Middle-R - A User Level Middleware for Statistical
Computing

Rodrigo A. Dias, Alfredo Goldman, Roberto Hirata Jr.

!Instituto de Materatica e Estastica - Universidade de® Paulo (USP)
Rua do Ma&o, 1010, &o Paulo - SP, BRAZIL

{rdi as, gol d, hirata}@ ne. usp. br

Abstract. In this work we present middle-R, a user-level middleware fatisst
tical computing. It has been developed to distribute R (glexge and environ-
ment for statistics) in commodity computers running Miofo&Vindows. The
solution is simple because it uses Alchemi, a grid middlewlakeloped using
Microsoft .NET technology in the University of MelbourneeTinplemented so-
lution uses Alchemi as a low-level middleware and makes itijplest® execute
R scripts in a grid environment. The solution has been sstegimplemented
and tested in two different environments: the didactic |labories of a college
and of a high school. The main application reported in thipgrais a combi-
natorial task for finding molecular markers of a few genesl&ssify correctly
samples of acute lymphoblastic leukemia against acuteaiayielukemia.

1. Introduction

Bioinformatics poses some huge computational problemsn&tance: DNA sequence
analysis, finding molecular classifiers of few genes to texdincer, or assessing the con-
fidence of statistical tests (that may require the use of avkrsiatistical technique called
bootstrap). The typical time frame to complete one of thaskg in a high-performance
computer is measured in weeks. To facilitate this kind of potation, cluster and grid
computing fits very well, mainly when the analysis can be brok thousands of small
independent processes with slightly varying inputs, a kihdarallelism usually referred
to as “embarrassingly parallel” computing [Foster 1995].

Unix solutions to distribute scientific applications aré¢ new and there are sev-
eral successful histories based mainly on MPI [Dongarrd di993, Snir and Otto 1998]
and PVM [Geist et al. 1994]. However, these solutions arenipdoased on proprietary
clusters or on grid middleware.

Our work is motivated by the following reasons: To avoid thqusition costs of
large clusters or the possible overhead of using an exist&tleware we choose a vol-
unteer computing approach. Moreover, due to the largeahifitly of desktops running
Microsoft Windows systems we propose a Windows based sol(tvhich also can also
be extended to run on heterogeneous machines).

We have started our own grid project to use the computeitiasilof our collab-
orators, college and high school computing laboratori¢s s@mmodity computers. Our
project have initially faced four boundary conditions: ftactically all labs’ computers
run Windows, so should the grid, (2) the software must ruheit affecting the daily ac-
tivities of the users, (3) the grid software has to easily samicate with other software,

and (4) the grid has to be able to communicate with other gidsuitable platform to
be used under those conditions is naturally .NET [Platt 20@ainly if we consider that
nowadays the majority of the stations run Microsoft opaatystems, and that most grid
solutions available are for Unix or Linux platforms.

We firstly considered creating our own .NET grid solution kben we
have found a .NET middleware called Alchemi [Akshay Luthed &enugopal 2003,
Akshay Luther and Venugopal 2005, A. Luther and Venugop@b2that helped us with
conditions (1) and (4) and let us concentrate on our biomédics problems. Alchemi
is a grid middleware entirely developed using Microsoft INEramework at University
of Melbourne as part of the Gridbus project. We have chosers¢cAlchemi as the low
level grid middleware because it was developed targetiisgkihd of demand, increasing
the technology acceptance by private companies and comsers.uFor condition (2),
the natural way to go is to make Alchemi work as a Windows serthat should be easy
to install, start, stop and with no necessity of user int@ac Alchemi is an open source
project under GNU’s LGPL so we had no problem adapting it to reeeds. We later
contributed this modification back to Alchemi’s project ahtias been incorporated to
the official distribution.

The solution to condition (3) and an application of the dolutare the main
subject of this paper. An important environment to do bioinfatics nowadays is the
R [R Development Core Team 2006] software, an open sourceemgitation of S lan-
guage and environment. R has been compiled to several phafas: Linux, Win-
dows, MacOS and Solaris. R can be integrated with severgukges (C, Fortran, etc)
but has no support for .NET. However, it can communicate witier processes using
Microsoft COM [Baier and Neuwirth 2006] technology by usingantibuted package
called RCOM. To solve our problem of using R in a grid environtnese propose middle-
R, a user level middleware that uses Alchemi as a low-levedlewdare and makes it
possible to execute R scripts in a grid environment. Therlage been implemented and
used in our bioinformatics activities.

1.1. Related Work

There are several packages to parallelize R processes fiRetsal. 2003, Yu 2006,
Li and Rossini 2006, Markus Schmidberger and Mansmann 2@0i9jf them have been
implemented and are suitable for Linux but can be adapteditadWs with some lim-
itations. However, they are used better in a small dedicastdork of computers (a
cluster, for instance) than in a large infrastructure. Besithat, the user has to manage
the computer names and distribution of work for each one enRhscript. There is no
mechanism of logging, ressubmission and others, that ar@lydound in grid middle-
ware. Condor [Douglas Thain and Livny 2005] is another waaklonanagement system
to distribute workloads in a network. There are some notifegroups using R under
Condor for Windows but there is no paper or report availablgygtem of volunteer grid
computing is an alternative solution recently presentedhterpreted applications within
BOINC infrastructure [Goralez et al. 2008].

1.2. Paper Organization

After this Introduction, in Section 2 we introduce some af technologies involved in
the solution, in Section 3 we present middle-R, in Section 4pvesent an example of

application and in the Conclusion we discuss some futures steghink will improve the
work.

2. Involved Technologies

In this Section, we outline the major technologies involirethe proposed solution, i.e.,
R and Alchemi.

21. R

The most popular open software project for statisticalgsigland computing nowadays
is the R language and environment [R Development Core Tea®]2dWe project has
been originally developed by Robert Gentleman and Ross IhaklaeoStatistics De-
partment of the University of Auckland and later it has beeadenfreely available un-
der GNU’s GPL. The project’'s source code and binaries toraégeipported platforms
(Linux, Unix, Windows and MacOS) are freely available thgbiuthe project’s website:
WWW. I - proj ect. org. As an environment, R offers to the user data handling and
storage methods, matrix computation operators, a largefsttols for data analysis
and graphics generation, implemented statistical arslysictions such as linear and
non-linear modelling, statistical tests, time series ysial data classification, etc. As
a language, R offers a complete and robust programming &gggwith resources like
input/output handling, conditionals, loops, and userrfifunctions.

Support for extensibility, that is, user’s development axtelgration of packages is
another important feature of the environment. There arenian one thousand packages
available through the website at the time of this writingrdigh these packages, R can be
extended by adding features such as database connectjgorsuipternet communication
support, signal and image basic analysis, and so on.

R environment is also very popular among biostatisticiaasahse of its support
for biological data analysis. In fact, many statistical anchputational techniques used in
bioinformatics are present in R through community desigretkages as an independent
project called Bioconductor [Gentleman et al. 2004], makiagrery popular tool among
these researchers.

2.2. Alchemi

Alchemi is an open source grid middleware entirely developsing Microsoft .NET
Framework by Dr. Rajkumar Buyya and his team in the Univerditylelbourne as part
of the Gridbus project [Buyya and Venugopal 2004]. Grid aggilons can be developed
using Alchemi’s own API and executed on a desktop grid coesdd using Alchemi’s
runtime facilities. Both development and execution of ggpglecations are supported by
a strong object-oriented model, giving easy access antdodrol to all of its features
to users and developers.

Alchemi’s architecture is divided in four well defined conmagmts: theM anager,
that manages execution of grid applications, threads aiddrgsources; th&xecutor,
responsible for dedicated or voluntary execution of grice#lds; theUser, represents
the owner of an application and tl@& oss-Platform Manager, an optional component
responsible for exposing the functionalities of the Mamageglobal grids through an

web service interface. Each one of these components areseyed by an object on
Alchemi’s object-oriented programming model.

New resources can easily be aggregated into an Alchemi griedistering a new
Executor in the Manager node anytime, even with an appticatiready running on that
grid. The new Executor will start receiving grid threads agrsits Manager’s scheduler
finds it necessary. The Executors can be in the same netwoddjacent networks or
over the Internet behind a firewall or NAT device, the onlytrieton is that it must be
able to access a predetermined port in the Manager.

To make Alchemi compliant with one of our boundary condigignun without
affecting the normal life of the laboratories) some modifaas have been made in the
Alchemi Executor in order to make it to run as a Windows se&viés a service, the
Executor can run unattended and outside any user contextesfarence. To accomplish
this, some portions of thal chenyCor e library had to be rewritten and the Executor
was divided into two separated applications: the ExecutoviBe - the Windows service
itself - that contains the same functionalities of the Exeguand the Executor Service
Controller - the service GUI - that connects to the ExecutaviSe and have the same
functionalities of the Executor GUI, in addition to servioennect, disconnect, start and
stop functionalities. These changes were later contribbgek to Alchemi’s project and
incorporated into the official distribution.

2.3. RCOM

The Microsoft Component Object Model (COM) technology ensibiéerprocesses com-
munication between software components from differenteen A key package used in
our solution is RCOM package [Baier and Neuwirth 2006], devetoipy Erich Neuwirth
and Thomas Baier as a package for Windows-based R instalafiqhrough RCOM, we
can expose R’s features to other Windows applications writieany COM compatible
programming language via COM interface.

When RCOM is installed on a machine, a COM Server is created ega®IDM
clients to connect and create objects representing an Bnicest Through this instance,
one can transfer data (with proper data conversions) bet®Resnd a client application,
use R’s computing engine, access its graphical featuresvgatfoutput facilities.

3. Middle-R

We start this section with a discussion on .NET and COM interalpility, we continue
with a brief explanation on Alchemi’s programming models #men we discuss the pro-
posed solution in details.

3.1. .NET and COM Interoperability

COM was designed some year’s before .NET initiative. Micfosonsider them com-
plimentary technologies but, in fact, they are incompatés their programming models
differ greatly. The main problem is that COM code is not exeduty .NET Common
Language Runtime (CLR) [Meijer and Miller 2000] and is not maetagy any CLR ser-
vice (unmanaged code). That is, all components that .NETagethcode can access are
those managed by CLR.

In our work, we have created a component that uses a Remotédleallaapper
(RCW) to wrap the RCOM object and do all the conversions betweerditdchemi C#
code, making the RCOM object appear to Alchemi just as if it veenative .NET object.
This interoperable layer was constructed ugihdpi np. exe, atool from .NET SDK for
the conversion of public interfaces between COM and .NETgusiformation stored in
COM component type library.

3.2. Alchemi’s programming models

Alchemi has two object-oriented programming models: (1)ria ghread program-
ming model and (2) a grid job programming model [Akshay Lutdred Venugopal 2003,
Akshay Luther and Venugopal 2005]. In the grid thread progréng model, the atomic
processing unit is an object inherited from the cl@8&r ead, which is serialized by
a grid application running under a Manager node and tratstnio an Executor node
responsible for its execution. This model gives the devai@pcloser control of the dis-
tributed threads. On the other hand, the grid job progrargmiondel has been developed
to leverage legacy applications to become grid-enabledhisnlatter model, the atomic
processing unit is &Job object (a class that exten@ hr ead to enable legacy appli-
cations to run on the grid) that depends on one or more filasatidbe copied by the
Manager and executed by an Executor node.

Alchemi has two ways of accessing the grid job model: (1) aletively, by us-
ing a task description XML file to describe jobs and its demsmiks; and (2) program-
matically, by creating an application via Alchemi API thasiantiates and configures a
GAppl i cat i on object, which contains multipl&J ob objects.

3.3. middle-R and Alchemi

Due to .NET Runtime design limitations, Alchemi .NET managede cannot directly
access R computation engine and library, written in unmedapde. For this reason,
we needed to design an interoperability layer to enable é&tuhcode to access R en-
gine. So, we took advantage of RCOM package to access R engmgkhits public
interfaces published as a COM server object, to design a sM&Il program, called
RJob. The role ofRJob is to receive R scripts along with Alchemi jobs, evaluatesih
against R engine and returning the evaluation output aseiclob result. To be able to
evaluate R commandBRJob needs first to initialize the R engine. It is done by evoking
Init(...) method ofSTATCOnnect or class, the interoperability layer between R’s
COM object andRJob unmanaged code. The initialization command is passed to the
STATConnect or, the COM object that interfaces R, which passes agaiRFiooxy
where it will be evaluated in R engine itself. The engine isvnepared to receive R
commands, which will follow the same path as the initiali@atcommand. Figure 1
shows the layers involved iRJob, while Figure 2 shows the interactions of these layers
as a sequence diagram. For several design and conceptsahse& COM server object
cannot be serialized and passed as a parameter to an Exeod®mside a grid thread
object, as expected by Alchemi’s grid thread programmingl@hoTherefore, middle-R
has been built using Alchemi’s grid job model. In our solati®Job will be copied from
the Manager node to the Executor nodes, along with an ingutdihtaining the R script
we want to run in each node of the grid, as described in Figuhe &very Executor node,
RJob will parse that input file and use the R engine to evallegtestript and generate

an output file containing the execution results of the sciipthis version, we have cho-
sen to get textual response for each command, instead opBnes objects, due to data
conversion costs.

Input File Output File
(R script)

A 4

RJob Application

RJob

.NET RJob Application
(RJob.exe)
v

COM/.NET Interop Layer
(STATConnector.interop.dl|

X
3

RCOM v

RCOM Server
(STATConnector.dll)

]

R Library & Engine
(R.dIl)

Figure 1. RJob application scheme.

An application in Alchemi is an instance @Appl i cati on and contains
a Manifest of files which that application depends on, that as collection of
Fi | eDependency objects needed by the application to be executed on rem@&euEx
tor nodes. The Manifest must contain all the files RJob willdheebe executed locally,
includingRJob. exe. TheGAppl i cat i on object contains a collection of threads, that
is, all the jobs that will be executed. As mentioned abovegkai$ an object inherited
from GJob and has an input file collection, an output file collection ammbmmand that
will be executed when the job runs on Executor node. Figute®/s the scheme for the
middle-R in this context

4. Application Example

In this section we outline a possible utilization of the med&, a combinatorial bioinfor-
matics problem to finding molecular classifiers using pattecognition techniques.

One of the important research areas in Medicine, and coesdgun Bioinfor-
matics, is the correct prognosis and diagnosis based orxgiressions of certain genes
in a tissue sample. The expression of a gene is the quantttyabfyene that are being
expressed in the cell in a certain moment of the cell’s lifdhe Tdea is to find a set of
genes that could have their expression measured (fromibsfpssues, for instance) and

RJob Application StatConnectorClass StatConnector Rproxy

! Init(string) !
I I

I
|
Init(string) '
1

Attach(string)

init(...)

Evaluate(R command)

Evaluate(R command)

evaluate(R command)

object > data
e _________________

string ErrorCode

Close()

Close()

release(...)

Figure 2. Middle-R sequence diagram.

Alchemi Manager

GApplication

‘GJob1 ‘GJobZ‘ ‘GJobn
[4 A T A

Alchemi Executor Alchemi Executor Alchemi Executor
Node 1 Node 2 Node k

RJob App RJob App et RJob App

Figure 3. Middle-R scheme.

analyzed to help the diagnosis, or even better, the progradsa certain tissue condi-
tion [Zweiger 1999].

There are several techniques to quantify the gene expreskibe cells of a given
tissue [Bowtell 1999]. cDNA microarray and high density olngicleotide arrays are the
most used microarray techniques. The strength of thesgeitpeds is that each microarray
experiment can assess the expression of thousand of gethessaime time.

For practical purposes, the output of an experimentis @ matrix, wheren is the
number of genes andlis the number of tissues being assessed. Each matrix elgment
Is the expression of the genéor the tissugj. The expressions can be absolute or relative
to another tissue or pool of tissues expressions. In the alaee dataset used in our
work [Golub et al. 1999], the experiment is to compare sampfeédcute Lymphoblastic
Leukemia (ALL) to Acute Myeloid Leukemia (AML). The express is measured using
Affymetrix high-density oligonucleotide arrays contaigip = 6817 genes. The dataset

comprises 47 ALL tissues and 25 AML tissues. The dataset wegsaped following the
steps reported in [S.Dudoit et al. 2002], i.e., (i) thresimd: floor of 100 and ceiling
of 16000; (ii) filtering: exclusion of genes with maxin < 5 and max— min < 500,
where max and min refer respectively to the maximum and mininexpression levels
of a particular gene across mRNA samples; (iii) base 10 ldgarc transformation. The
final dataset is &2 x 3051 matrix of gene expressions, i.e., after preparation thebam
of genes i3051.

There are several techniques in the area of Pattern Reangtutifind classifiers
by supervised learning. For statistical and computatioeasons, we are going to use
Fisher Linear Discriminant Analysis (FLDA) [Bishop 2006] timd the pairs of genes
that perfectly classify the tissues by cancer types.

Let x be a point in the plane formed by the expression levels of agiaenes
(gi, g;) andy be such thay = wx, wherew is a weighting vector that better separates the
projections of the two cancer types (ALL and AML). The ideaipel FLDA is to find, by
computing projections to a hyperplane (or a line in our cabe)vectow that maximizes
the ratio of the between-class covariance mdirxto the within-class covariance matrix
Sy defined by:

Sp = (m2 - ml)(mz - m1>T (1)
and
SW = Z (Xn - ml)(xn - ml)T + Z (Xn - mQ)(Xn - mQ)T (2)
neCy neCsa
where:m; = Nil ngél x,, andm, = N% ngé'z X,

Solving this problem is equivalent to inverting mat8xy, and multiplying by the
difference of the means; andms,. This is not a discriminant but only the direction of the
normal vector of the separating line between the two typesn€er. The discrimination
point can be found by a naive Bayes approach [Bishop 2006].

To compute one discriminant is very fast (about 0.025s). &l@r we need to
computeC'(3051,2) = 4652775 discriminants and check if any pair separates perfectly
the cancer samples. To do that, we can split the jobs to th€lggcause they are indepen-
dent) and just check the results. There are 514 pairs of gbaesatisfy the requirement
of separating the cancer types perfectly.

To perform the experiments, two didactic laboratories Hasen prepared to run
an Alchemi grid. Each laboratory has 20 machines: 20 Intet©elD330 2.66 GHz, 256
Mb RAM in one of them (named here Labl) and 20 Intel Celeron D325 BHz, 256
Mb RAM in the other (named here Lab2) . Both laboratories rundéims XP SP and
at least the following packages are installed in each maclitn(version 2.6.0), RDCOM
Server (version 1.8.3) and Alchemi (version 1.0.6). Themraas in each laboratory are
connected to a ethernet hub (10 Mbps) and both hubs are dednieccascade mode
and connected by a switch to the administrative network.iriguthe tests, all machines
were dedicated to the experiment, i.e., there were no cyegrgy among other users or
applications. Despite of the fact that the middle-R can lelus an opportunistic way,
we provided a dedicated setting for the experiments in dxeerify the performance.

To assert the stability of the performance of the solutiosilaset of the pairs to

be tested has been chosen (5000 pairs of genes selectedi@tnaas part of a job that
was tested in three different experiments with one, ten wedty nodes.

All the experiments had a number of jobs equal to the numbapdés and were
repeated 100 times. For a one node grid, the maximum timeexfugton for this exper-
iment is 2 minutes and 10 seconds, the minimum time of exacus 2 minutes and 7
seconds and the standard deviation is 0.828 seconds. Fomades grid the minimum
time of execution was 2 minutes and 8 seconds, the maximuougaa time was 2 min-
utes and 14 seconds and the standard deviation was 1.8Xdse€am a twenty nodes grid
the minimum time of execution was 2 minutes and 8 secondsndr@mum execution
time was 2 minutes and 16 seconds and the standard devia®t. %8 seconds.

The performance of the grid application has been comparadtand alone ma-
chine (Lab1) by running the R script to do all the 4652775stésame dataset), i.e., no
grid infrastructure. The experiment has been repeated) asgrid with five, ten, twenty
and forty nodes. For all experiments but the last (40 nodedy, Labl machines have
been used. Initially, the number of pairs to be tested haes lohvided in 1000 jobs
(approximately 4653 tests/job). Table 1 shows the resaolt®éch one of the tests. A
super-scalar effect can be noticed comparing the time otfesagainst 10 nodes.

Nodes| Time
* 43:39:19
5 15:49:22
10 7:43:16
20 4:18:45
40 2:12:14

Table 1. Time comparison between experiments with 5, 10, 20 and 40 grid nodes
checking all pairs divided into 1000 jobs. Time column represented as HH:MM:SS
format.

(x) Time measured outside grid infrastructure.

To reduce the impact of communication between Alchemi aashtdes, a second
experiment has been done. This time, the number of jobs &l égthe number of nodes
in the experiment and each job tedt$2775/N, whereN = {5,10,20,40}. On this
second experiment, instead of having small jobs and a langeiat of communication on
the cluster, we used large jobs aNdcommunications.

Table 2 shows the results for each one of the tests. Compariiighle 1, the
total time has been reduced in 0,88% for 5 nodes, 3,74% forc2@srand 7,69% for
40 nodes. However, the time of execution for 10 nodes havehmtn the super-scalar
effect. With the last two experiments it is possible to olssex kind of trade-off between
the communication among jobs, and the disk swap effectagé @bs.

5. Conclusion

There are several grid solutions for Unix environments dneule are some packages to
facilitate R applications to be distributed under Unix. @ndVindows, there were no

"\We performed some additional tests to verify the commuidceoverhead. On all cases but with 10
nodes it corresponds to the time difference. So, we suppagehte difference with 10 nodes comes from
disk swap.

Nodes| Time
* 43:39:19
5 15:41:02
10 8:06:33
20 4:09:05
40 2:02:04

Table 2. Time comparison between experiments with 5, 10, 20 and 40 grid nodes
checking all pairs divide into N jobs where N = {5,10,20,40}. Time column rep-
resented as HH:MM:SS format.

(x) Time measured on R outside grid infrastructure.

“off-the-shelf” solution to distribute R when we startedstiproject. Fortunately, using
Alchemi, a grid middleware that uses Microsoft .NET teclogyl we have designed and
implemented middle-R, a user level middleware to enable Rcgtjpns to be executed
in a grid environment. More recently, two solutions are bdiested: one under Condor
and another under BOINC.

There is a very important difference between our soluticoh the ones proposed
before: since middle-R is integrated with Alchemi, a gricdidieware, the grid can scale
to a very large network of computers, distributed acrodediht administrative domains,
while in the other solutions that would be very difficult oeevmpossible. The proposed
solution has been deployed in computing laboratories @iigicommodity computers)
of two educational institutions in a way that is not distapthe didactic activities (users
can continue using Windows and do not notice performanceadagjon).

We have used the grid in some of our bioinformatics problenanly microarray
statistical analysis to find robust biological classifiggsr{e-cliques to distinguish cancer
and non-cancer tissues, or to distinguish between typeasnafer) and we could solve an
important problem related to scientific reproducibilityaths controlling the version of
R packages in a distributed environment. We have also imgaiéea a .NET component
responsible for R communication (that supports seriabnatto enable middle-R to use
the grid thread model. One advantage of this solution iswieahave a better control of
the threads. The disadvantage is that it is slower than the GGMion and not fully
compatible with R commands.

In economical terms, there are several aspects that wedtstudying but have
to be improved. According to our initial studies, the enetggt per machine is approx-
imately US$0.0135 (considering the kw/h cost approxinyatés$0.012 per machine)
with the monitor in idle status and the CPU in a peak of proogssif we consider that
the cost per hour of machine instance is approximately US#0.the EC2 (Amazon’s
computing grid), the proposed solution is economicallypléaeven counting other cost
variables as maintenance, cost of ownership and etc. Thpged solution is also eco-
nomically adequate for computing labs because, in thedutbe institutions may be able
to rent computing time and consequently reduce the cost néoship, leverage research
partnerships and mainly, being a non-profit institutioegluce the students’ tuition.

As a future work we intend to further explore the effects om jhbs size on the
total execution time, using different settings as hetemeges machines and faster net-

works. We also intend to add fault tolerance capacitieséddhs, using a kind of heart
beat verification is order to allow the resolution of actualpems.

6. Acknowledgements

The authors thank the SENAC College of Computer Science artthdémgy and Cadgio
Rainha da Paz for allowing us to use their computing resourddse authors thank
Alexandre Gomes Ferreira, Paula Akemi Nishimoto, Lucas APktin and Dr. E. Joé&b
Neves for their participation in the development of the gctj The authors thank Dr.
Gisele S. Craveiro and Dr. Nina S. T. Hirata for reviewing mdithe work. The authors
thank the anonymous reviewers for important suggestionspoove this paper. The
authors also thank Dr. Buyya and his team for designing andldping Alchemi and
Gridbus. Alfredo Goldman and Roberto Hirata Jr. are paytsiipported by CNPq.

References

A. Luther, R. Buyya, R. R. and Venugopal, S. (2005). Alchemi: A TNEased Enter-
prise Grid Computing System. Froceedings of the 6th International Conference on
Internet Computing (ICOMP’05)Las Vegas, USA.

Akshay Luther, Rajkumar Buyya, R. R. and Venugopal, S. (2003ghéi: A .NET-
based Grid Computing Framework and its Integration into @ldbrids. Technical
Report GRIDS-TR-2003-8, Grid Computing and Distributed Systeaboratory, Uni-
versity of Melbourne, Australia.

Akshay Luther, Rajkumar Buyya, R. R. and Venugopal, S. (200&ph Performance
Computing: Paradigm and Infrastructurehapter Peer-to-Peer Grid Computing and a
.NET-based Alchemi Framework. Wiley Press, New Jersey, USA

Baier, T. and Neuwirth, E. (2006R COM Client Interface and internal COM ServeR
package version 1.4.

Bishop, C. M. (2006)Pattern Recognition and Machine Learnin§pringer.

Bowtell, D. D. L. (1999). Options Available — from Start to ksh — for Obtaining Ex-
pression Data by Microarrajlature (Genetics Supplemer2)l:25-32.

Buyya, R. and Venugopal, S. (2004). The Gridbus toolkit fovieer oriented grid and
utility computing: an overview and status report. @Gmid Economics and Business
Models, 2004. GECON 2004. 1st IEEE International Workshgppages 19-66.

Dongarra, J. J., Hempel, R., Hey, A. J. G., and Walker, D. W98)9 Mathematical
Sciences Section: A PROPOSAL FOR A USER-LEVEL, MESSAGE PABSIN-
TERFACE IN A DISTRIBUTED MEMORY ENVIRONMENT.

Douglas Thain, T. T. and Livny, M. (2005). Distributed contipg in practice: The condor
experience. IrConcurrency and Computation: Practice and Experienadume 17,
pages 323—-356.

Foster, 1. (1995).Designing and Building Parallel Programs: Concepts and Sofar
Parallel Software Engineeringchapter 1.4.4. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., ManchekaRd Sunderam, V. (1994).
PVM Parallel Virtual Machine, A User's Guide and Tutorialrfdletworked Parallel
Computing MIT Press, Cambridge, Mass.

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettlng,Dudoit, S., and-
Laurent Gautier, B. E., Ge, Y., Gentry, J., Hornik, K., HotimofF., Huber, W., lacus,
S., Li, R. I. F. L. C., Maechler, M., Sawitzki, A. J. R. G., Smith, Smyth, G., Yang,
L. T. J. Y. H., and Zhang, J. (2004). Bioconductor: Open saféndevelopment for
computational biology and bioinformatic&enome Biology5:R80.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., GaasenbbtkMesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfig] C. D., and Lander,
E. S. (1999). Molecular Classification of Cancer: Class Disgoard Class Prediction
by Gene Expression Monitoringscience286(5439):531-537.

Gonalez, D. L., de Vega, F. F., Trujillo, L., Olague, G.afenas, M., Arajo, L.,
Castillo, P., Sharman, K., and Silva, A. (2008). Interpregpglications within boinc
infrastructure. Inbergrid 2008. 2nd Iberian Grid Infrastructure ConferencemPeed-
ings pages 261-272.

Li, N. and Rossini, A. J. (2006)tpvm: R interface to PVM (Parallel Virtual Machine)
R package version 1.0.1.

Markus Schmidberger, Martin Morgan, D. E. H. Y. L. T. and Miawasn, U. (2009). State-
of-the-art in parallel computing with r. Technical repadrtstitut fur Statistik.

Meijer, E. and Miller, J. (2000). Technical overview of therf@mon Language Runtime.
Technical report, Microsoft Corp.

Platt, D. S. (2002).Introducing Microsoft .Net, Second EditioMicrosoft Press, Red-
mond, WA, USA.

R Development Core Team (2006: A Language and Environment for Statistical Com-
puting R Foundation for Statistical Computing, Vienna, Austri@BN 3-900051-07-
0.

Rossini, A., Tierney, L., and Li, N. (2003). Simple parall&htsstical computing in R.
UW Biostatistics working paper serieBaper 193.

S.Dudoit, Fridlyand, J., and Speed, T. P. (2002). Compaldatiscrimination methods
for the classification of tumors using gene expression dadarnal of the American
Statistical Associatio®7(457):77-87.

Snir, M. and Otto, S. (1998MPI-The Complete Reference: The MPI CoMIT Press,
Cambridge, MA, USA.

Yu, H. (2006).Rmpi: Interface (Wrapper) to MPI (Message-Passing IntegjaR pack-
age version 0.5-3.

Zweiger, G. (1999). Knowledge discovery in gene-expressiicroarray data: mining
the information output of the genomeétends in Biotechnologyl 7(11):429-436.

