
Strong Migration in a Grid based on Mobile Agents
RAFAEL FERNANDES LOPES and FRANCISCO JOSÉ DA SILVA E SILVA

Departamento de Inforḿatica
Universidade Federal do Maranhão, UFMA

Av dos Portugueses, s/n, Campus do Bacanga, CCET
CEP 65085-580, S̃ao Lúıs - MA

BRAZIL
{rafaelf,fssilva}@deinf.ufma.br

Abstract: - Grid computing has emerged as a promising alternative to increase the capacity of processing and storage. It is
an aggregation of dynamic, heterogeneous, and widely distributed resources, shared among different institutions. In order
to provide load balancing and support for non-dedicated machines, the Grid middleware must be able to move computations
among its nodes.
This paper describes a transparent migration mechanism in the context of MAG, a mobile agent based Grid middleware.
It discuss the use of process migration in Grid infra-structures and details MAG migration framework implementation and
performance evaluation.

Key-Words:- distributed computing, grid computing, mobile agents, agent systems, migration, transparent mobility

1 Introduction

In recent years, Grid computing has emerged as a promis-
ing alternative to increase the capacity of processing
and storage, through integration and sharing of multi-
institutional resources, such as software, data and periph-
erals, stimulating the cooperation among users and organi-
zations.

Through a Grid infrastructure it is possible to exe-
cute a large number of applications, such as: distributed
super-computing applications (e.g. simulation of complex
physical processes like climatic modeling), high through-
put (e.g. cryptographic problems resolution), on demand
applications (e.g. medical instrumentation applications and
requests for software use), data intensive applications (e.g.
weather forecast systems) and collaborative applications
(e.g. collaborative and educational projects).

MAG (Mobile Agents Technology for Grid Comput-
ing Environments) is a Grid middleware currently being
developed at the Computer Science Department of the Fed-
eral University of Maranh̃ao (DEINF/UFMA). The project
main goal is the development of a free software infrastruc-
ture based on mobile agents technology that allows the res-
olution of computationally intensive problems in computer
Grids.

The use of mobile agents in MAG infrastructure is
justified by the great adequacy exhibited by this paradigm.
Many of the intrinsic characteristics of the agents are useful
in the development of a Grid middleware. Among these
characteristics are:

1. Cooperation: agents have the ability to interact and
cooperate with other agents; this can be explored for
the development of complex communication mecha-

nisms among Grid nodes;

2. Autonomy: agents are autonomous entities, meaning
that their execution goes on without any or with little
intervention by the clients that started them. This is an
adequate model for submission and execution of Grid
applications;

3. Heterogeneity: several mobile agent platforms can be
executed in heterogeneous environments, an impor-
tant characteristic for better use of computational re-
sources among multi-institutional environments;

4. Reactivity: agents can react to external events, such as
variations on resources availability;

5. Mobility: mobile agents can migrate from one node
to another, moving part of the computation being
executed and providing load balancing among Grid
nodes;

6. Protection and Security: several agent platforms offer
protection and security mechanisms, such as authenti-
cation, cryptography and access control.

Constructing a Grid middleware is a complex task.
Developers must address several design and implemen-
tation challenges, such as: efficient management of dis-
tributed resources, dynamic task scheduling, high scalabil-
ity, fault-tolerance, heterogeneity, configurability and the
presence of efficient mechanisms for collaborative commu-
nication among Grid nodes.

In order to overcome some of the above challenges,
the Grid infrastructure must be able to move computations
among Grid nodes. Process migration offers several ad-
vantages for distributed systems that can be explored in the
context of a Grid middleware, such as: [16]



• Load sharing: by moving objects around the sys-
tem, one can take advantage of lightly used proces-
sors. Thus, the system can move computations from
overloaded machines to idle machines, making a bet-
ter use of existing resources;

• Communication performance: active objects that
interact intensively can be moved to the same node
to reduce the communications cost for the duration
of their interaction. This also happens if a computa-
tion needs to manipulate a great data volume: moving
computations to the data may be less costly than mov-
ing data to the computations;

• Availability: the migration mechanism can be used
for capturing and re-establishment of the computation
execution state. Thus, in case of a failure, the compu-
tation can be restarted in a new place;

• Reconfiguration: if a machine becomes unavailable
(e.g. its user does not want to share its machine any
more) the computations executing in that node can be
moved to other locations;

• Utilizing special capabilities: an object can move to
take advantage of unique hardware or software capa-
bilities on a particular machine.

Despite of its benefits, moving a process to a different
machine is a costly task. Thus, the use of process migra-
tion must be adopted only when there are good reasons for
doing so, e.g., improve overall system performance.

This paper presents the process migration mechanism
provided by the MAG/Brakes framework. It is organized
in the following sections: section 2 presents an overview of
the MAG project. Section 3 shows the problems and solu-
tions related to process migration in the context of a Grid
middleware, while Section 4 describes MAG/Brakes, the
implementation of the MAG process migration mechanism.
In section 5 we evaluate the performance of our mecha-
nism in respect to the imposed execution time and space
overhead, comparing the results with other approaches de-
scribed in the literature. Section 6 discuss related works
and Section 7 shows the conclusions obtained from the
work performed, and describes its next steps.

2 MAG Overview

MAG is a Grid middleware that explores the use of mobile
agents as a way to overcome several of the Grid design and
implementation challenges, cited in the Section 1. MAG
architecture is organized in layers as shown on Figure 1.

MAG uses the Integrade Grid middleware [11] as the
foundation of its implementation, reusing several Grid ser-
vices instated of implementing the Grid infrastructure from
scratch. Integrade is structured in clusters organized in a
hierarchical way. A cluster is defined as an autonomous

Fig. 1: Layers architecture of the MAG / Integrade Grid
middleware

unit inside the Grid, since it has all the components neces-
sary for it to work independently. The components of the
Integrade architecture are:

• Application Submission and Control Tool (ASCT): al-
lows the users to submit applications to be executed on
the Grid. The users can specify pre-requisites for ex-
ecution, such as the hardware and software platform,
memory requirements and others. It is also possible
to monitor the progress of the application being exe-
cuted.

• Application Repository (AR): stores the applications
to be executed on the Grid;

• Local Resource Manager (LRM): runs in each clus-
ter node, collecting information about the state of re-
sources such as memory, CPU, disk and network us-
age. It is also responsible for instantiating applications
scheduled to the node.

• Global Resource Manager (GRM): manages the clus-
ter’s resources by receiving notifications of resources
usage from the LRMs and runs the scheduler that al-
locates tasks to nodes based on resources availability;

• Local Usage Pattern Analyzer (LUPA): performs the
condensation of a group of informations that repre-
sents, with a certain degree of trust, the usage pattern
of the node in which it is executed;

• Global Usage Pattern Analyzer (GUPA): consolidates
the information supplied by several LUPAs in a way
to determine the patterns that reflect the typical usage
conditions of the cluster;

• Node Control Center (NCC): determines the use poli-
cies for resources granted by a node user to execute
Grid applications.

Integrade adopts the BSP model for execution of par-
allel computations, using the BSPLib library from the Ox-
ford University [13] as reference.

The MAG architecture was projected to be a natural
extension of the InteGrade middleware, in order to allow



the execution of native applications as well as of applica-
tions written in Java. The native applications are executed
directly above InteGrade. Among them, there are paral-
lel applications that follows the BSP model. Java applica-
tions are executed above the MAG layer, through the mo-
bile agents paradigm.

The JADE layer (Java Agent Development Frame-
work) is a framework used for building multi agent sys-
tems. It was totally coded in Java and provides functions
such as communication facilities, life span, and monitoring
of the mobile agents execution, following the FIPA1 speci-
fication.

MAG architecture was projected to be a natural exten-
sion of the Integrade middleware, allowing the execution of
native applications as well as applications written in Java.
Native applications are executed directly above Integrade.
Among them, there are parallel applications that follow the
BSP model. The MAG layer supplies an application ex-
ecution mechanism through mobile agents and adds new
services to the Integrade platform, such as the use of mo-
bile computing devices as Grid clients, fault tolerance, and
migration of application executions among Grid nodes.

The upper layers use the CORBA distributed objects
technology and many services provided by this middleware
such as the trading service. At last, the operating system
layer may be variable, since MAG is platform independent.

3 Process Migration

Migration is not a new concept. Many systems have been
developed providing this ability like Charlotte[2], Sprite[7]
and Emerald[16]. However, with the advent of the Java
technology, the research work on this area has been focused
on the creation of an efficient mechanism for migration of
Java threads. This was stimulated by the fact that the major-
ity of the mobile agent systems have been developed using
the Java language.

To migrate a process, some state information must
be saved and shipped to the new locations. At the target
destination the process is restarted based on shipped state.
However, to migrate a process, is necessary to know what
exactly comprises the process and its state.

Fuggetta, in 1998, has defined that a process consists
of three basic segments: the code segment, the resource
segment and the execution segment[9].Code segmentis
the part that contains the set of instructions that make up
the program that is being executed. Theresource segment
contains references to external resources needed by the pro-
cess, such as files, printers, devices, other processes, and so
on. Finally, anexecution segmentis used to store the cur-
rent execution state of a process, consisting of private data,
the stack, and the program counter.

A migration mechanism that migrates these three seg-
ments, and restart a process in exactly the same state and

1Foundation for Intelligent Physical Agents- non-profit organization
aimed at producing standards for the interoperation of heterogeneous soft-
ware agents. Available in:http://www.fipa.org/

at the same code position as it was before the migra-
tion, is calledtransparentor characterized asstrong mi-
gration[10]. The strong migration provides to process the
abstraction that the execution was not interrupted. Strong
mobility is very powerful, but much harder to implement.

In contrast, thenon-transparentmigration (known as
weak migration) can be defined as every migration that is
not strong[4]. In the weak migration only the code seg-
ment is transferred, and perhaps some initialization data. A
characteristic feature of weak mobility is that a transferred
program is always started from its initial state.

Strong mobility simplifies the task of the program-
mer, therefore it does not have to implement the migration
process explicitly - the process state is saved automatically.
This approach distinguishes from the weak, where the pro-
grammer has to create the code responsible for save and
reestablish the complete state of the process.

3.1 Strong Migration in Java

Java has been put forward as the preferred language for the
developing of mobile agents platforms. This choice is ex-
plained by the fact that agents must be able to run on het-
erogeneous platforms. Java’s machine independent byte-
code is responsible for this. Moreover, the ease of transport
over the net of Java bytecode, the Sun’s serialization mech-
anism (that allows the migration of objects’ data) and the
security concepts provided by the Java platform, are some
of other features that makes Java a good choice for the de-
veloping of mobile applications.

However, the use of Java introduces some problems
for process migration. Java does not provide sufficient
mechanisms for capturing the computation state. The Java
serialization mechanism only allows the saving of code and
values of object members. Java classes cannot access intern
and native information of the Java Virtual Machine (e.g.
program counter, call stack, etc.), necessary to save the full
execution state[14] of a Java thread.

During the last years, several techniques were devel-
oped that artificially gathers the information required to
fully capture the state of Java threads. They can be clas-
sified in four basic approaches [14, 4, 15, 10]:

• Modification of the Virtual Machine: the virtual
machine is modified to export execution information.
The major disadvantage of this approach is the lack
of portability in respect to the standard VM. It is very
difficult to maintain complete compatibility with the
Sun Java specification;

• Instrumentation of the application source code:
this technique consists in the use of a preprocessor
(a source code compiler). This preprocessor inserts
source code responsible for capturing and restoring
the execution state. The main problem with this tech-
nique is that the source code must be available, which
is not always possible, such as the case when libraries



are used. Another disadvantage with this technique is
the time and space overhead caused by the insertion of
code;

• Instrumentation of the application bytecode: in
this approach, the code for capturing and restoring the
execution state is inserted directly in the application
bytecode. As well as the source code instrumentation
approach, some time and space overhead is generated
by the insertion of code in the original code. However,
the overhead is generally lower than the source code
approach. Another advantage is that, in the bytecode
level, we have access to an extended set of instruc-
tions, such as the goto instruction;

• Modification of the Java Platform Debugger Ar-
chitecture: the Java Platform Debugger Architecture
(JPDA) is part of the virtual machine specification.
Using JPDA, runtime information about applications
can be accessed in debug mode. This can be used to
perform transparent migration. Since the JPDA does
not provide all information necessary for transparent
migration, it is necessary some modifications in the
JPDA core. Moreover, this approach does not allow
the use of JIT compilation, raising the application ex-
ecution time, generating the much higher overhead of
all approaches.

4 Migration in MAG

The design of the MAG process migration mechanism took
into consideration the benefits and disadvantages of each
approach for Java thread migration described on Section3.1
in respect to Grid middleware requirements. For exam-
ple, Grid systems must transpose several administrative do-
mains. Imposing a standard JVM for several Institutions
as required by the JVM modification approach is not well
suited for Grid systems. Grid systems should be able to ex-
ecute scientific applications that are developed using shared
libraries, whose source code are not always available. This
limits the applicability of the source code instrumentation
approach for Grid systems. A good application execution
performance is essential in Grid systems, the major disad-
vantage of the JPDA modification approach.

Given the above considerations, we decided to im-
plement the MAG migration mechanism based on the in-
strumentation of application bytecode. The mechanism is
based on a modified version of the Brakes[21, 5] frame-
work, developed at the Katholieke Universiteit Leuven,
Belgium, by the Distributed systems and computer Net-
works (DistriNet) research group.

Brakes is a framework that provides a thread seri-
alization mechanism for Java. It was developed at the
Katholieke Universiteit Leuven, Belgium, by the Dis-
tributed systems and computer Networks (DistriNet) re-
search group. It allows the capture and re-establishment
of Java threads execution state through the bytecode in-

strumentation approach. This feature is basic for the de-
velopment of many mechanisms in distributed systems
like transparent migration, fault tolerance[8] and object
persistence[19].

Currently, Brakes consists of two parts:

• A ByteCode transformer (based on version 1.4 of the
ByteCode Engineering Library2[6, 6]) which instru-
ments Java class-files, so they are able to capture their
current internal state at any given time;

• A small framework which uses the ability of the
“patched” classes to allow Java threads to pause and
resume whenever desirable.

The standard version of the Brakes framework is
called “Brakes-serial”. This version does not allow the
concurrent execution of threads. This feature becomes this
version inadequate for use in the MAG, given that several
applications can be running in each Grid node.

The Brakes has another version called “Brakes-
parallel”, that allows the execution of concurrent threads.
This version was developed as a proof-of-concept system,
without any optimizations for real-world use. It is an unop-
timized add-on of the first prototype, and has a much higher
overhead. This higher overhead is caused by a set of new
components that was added to the serial version.

4.1 MAG/Brakes

The MAG/Brakes is a subset of the original Brakes. Given
the limitations in Brakes, we decided to use, in MAG, only
its bytecode transformer. Thus, the Brakes components
(e.g. a thread scheduler) were discarded in our implemen-
tation.

As was said in the previous section, the “Brakes-
serial” cannot be used in the MAG, because of the limi-
tation of execute only one thread per time. Thus, we had
to use the “Brakes-parallel” as the basis of our implemen-
tation. Thus, when we say Brakes, we are talking about the
“Brakes-parallel” version.

We have changed the structure of Brakes to obtain a
better performance and to provide new functionalities:

• The Brakes framework is composed by several com-
ponents used to store execution information and ex-
ecution states, and to manage the application execu-
tion, e.g. start, suspend, resume, stop, etc. The use of
these components was causing a large overhead, be-
cause of the great number of accesses to these objects
in the heap. We modified the original transformer in
order to store the state information inside each object,
as attribute members, reducing the access cost to data
necessary for the migration process;

• Our framework makes possible to the migration pro-
cess be initiated by an external source (e.g. another

2Available inhttp://bcel.sourceforge.net/



thread). It is very interesting in the MAG context,
given that MAG agents must be able to migrate ap-
plications over the Grid;

• As a new feature, the user can now explicitly inform
to the bytecode transformer, a code position where
he wants that the application state have to be saved.
This is done by the user through adoCheckpoint
method invocation;

• The default implementation of Brakes inserts code to
save the application state after each method invoca-
tion. Now, the user can inform to the transformer
that ONLY the invocations to thedoCheckpoint
method have to save the application’s state, ignoring
the other invocations.

4.1.1 MAG/Brakes Implementation

In the MAG/Brakes implementation, each task being exe-
cuted in a Grid node has some boolean flags associated with
it. This flags represents three different modes of execution:

• Running:the task is executing normally;

• Switching: the task is in the process of capturing its
current execution state into its context;

• Restoring:the task is in the process of reestablishing
its previous execution state from its context;

These flags and the context of the thread are mem-
bers of a class calledMagApplication , which must be
inherited by all MAG applications.

After the compilation, the MAG/Brakes transformer
inserts code into the application bytecode. The byte-
code transformer inserts a state capturing block after every
method invocation. The code tests if the flagswitching
is set. In the positive case, the capture of context is done.
This code can be seen in the figure 2.

For each method invocation, we save the correspond-
ing stack frame (the method local variables and the operand
stack). An artificial program counter is also stored in the
tasks context. This is a cardinal index that refers to LPI-
index (each invocation has an unique LPI-index associ-
ated).

When an agent wants to capture the state of a thread,
it invokes (in the thread object) the methoddoYield() .
The methoddoYield() sets theswitching flag to
true. The modification of this flag causes the captur-
ing of the thread state, done by the code inserted by the
MAG/Brakes transformer.

The MAG/Brakes also provides the complementary
operation: the reestablishment of execution state. The
transformer inserts additional code in the beginning of each
invoked method body. This inserted code consists of sev-
eral state reestablishing code blocks, one for each code
position where the previous execution of the method may

//--------------------------------------
int m;
(...)
fibonacci (m); // <- method invocation
if(this.isSwitching()) {

// store stack frame into
// myContext attribute
this.myContext.pushThis(this);
this.myContext.pushObject(this);

// store artificial program counter
// as LPI-index
this.myContext.pushInt(0);

return;
}
(...)
//--------------------------------------

Fig. 2: State capturing

//--------------------------------------
public int fibonacci (int i) {

if(this.isRestoring()) {
// if this is the last stack
// frame in the context
if (this.lastStackInContext()) {

// i am not capturing and
// reestablishing my state
switching = false;
restoring = false;

}

// get LPI from context
switch (this.myContext.popInt()) {

case 0:
// restore the stack frame
i = this.myContext.popInt();
this = (Fibonacci)
this.myContext.popThis();
this.myContext.popObject();

// go to the correct instruction
goto _L5;

}
}
(...)

} (...)
//---------------------------------------

Fig. 3: State reestablishment

have been suspended. This code block is shown in the fig-
ure 3.

In order to resume the execution of an application,
the agent invokes the methoddoResume() that sets the
restoring flag to true. The computation is then restored



and continued transparently.
In the actual MAG/Brakes implementation, the re-

source segment is not migrated. The external environ-
ment of application is not taken into consideration and the
connections to devices, like printers, files and others, are
not migrated in a transparent way. Only the migration of
single-threaded applications can be done.

5 Performance Evaluation

Instrumenting and inserting code introduces time and space
overhead. Since code is inserted for each method invoca-
tion, the space overhead is directly proportional to the num-
ber of invocations that occur in the code[21]. We performed
several tests to measure the overhead imposed by our im-
plementation in comparison to normal execution of a recur-
sive fibonacci application. We have chosen this algo-
rithm because of the great number of invocations that it per-
forms. Thus, we can consider the recursivefibonacci
as our “worst case” analysis.

All tests were performed on a Sempron 2200+ over-
clocked to 1.8 GHz, 256 MB of RAM, running Linux (ker-
nel 2.6.10). We measured two aspects:

1. The time execution overhead incurred by the check-
point mechanism in comparison with the “normal”
(non-instrumented) execution, the Brakes-serial, and
Brakes-parallel;

2. The class file space overhead, in comparison to the
non-instrumented one.

Figure 4 shows a graph that compares the execution
times for the same application (Fibonacci) given an input
of 20, 25, 30, and 35. We can notice that the time overhead
caused by MAG/Brakes is only marginally higher than
Brakes-serial. The difference is due the fact that Brakes-
serial uses static invocations, which are faster than conven-
tional invocations to objects. However, this limits Brakes-
serial to manipulate only a single (static) reference to the
thread being executed.

We also compared the file size penalty caused by each
mechanism. Table 1 shows the values (in KB) of class files
generated by each approach.

Mechanism File size Overhead
Normal 1.3 -

Brakes-serial 1.7 30,77 %
MAG/Brakes 1.9 46,15 %

Brakes-parallel 1.7 30,77 %

Table 1: Comparison of space overhead caused by each
mechanism

Based on the tests performed, our conclusion is that
the time and space overhead caused by the MAG/Brakes,
despite of being a little higher than the one caused by
Brakes-serial, is justified by the advantage of being able

to execute threads concurrently. This feature is extremely
important in the context of the MAG Grid infrastructure.

6 Related Work

There are many systems that provide mechanisms for cap-
ture and reestablish the execution state of Java threads. In
the following, we cite some projects, associating them with
the implementation approach adopted.

WASP[10] and JavaGo[18] support the capture of ex-
ecution state through source code instrumentation. In the
Grid, many times it will be necessary to execute applica-
tions where the source code are not available, making this
alternative inappropriate. JavaThread[3], D’Agents[12],
Sumatra[1], Merpati[20] and ARA[17] depend on exten-
sions of the standard VM from Sun. This approach is also
not attractive for Grid systems considering the great het-
erogeneity of Grid environments. The CIA[15] project uses
the JPDA API (Java Platform Debugger Architecture) lead-
ing to great overhead in execution time, caused by the ab-
sence of JIT (Just-in-Time) compilation.

7 Conclusions and Future Work

In this paper, we described a strong migration mechanism
in the context of MAG, a mobile agent based Grid middle-
ware. We have detailed the requirements involved with the
construction of this mechanism and the problems associ-
ated with the capture and reestablishment of Java threads
state. We have also presented the MAG/Brakes, a frame-
work based on Brakes that provides the strong migration
feature in MAG.

In the nearby future, we intend to overcome the lim-
itations of the actual MAG/Brakes version, providing the
migration of multi-threaded applications and the migration
of the resources (printers, files, etc.) associated with the
threads.

References

[1] A. Acharya, M. Ranganathan, and J. Saltz. Suma-
tra: A Language for Resource-aware Mobile Pro-
grams. InMobile Object Systems: Towards the Pro-
grammable Internet, volume 1222, pages 111–130.
Springer-Verlag: Heidelberg, Germany, 1997.

[2] Y. Artsy and R. A. Finkel. Designing a process mi-
gration facility: The charlotte experience.IEEE Com-
puter, 22(9):47–56, 1989.

[3] S. Bouchenak, D. Hagimont, S. Krakowiak, and
N. D. Palma. Experiences implementing efficient java
thread serialization, mobility and persistence. InSoft-
ware - Practice and Experience, volume 34, pages
355–394, 2004.



Fig. 4: Execution time for a recursive Fibonacci (in ms)

[4] A. J. Chakravarti, X. Wang, J. O. Hallstrom, and
G. Baumgartner. Implementation of strong mobil-
ity for multi-threaded agents in java. In2003 In-
ternational Conference on Parallel Processing (ICPP
’03). IEEE Computer Society Press., pages 321–330,
Koahsiung, Taiwan, 6-9 October 2003.

[5] T. Coninx, E. Truyen, W. Joosen, and P. Verbaeten.
On the use of threads in mobile object systems.
ECOOP’2000 Workshop on Mobile Object Systems,
2000.

[6] M. Dahm. Byte code engineering with the bcel api.
Technical report, Freie University Berlin, 2001.

[7] F. Douglis and J. K. Ousterhout. Transparent pro-
cess migration: Design alternatives and the sprite im-
plementation. Software - Practice and Experience,
21(8):757–785, 1991.

[8] M. Elnozahy, L. Alvisi, Y.-m. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in
message-passing systems. 1996.

[9] A. Fuggetta, G. P. Picco, and G. Vigna. Understand-
ing Code Mobility. IEEE Transactions on Software
Engineering, 24(5):342–361, 1998.

[10] S. Funfrocken. Transparent Migration of Java-Based
Mobile Agents: Capturing and Reestablishing the
State of Java Programs. InProc. of the Second Inter-
national Workshop on Mobile Agents, pages 26–37,
Stuttgart, Germany, September 1998.

[11] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and
G. C. Bezerra. Integrade: Object-oriented grid mid-
dleware leveraging idle computing power of desktop
machines.Concurrency and Computation: Practice
& Experience. Vol. 16, pp. 449-459, 2004.

[12] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and
D. Rus. D’agents: Applications and performance of
a mobile-agent system. InSoftware - Practice and
Experience, number 32(6), May 2002.

[13] J. M. D. Hilll, B. Mccolll, D. C. Stefanescu, M. W.
Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas,
and R. H. Bisselin. Bsplib: The bsp programming
library. 1998.

[14] T. Illmann, F. Kargl, T. Krueger, and M. Weber. Mi-
gration in Java: problems, classifications and solu-
tions. InMAMA’2000, Wollongong, Australia, 2000.

[15] T. Illmann, T. Krueger, F. Kargl, and M. Weber.
Transparent migration of mobile agents using the Java
Platform Debugger Architecture. InLecture Notes in
Computer Science, volume 2240, page 198, Jan 2001.

[16] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
Grained Mobility in the Emerald System.ACM
Transactions on Computer Systems, 6(1):109–133,
February 1988.

[17] H. Peine and T. Stolpmann. The architecture of the
Ara platform for mobile agents. In R. Popescu-Zeletin



and K. Rothermel, editors,First International Work-
shop on Mobile Agents MA’97, volume 1219 ofLec-
ture Notes in Computer Science, pages 50–61, Berlin,
Germany, Apr. 1997. Springer Verlag.

[18] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A
Simple Extension of Java Language for Controllable
Transparent Migration and Its Portable Implementa-
tion. In Coordination Models and Languages, pages
211–226, 1999.

[19] D. Silva, MiguelMira. Mobility and Persistence,
chapter Mobile Object Systems. LNCS 1222, pages
157–175. Springer-Verlag, 1997.

[20] T. Suezawa. Persistent execution state of a java virtual
machine. InProc. of the ACM 2000 conference on
Java Grande, 2000.

[21] E. Truyen, B. Robben, B. Vanhaute, T. Coninx,
W. Joosen, and P. Verbaeten. Portable support for
transparent thread migration in java. InASA/MA,
2000.


