysis functions such as linear and
non-linear modelling, statistical tests, time series analysis, data classification, etc. As
a language, R offers a complete and robust programming language with resources like
input/output handling, conditionals, loops, and user-defined functions.

Support for extensibility, that is, user’s development andintegration of packages is
another important feature of the environment. There are more than one thousand packages
available through the website at the time of this writing. Through these packages, R can be
extended by adding features such as database connection support, Internet communication
support, signal and image basic analysis, and so on.

R environment is also very popular among biostatisticians because of its support
for biological data analysis. In fact, many statistical andcomputational techniques used in
bioinformatics are present in R through community designedpackages as an independent
project called Bioconductor [Gentleman et al. 2004], makingit a very popular tool among
these researchers.

2.2. Alchemi

Alchemi is an open source grid middleware entirely developed using Microsoft .NET
Framework by Dr. Rajkumar Buyya and his team in the University of Melbourne as part
of the Gridbus project [Buyya and Venugopal 2004]. Grid applications can be developed
using Alchemi’s own API and executed on a desktop grid constructed using Alchemi’s
runtime facilities. Both development and execution of grid applications are supported by
a strong object-oriented model, giving easy access and total control to all of its features
to users and developers.

Alchemi’s architecture is divided in four well defined components: theManager,
that manages execution of grid applications, threads and grid resources; theExecutor,
responsible for dedicated or voluntary execution of grid threads; theUser, represents
the owner of an application and theCross-Platform Manager, an optional component
responsible for exposing the functionalities of the Manager to global grids through an

web service interface. Each one of these components are represented by an object on
Alchemi’s object-oriented programming model.

New resources can easily be aggregated into an Alchemi grid by registering a new
Executor in the Manager node anytime, even with an application already running on that
grid. The new Executor will start receiving grid threads as soon its Manager’s scheduler
finds it necessary. The Executors can be in the same network, in adjacent networks or
over the Internet behind a firewall or NAT device, the only restriction is that it must be
able to access a predetermined port in the Manager.

To make Alchemi compliant with one of our boundary conditions (run without
affecting the normal life of the laboratories) some modifications have been made in the
Alchemi Executor in order to make it to run as a Windows service. As a service, the
Executor can run unattended and outside any user context or interference. To accomplish
this, some portions of theAlchemyCore library had to be rewritten and the Executor
was divided into two separated applications: the Executor Service - the Windows service
itself - that contains the same functionalities of the Executor, and the Executor Service
Controller - the service GUI - that connects to the Executor Service and have the same
functionalities of the Executor GUI, in addition to serviceconnect, disconnect, start and
stop functionalities. These changes were later contributed back to Alchemi’s project and
incorporated into the official distribution.

2.3. RCOM

The Microsoft Component Object Model (COM) technology enables interprocesses com-
munication between software components from different vendors. A key package used in
our solution is RCOM package [Baier and Neuwirth 2006], developed by Erich Neuwirth
and Thomas Baier as a package for Windows-based R installations. Through RCOM, we
can expose R’s features to other Windows applications written in any COM compatible
programming language via COM interface.

When RCOM is installed on a machine, a COM Server is created enabling COM
clients to connect and create objects representing an R instance. Through this instance,
one can transfer data (with proper data conversions) between R and a client application,
use R’s computing engine, access its graphical features and input/output facilities.

3. Middle-R

We start this section with a discussion on .NET and COM interoperability, we continue
with a brief explanation on Alchemi’s programming models and then we discuss the pro-
posed solution in details.

3.1. .NET and COM Interoperability

COM was designed some year’s before .NET initiative. Microsoft consider them com-
plimentary technologies but, in fact, they are incompatible as their programming models
differ greatly. The main problem is that COM code is not executed by .NET Common
Language Runtime (CLR) [Meijer and Miller 2000] and is not managed by any CLR ser-
vice (unmanaged code). That is, all components that .NET managed code can access are
those managed by CLR.

In our work, we have created a component that uses a Remote Callable Wrapper
(RCW) to wrap the RCOM object and do all the conversions between it and Alchemi C#
code, making the RCOM object appear to Alchemi just as if it werea native .NET object.
This interoperable layer was constructed usingtlbimp.exe, a tool from .NET SDK for
the conversion of public interfaces between COM and .NET using information stored in
COM component type library.

3.2. Alchemi’s programming models

Alchemi has two object-oriented programming models: (1) a grid thread program-
ming model and (2) a grid job programming model [Akshay Luther and Venugopal 2003,
Akshay Luther and Venugopal 2005]. In the grid thread programming model, the atomic
processing unit is an object inherited from the classGThread, which is serialized by
a grid application running under a Manager node and transmitted to an Executor node
responsible for its execution. This model gives the developer a closer control of the dis-
tributed threads. On the other hand, the grid job programming model has been developed
to leverage legacy applications to become grid-enabled. Inthis latter model, the atomic
processing unit is aGJob object (a class that extendsGThread to enable legacy appli-
cations to run on the grid) that depends on one or more files that will be copied by the
Manager and executed by an Executor node.

Alchemi has two ways of accessing the grid job model: (1) declaratively, by us-
ing a task description XML file to describe jobs and its dependencies; and (2) program-
matically, by creating an application via Alchemi API that instantiates and configures a
GApplication object, which contains multipleGJob objects.

3.3. middle-R and Alchemi

Due to .NET Runtime design limitations, Alchemi .NET managedcode cannot directly
access R computation engine and library, written in unmanaged code. For this reason,
we needed to design an interoperability layer to enable Alchemi code to access R en-
gine. So, we took advantage of RCOM package to access R engine through its public
interfaces published as a COM server object, to design a small.NET program, called
RJob. The role ofRJob is to receive R scripts along with Alchemi jobs, evaluates them
against R engine and returning the evaluation output as Alchemi job result. To be able to
evaluate R commands,RJob needs first to initialize the R engine. It is done by evoking
Init(. . .) method ofSTATCOnnector class, the interoperability layer between R’s
COM object andRJob unmanaged code. The initialization command is passed to the
STATConnector, the COM object that interfaces R, which passes again toRProxy
where it will be evaluated in R engine itself. The engine is now prepared to receive R
commands, which will follow the same path as the initialization command. Figure 1
shows the layers involved inRJob, while Figure 2 shows the interactions of these layers
as a sequence diagram. For several design and conceptual reasons, RCOM server object
cannot be serialized and passed as a parameter to an Executornode inside a grid thread
object, as expected by Alchemi’s grid thread programming model. Therefore, middle-R
has been built using Alchemi’s grid job model. In our solution, RJob will be copied from
the Manager node to the Executor nodes, along with an input file containing the R script
we want to run in each node of the grid, as described in Figure 3. In every Executor node,
RJob will parse that input file and use the R engine to evaluate the script and generate

an output file containing the execution results of the script. In this version, we have cho-
sen to get textual response for each command, instead of R response objects, due to data
conversion costs.

Figure 1. RJob application scheme.

An application in Alchemi is an instance ofGApplication and contains
a Manifest of files which that application depends on, that is, a collection of
FileDependency objects needed by the application to be executed on remote Execu-
tor nodes. The Manifest must contain all the files RJob will need to be executed locally,
includingRJob.exe. TheGApplication object contains a collection of threads, that
is, all the jobs that will be executed. As mentioned above, a job is an object inherited
from GJob and has an input file collection, an output file collection anda command that
will be executed when the job runs on Executor node. Figure 3 shows the scheme for the
middle-R in this context

4. Application Example

In this section we outline a possible utilization of the middle-R, a combinatorial bioinfor-
matics problem to finding molecular classifiers using pattern recognition techniques.

One of the important research areas in Medicine, and consequently in Bioinfor-
matics, is the correct prognosis and diagnosis based on the expressions of certain genes
in a tissue sample. The expression of a gene is the quantity ofthat gene that are being
expressed in the cell in a certain moment of the cell’s life. The idea is to find a set of
genes that could have their expression measured (from biopsies tissues, for instance) and

Figure 2. Middle-R sequence diagram.

Figure 3. Middle-R scheme.

analyzed to help the diagnosis, or even better, the prognosis of a certain tissue condi-
tion [Zweiger 1999].

There are several techniques to quantify the gene expression of the cells of a given
tissue [Bowtell 1999]. cDNA microarray and high density oligonucleotide arrays are the
most used microarray techniques. The strength of these techniques is that each microarray
experiment can assess the expression of thousand of genes atthe same time.

For practical purposes, the output of an experiment is an×p matrix, wheren is the
number of genes andp is the number of tissues being assessed. Each matrix elementgi,j

is the expression of the genei for the tissuej. The expressions can be absolute or relative
to another tissue or pool of tissues expressions. In the caseof the dataset used in our
work [Golub et al. 1999], the experiment is to compare samples of Acute Lymphoblastic
Leukemia (ALL) to Acute Myeloid Leukemia (AML). The expression is measured using
Affymetrix high-density oligonucleotide arrays containing p = 6817 genes. The dataset

comprises 47 ALL tissues and 25 AML tissues. The dataset was prepared following the
steps reported in [S.Dudoit et al. 2002], i.e., (i) thresholding: floor of 100 and ceiling
of 16000; (ii) filtering: exclusion of genes with max/min ≤ 5 and max− min ≤ 500,
where max and min refer respectively to the maximum and minimum expression levels
of a particular gene across mRNA samples; (iii) base 10 logarithmic transformation. The
final dataset is a72 × 3051 matrix of gene expressions, i.e., after preparation the number
of genes is3051.

There are several techniques in the area of Pattern Recognition to find classifiers
by supervised learning. For statistical and computationalreasons, we are going to use
Fisher Linear Discriminant Analysis (FLDA) [Bishop 2006] tofind the pairs of genes
that perfectly classify the tissues by cancer types.

Let x be a point in the plane formed by the expression levels of a pair of genes
(gi, gj) andy be such thaty = wx, wherew is a weighting vector that better separates the
projections of the two cancer types (ALL and AML). The idea behind FLDA is to find, by
computing projections to a hyperplane (or a line in our case), the vectorw that maximizes
the ratio of the between-class covariance matrixSB to the within-class covariance matrix
SW defined by:

SB = (m2 − m1)(m2 − m1)
T (1)

and
SW =

∑

n∈C1

(xn − m1)(xn − m1)
T +

∑

n∈C2

(xn − m2)(xn − m2)
T (2)

where:m1 = 1

N1

∑
n∈C1

xn andm2 = 1

N2

∑
n∈C2

xn.

Solving this problem is equivalent to inverting matrixSW and multiplying by the
difference of the meansm1 andm2. This is not a discriminant but only the direction of the
normal vector of the separating line between the two types ofcancer. The discrimination
point can be found by a naive Bayes approach [Bishop 2006].

To compute one discriminant is very fast (about 0.025s). However, we need to
computeC(3051, 2) = 4652775 discriminants and check if any pair separates perfectly
the cancer samples. To do that, we can split the jobs to the grid (because they are indepen-
dent) and just check the results. There are 514 pairs of genesthat satisfy the requirement
of separating the cancer types perfectly.

To perform the experiments, two didactic laboratories havebeen prepared to run
an Alchemi grid. Each laboratory has 20 machines: 20 Intel Celeron D330 2.66 GHz, 256
Mb RAM in one of them (named here Lab1) and 20 Intel Celeron D315 2.25 GHz, 256
Mb RAM in the other (named here Lab2) . Both laboratories run Windows XP SP and
at least the following packages are installed in each machine: R (version 2.6.0), RDCOM
Server (version 1.8.3) and Alchemi (version 1.0.6). The machines in each laboratory are
connected to a ethernet hub (10 Mbps) and both hubs are connected in cascade mode
and connected by a switch to the administrative network. During the tests, all machines
were dedicated to the experiment, i.e., there were no cycle sharing among other users or
applications. Despite of the fact that the middle-R can be used in an opportunistic way,
we provided a dedicated setting for the experiments in orderto verify the performance.

To assert the stability of the performance of the solution, asubset of the pairs to

be tested has been chosen (5000 pairs of genes selected at random) as part of a job that
was tested in three different experiments with one, ten and twenty nodes.

All the experiments had a number of jobs equal to the number ofnodes and were
repeated 100 times. For a one node grid, the maximum time of execution for this exper-
iment is 2 minutes and 10 seconds, the minimum time of execution is 2 minutes and 7
seconds and the standard deviation is 0.828 seconds. For a ten nodes grid the minimum
time of execution was 2 minutes and 8 seconds, the maximum execution time was 2 min-
utes and 14 seconds and the standard deviation was 1.81 seconds. For a twenty nodes grid
the minimum time of execution was 2 minutes and 8 seconds, themaximum execution
time was 2 minutes and 16 seconds and the standard deviation was 1.68 seconds.

The performance of the grid application has been compared toa stand alone ma-
chine (Lab1) by running the R script to do all the 4652775 tests (same dataset), i.e., no
grid infrastructure. The experiment has been repeated using a grid with five, ten, twenty
and forty nodes. For all experiments but the last (40 nodes),only Lab1 machines have
been used. Initially, the number of pairs to be tested have been divided in 1000 jobs
(approximately 4653 tests/job). Table 1 shows the results for each one of the tests. A
super-scalar effect can be noticed comparing the time of 5 nodes against 10 nodes.

Nodes Time
⋆ 43:39:19
5 15:49:22
10 7:43:16
20 4:18:45
40 2:12:14

Table 1. Time comparison between experiments with 5, 10, 20 and 40 grid nodes
checking all pairs divided into 1000 jobs. Time column represented as HH:MM:SS
format.
(⋆) Time measured outside grid infrastructure.

To reduce the impact of communication between Alchemi and the nodes, a second
experiment has been done. This time, the number of jobs is equal to the number of nodes
in the experiment and each job tests4652775/N , whereN = {5, 10, 20, 40}. On this
second experiment, instead of having small jobs and a large amount of communication on
the cluster, we used large jobs andN communications.

Table 2 shows the results for each one of the tests. Comparing to Table 1, the
total time has been reduced in 0,88% for 5 nodes, 3,74% for 20 nodes and 7,69% for
40 nodes. However, the time of execution for 10 nodes have notshown the super-scalar
effect. With the last two experiments it is possible to observe a kind of trade-off between
the communication among jobs, and the disk swap effects of large jobs1.

5. Conclusion
There are several grid solutions for Unix environments and there are some packages to
facilitate R applications to be distributed under Unix. Under Windows, there were no

1”We performed some additional tests to verify the communication overhead. On all cases but with 10
nodes it corresponds to the time difference. So, we suppose that the difference with 10 nodes comes from
disk swap.

Nodes Time
⋆ 43:39:19
5 15:41:02
10 8:06:33
20 4:09:05
40 2:02:04

Table 2. Time comparison between experiments with 5, 10, 20 and 40 grid nodes
checking all pairs divide into N jobs where N = {5, 10, 20, 40}. Time column rep-
resented as HH:MM:SS format.
(⋆) Time measured on R outside grid infrastructure.

“off-the-shelf” solution to distribute R when we started this project. Fortunately, using
Alchemi, a grid middleware that uses Microsoft .NET technology, we have designed and
implemented middle-R, a user level middleware to enable R applications to be executed
in a grid environment. More recently, two solutions are being tested: one under Condor
and another under BOINC.

There is a very important difference between our solution and the ones proposed
before: since middle-R is integrated with Alchemi, a grid middleware, the grid can scale
to a very large network of computers, distributed across different administrative domains,
while in the other solutions that would be very difficult or even impossible. The proposed
solution has been deployed in computing laboratories (all using commodity computers)
of two educational institutions in a way that is not disturbing the didactic activities (users
can continue using Windows and do not notice performance degradation).

We have used the grid in some of our bioinformatics problems,mainly microarray
statistical analysis to find robust biological classifiers (gene-cliques to distinguish cancer
and non-cancer tissues, or to distinguish between types of cancer) and we could solve an
important problem related to scientific reproducibility that is controlling the version of
R packages in a distributed environment. We have also implemented a .NET component
responsible for R communication (that supports serialization) to enable middle-R to use
the grid thread model. One advantage of this solution is thatwe have a better control of
the threads. The disadvantage is that it is slower than the COMsolution and not fully
compatible with R commands.

In economical terms, there are several aspects that we started studying but have
to be improved. According to our initial studies, the energycost per machine is approx-
imately US$0.0135 (considering the kw/h cost approximately US$0.012 per machine)
with the monitor in idle status and the CPU in a peak of processing. If we consider that
the cost per hour of machine instance is approximately US$0.1 for the EC2 (Amazon’s
computing grid), the proposed solution is economically viable, even counting other cost
variables as maintenance, cost of ownership and etc. The proposed solution is also eco-
nomically adequate for computing labs because, in the future, the institutions may be able
to rent computing time and consequently reduce the cost of ownership, leverage research
partnerships and mainly, being a non-profit institutions, reduce the students’ tuition.

As a future work we intend to further explore the effects on the jobs size on the
total execution time, using different settings as heterogeneous machines and faster net-

works. We also intend to add fault tolerance capacities to the jobs, using a kind of heart
beat verification is order to allow the resolution of actual problems.

6. Acknowledgements

The authors thank the SENAC College of Computer Science and Technology and Coĺegio
Rainha da Paz for allowing us to use their computing resources. The authors thank
Alexandre Gomes Ferreira, Paula Akemi Nishimoto, Lucas A. M. Perin and Dr. E. Jord̃ao
Neves for their participation in the development of the project. The authors thank Dr.
Gisele S. Craveiro and Dr. Nina S. T. Hirata for reviewing partof the work. The authors
thank the anonymous reviewers for important suggestions toimprove this paper. The
authors also thank Dr. Buyya and his team for designing and developing Alchemi and
Gridbus. Alfredo Goldman and Roberto Hirata Jr. are partially supported by CNPq.

References

A. Luther, R. Buyya, R. R. and Venugopal, S. (2005). Alchemi: A .NET Based Enter-
prise Grid Computing System. InProceedings of the 6th International Conference on
Internet Computing (ICOMP’05), Las Vegas, USA.

Akshay Luther, Rajkumar Buyya, R. R. and Venugopal, S. (2003). Alchemi: A .NET-
based Grid Computing Framework and its Integration into Global Grids. Technical
Report GRIDS-TR-2003-8, Grid Computing and Distributed Systems Laboratory, Uni-
versity of Melbourne, Australia.

Akshay Luther, Rajkumar Buyya, R. R. and Venugopal, S. (2005).High Performance
Computing: Paradigm and Infrastructure, chapter Peer-to-Peer Grid Computing and a
.NET-based Alchemi Framework. Wiley Press, New Jersey, USA.

Baier, T. and Neuwirth, E. (2006).R COM Client Interface and internal COM Server. R
package version 1.4.

Bishop, C. M. (2006).Pattern Recognition and Machine Learning. Springer.

Bowtell, D. D. L. (1999). Options Available – from Start to Finish – for Obtaining Ex-
pression Data by Microarray.Nature (Genetics Supplement), 21:25–32.

Buyya, R. and Venugopal, S. (2004). The Gridbus toolkit for service oriented grid and
utility computing: an overview and status report. InGrid Economics and Business
Models, 2004. GECON 2004. 1st IEEE International Workshop on, pages 19–66.

Dongarra, J. J., Hempel, R., Hey, A. J. G., and Walker, D. W. (1993). Mathematical
Sciences Section: A PROPOSAL FOR A USER-LEVEL, MESSAGE PASSING IN-
TERFACE IN A DISTRIBUTED MEMORY ENVIRONMENT.

Douglas Thain, T. T. and Livny, M. (2005). Distributed computing in practice: The condor
experience. InConcurrency and Computation: Practice and Experience, volume 17,
pages 323–356.

Foster, I. (1995).Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering, chapter 1.4.4. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.,and Sunderam, V. (1994).
PVM Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, Mass.

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling,M., Dudoit, S., and-
Laurent Gautier, B. E., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus,
S., Li, R. I. F. L. C., Maechler, M., Sawitzki, A. J. R. G., Smith, C., Smyth, G., Yang,
L. T. J. Y. H., and Zhang, J. (2004). Bioconductor: Open software development for
computational biology and bioinformatics.Genome Biology, 5:R80.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek,M., Mesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander,
E. S. (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction
by Gene Expression Monitoring.Science, 286(5439):531–537.

Gonźalez, D. L., de Vega, F. F., Trujillo, L., Olague, G., Cárdenas, M., Aráujo, L.,
Castillo, P., Sharman, K., and Silva, A. (2008). Interpretedapplications within boinc
infrastructure. InIbergrid 2008. 2nd Iberian Grid Infrastructure Conference Proceed-
ings, pages 261–272.

Li, N. and Rossini, A. J. (2006).rpvm: R interface to PVM (Parallel Virtual Machine).
R package version 1.0.1.

Markus Schmidberger, Martin Morgan, D. E. H. Y. L. T. and Mansmann, U. (2009). State-
of-the-art in parallel computing with r. Technical report,Institut für Statistik.

Meijer, E. and Miller, J. (2000). Technical overview of the Common Language Runtime.
Technical report, Microsoft Corp.

Platt, D. S. (2002).Introducing Microsoft .Net, Second Edition. Microsoft Press, Red-
mond, WA, USA.

R Development Core Team (2006).R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-
0.

Rossini, A., Tierney, L., and Li, N. (2003). Simple parallel statistical computing in R.
UW Biostatistics working paper series. Paper 193.

S.Dudoit, Fridlyand, J., and Speed, T. P. (2002). Comparisonof discrimination methods
for the classification of tumors using gene expression data.Journal of the American
Statistical Association, 97(457):77–87.

Snir, M. and Otto, S. (1998).MPI-The Complete Reference: The MPI Core. MIT Press,
Cambridge, MA, USA.

Yu, H. (2006).Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). R pack-
age version 0.5-3.

Zweiger, G. (1999). Knowledge discovery in gene-expression-microarray data: mining
the information output of the genome.Trends in Biotechnology, 17(11):429–436.

