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Abstract

The InteGrade project is an on-going project with the
participation of several research groups in Brazil. It is
an opportunistic grid middleware that intends to exploit
the idle time of computing resources in computer laborato-
ries. The proposed middleware is already operational and
the present work has the objective of studying the perfor-
mance of parallel applications with communication among
processors. We present two algorithms to evaluate the per-
formance of the InteGrade middleware. The applications
running under the InteGrade grid take slightly more time
than those running under the standard MPI on a cluster.
The results are satisfactory. The overhead of the InteGrade
middleware is acceptable, in view of the benefits obtained
to ease the use of grid computing by the user.

1. Introduction

The InteGrade Project [11, 13] aims the construction of a
middleware that allows the implementation of a computing
grid with non-dedicated computing resources, by using the
idle capacity usually available in already installed computer
laboratories. The InteGrade is a project developed jointly
by researchers of several institutions: Department of Com-
puter Science of Universidade de São Paulo, Departments
of Informatics of Pontifı́cia Universidade Católica (Riode
Janeiro), Universidade Federal do Maranhão and Depart-
ment of Computing and Statistics of Universidade Federal
de Mato Grosso do Sul.

InteGrade has an object oriented architecture, where
each module of the system communicates with the other
modules through remote method invocations. InteGrade
uses CORBA [12] as its infrastructure of distributed objects,
thus benefiting from an elegant and solid architecture. This
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results in the ease of implementation, since the communica-
tion with the system modules is abstracted from the remote
method invocations.

InteGrade was designed with the objective of allowing
the development of applications to solve a broad range of
problems in parallel. Several grid computing systems re-
strict their use to problems that can be decomposed into
independent tasks, such asBag-of-Tasks[6] or parametric
applications. In addition to handling bag-of-tasks applica-
tions, InteGrade also aims to deal with parallel applications
with dependencies that require communication among pro-
cessors. To this end we designed parallel algorithms for
several applications such as the 0-1 Knapsack Problem and
the string alignment problem where communication is re-
quired.

One question that arises when one uses grid computing
is the overhead of the grid middleware that ensures an inte-
grated environment with special modules to handle the job
submission, checkpointing, security, task migration, etc., in
contrast to running a parallel algorithm in a cluster with-
out such a middleware to ease the concern of the user. We
compare the execution on a cluster with only MPI support
and on a grid using the InteGrade middleware and MPI. Our
results show a slight performance degradation when the par-
allel applications are run on the InteGrade. The difference
in performance with respect to running on a cluster is, how-
ever, small. This is encouraging and shows a small and ac-
ceptable overhead of the InteGrade middleware.

2 Coarse-Grained Multicomputer Model

We use a version of the BSP model [21] referred to as
theCoarse-Grained Multicomputer(CGM) model [7]. Due
to the similarity we also use the term BSP/CGM. It uses
only two parameters: the input sizen and the number of
processorsp. Let N denote the input size of the prob-
lem. A BSP/CGM consists of a set ofp processors each
with local memory and each processor is connected by a
router that can send messages in a point-to-point fashion.



A BSP/CGM algorithm consists of alternating local com-
putation and global communication rounds separated by a
synchronization barrier.

In a computing round, we usually use the best sequen-
tial algorithm in each processor to process locally its data.
In each communication round the total data exchanged by
each processor (sends/receives) is limited byO(N/p). We
require that all information sent from a given processor to
another processor in one communication round be packed
into one long message, thereby minimizing the message
overhead. In the BSP/CGM model, the communication cost
is modeled by the number of communication rounds. The
goal is to minimize the number of communication rounds
as well as the total local computation time.

3. The 0-1 Knapsack Problem

The 0-1 Knapsack Problem can be formulated as fol-
lows. LetS = {1, 2, . . . , n} be a set ofn distinct items
such that theith item is worthvi dollars and weighswi ki-
los, wherevi andwi are integers. LetW be the knapsack of
integer capacityW used to carry the items. The question is:
which items should be selected in order to fill the knapsack
with the most valuable load without exceeding the capacity
constraint, i.e.

max{

n∑

i=1

vizi :

n∑

i=1

wizi ≤ W, zi ∈ {0, 1}}.

This problem belongs to the class of NP-completeprob-
lems [9]. However it is known that this problem can be
solved sequentially inO(nW ) time. This time bound in not
polynomial in the size of the input sincelg W bits are re-
quired to encode the inputW . We call this solutionpseudo-
polynomial[9]. There are two basic approaches for find-
ing the exact solutions of the 0-1 Knapsack Problem:dy-
namic programming(DP) andbranch-and-bound(B&B).
When the parametersvi andwi are independently gener-
ated and we have large-size problems, the B&B approach is
more efficient on the average for serial machine implemen-
tations [14]. When these parameters are correlated the DP
approach behaves better than B&B [4, 5]. We will present a
BSP/CGM algorithm that is based on DP approach.

The first Knapsack algorithm based on dynamic pro-
gramming approach was developed by Gilmore and Go-
mory [10].

Consider the 0-1 Knapsack Problem with set of objects
[1, r] and weightc. Denote the value of the optimal solution
for this problem byf(r, c), with 1 ≤ r ≤ n and0 ≤ c ≤
W . Thus,f(n, W ) is the value of the optimal solution. The
recurrence relation is:

f(r, c) = max{f(r − 1, c), f(r, c − wr) + vr}

∀c, with 0 ≤ c ≤ W , wherer = 1, 2, . . . n.
Algorithm 1 solves sequentially the 0-1 Knapsack Prob-

lem inO(nW ) time.

Algorithm 1 SEQUENTIAL 0-1 KNAPSACK ALGORITHM

Input: (1) vi andwi, 1 ≤ i ≤ n; (2) W ; and (3)p.
Output: f(n, W )

1: for c← 1 to W do
2: f(0, c)← 0;
3: end for
4: for r ← 1 to n do
5: for c← 1 to W do
6: if c < wk then
7: f(r, c)← f(r − 1, c);
8: else
9: f(r, c)← max{f(r, c− wr) + vk, f(r − 1, c)};

10: end if
11: end for
12: end for

Parallel algorithms on several parallel computing models
for this problem have been proposed by [2, 4, 8, 15, 20].

3.1. The Wavefront Algorithm

We present a BSP/CGM algorithm for the 0-1 Knapsack
Problem that is based on the wavefront paradigm of [1].
A characteristic and advantage of the wavefront or systolic
paradigm is the modest communication requirement in the
sense that each processor communicates with few other pro-
cessors. This makes it very suitable as a potential applica-
tion for grid computing.

In this section we present anO(p) communication
rounds BSP/CGM algorithm for computing the solution
of the 0-1 Knapsack Problem withn items and maximum
weightW . We will usep processors, where each processor
hasO(Wn/p) local memory.

Let us first give the main idea to compute the opti-
mal solution matrixf by p processors. For the setS =
{1, 2, . . . , n} of items, the arrayw, wherew[i] is the weight
of item i, is broadcasted to all processors, and the arrayv,
wherev[i] is the value of itemi, divided intop pieces, of
sizen/p, and each processorPi, 1 ≤ i ≤ p, receives the
i-th piece ofv (v[(i − 1)n/p + 1 . . in/p]).

The scheduling scheme can be illustrated in Figure 1.
The notationP k

i denotes the work of processorPi at round
k. Thus initially P1 starts computing at round 0. ThenP1

andP2 can work at round 1,P1, P2 andP3 at round 2, and
so on. In other words, after computing thek-th part of the
sub-matrixfi (denotedfk

i ), processorPi sends to processor
Pi+1 the elements of the right boundary (rightmost column)
of fk

i . These elements are denoted byRk
i . UsingRk

i , pro-
cessorPi+1 can compute thek-th part of the sub-matrix
fi+1. After p − 1 rounds, processorPp receivesR1

p−1 and



computes the first part of the sub-matrixfp. In the2p − 2
round, processorPp receivesRp

p−1 and computes thep-th
part of the sub-matrixfp and finishes the computation.
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Figure 1. An O(p) communication rounds
scheduling

It is easy to see that with this scheduling, processorPp

only initiates its work when processorP1 is finishing its
computation, at roundp − 1. The load is thus unbalanced.
A complet analysis about parameters to balance load can be
found in [3].

The parallel algorithm is shown in Algorithm 2.

Algorithm 2 PARALLEL 0-1 KNAPSACK ALGORITHM

Input: (1) The numberp of processors; (2) The numberi of the
processor, where1 ≤ i ≤ p; and (3) The arrayw, the capacity
of the knapsackW and subarrayvi of size n

p
, respectively.

Output: f(r, c) = max{f [r, c−w[r]]+v[r], f [r−1, c]}, where
1 ≤ c ≤W and(j − 1)n

p
+ 1 ≤ r ≤ j n

p
.

1: for 1 ≤ k ≤ p do
2: if i = 1 then
3: for (k − 1)W

p
+ 1 ≤ r ≤ k W

p
and 1 ≤ c ≤ n

p
do

4: compute f(r, c);
5: end for
6: send(Rk

i ,Pi+1);
7: end if
8: if i 6= 1 then
9: receive(Rk

i−1, Pi−1);
10: for (k − 1)W

p
+ 1 ≤ r ≤ k W

p
and 1 ≤ c ≤ n

p
do

11: compute f(r, c);
12: end for
13: if i 6= p then
14: send(Rk

i ,Pi+1);
15: end if
16: end if
17: end for

3.2. Experimental Results

We have run the BSP/CGM 0-1 knapsack algorithm on a
cluster composed by 12 nodes. This cluster is consisted of 6
CPU Intel Pentium IV of 1.7GHz and 6 CPU AMD Athlon
of 1.6GHz, besides the nodes are connected by a 1Gb fast-

Ethernet switch. The data used in the tests were generated
randomly.

The 0-1 Knapsack parallel algorithm is implemented us-
ing standard ANSI C. On the cluster we used LAM-MPI li-
brary while on the cluster used as an InteGrade grid we used
the InteGrade middleware and MPI. The purpose of the ex-
periment is to compare the two executions, on the cluster
using LAM-MPI and on the grid using the InteGrade mid-
dleware and MPI.

Table 1 and Figure 2 show the running times (in seconds)
for the 0-1 Knapsack parallel algorithm running on the clus-
ter using LAM-MPI.

W × n p=1 p=2 p=4 p=8
4096× 1024 0.071 0.063 0.057 0.050
8192× 2048 0.283 0.250 0.244 0.173
16384× 4096 1.105 0.992 0.952 0.645
32768× 8192 4.050 3.953 3.718 2.390

Table 1. Running times for 0-1 Knapsack on
the cluster using LAM-MPI
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Figure 2. Running times for 0-1 Knapsack on
the cluster using LAM-MPI

Table 2 and Figure 3 show the running times (in seconds)
for the 0-1 Knapsack parallel algorithm running on the grid
using InteGrade middleware and MPI.

W × n p=1 p=2 p=4 p=8
4096× 1024 0.084 0.072 0.078 -
8192× 2048 0.367 0.278 0.280 -
16384× 4096 1.105 1.053 1.146 -
32768× 8192 4.591 4.065 4.079 -

Table 2. Running times for 0-1 Knapsack on
the grid using InteGrade MPI
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Figure 3. Running times for 0-1 Knapsack on
the grid using InteGrade MPI

4096 × 1024 8192 × 2048
p I II I II
1 0.071 0.084 0.283 0.367
2 0.063 0.072 0.250 0.278
4 0.057 0.078 0.244 0.280
8 0.050 - 0.173 -

Table 3. Comparing running times for the 0-1
Knapsack Problem

16384× 4096 32768× 8192
p I II I II
1 1.105 1.105 4.050 4.591
2 0.992 1.053 3.953 4.065
4 0.952 1.146 3.718 4.079
8 0.645 - 2.390 -

Table 4. Comparing running times for the 0-1
Knapsack Problem
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Figure 4. Compare running times for 0-1
Knapsack on the cluster and on the grid

Tables 3 and 4 and Figure 4 present a comparison be-
tween the running times on a cluster using standard LAM-
MPI and on the grid running the InteGrade middleware and
MPI. Column I and column II show the times on the clus-
ter and on the grid, respectively. Figure 4 shows the corre-
sponding curve.

We observe that the running time on the cluster us-
ing only LAM-MPI without the InteGrade middleware is
slightly better than the times on the grid. Only in one case
the times are the same. Notice that in the grid, the InteGrade
middleware determines the choice of the machines.

4. Local Alignment Problem

The Local Alignment Problem is defined as follows.
Given two sequencesS1 andS2 over a given alphabet, find
a subsequence ofS1 similar to a subsequence ofS2 under
a given similarity metric. In Biology, the local alignment
is used to determine if two sequences of nucleotides or pro-
teins have similar functionality or evolutionary relationship.

Algorithm 3 SEQUENTIAL LOCAL ALIGNMENT ALGO-
RITHM
Input: (1) SequencesS1 andS2, (2) h: penalty to start a gap, (3)

g: penalty to extend a gap
Output: Best local alignment betweenS1 andS2

1: A(S1.length + 1, S2.length + 1); // matrix to align one ele-
ment ofS1 with one element ofS2

2: B(S1.length + 1, S2.length + 1); // matrix to align one ele-
ment ofS1 with a gap

3: C(S1.length + 1, S2.length + 1); // matrix to align one ele-
ment ofS2 with a gap

4: for i← 0 to S1.length do
5: A[i, 0]← 0;
6: B[i, 0]← 0;
7: C[i, 0]← 0;
8: end for
9: for j ← 0 to S2.length do

10: A[0, j]← 0;
11: B[0, j]← 0;
12: C[0, j]← 0;
13: end for
14: for i← 0 to S1.length do
15: for j ← 0 to S2.length do
16: A[i, j] ← max(A[i− 1, j − 1], B[i − 1, j − 1], C[i −

1, j − 1]) + BLOSUM62[S1[i − 1], S2[j − 1]];
17: B[i, j]← max(−(h + g) + A[i, j − 1],−g + B[i, j −

1],−(h + g) + C[i, j − 1]);
18: C[i, j] ← max(−(h + g) + A[i, j − 1],−(h + g) +

B[i, j − 1],−g + C[i, j − 1]);
19: end for
20: end for

The local alignment is a special case of the sequence
alignment problem, which aligns two or more sequences



through the insertion of gaps (holes) in order to achieve the
highest degree of similarity between the sequences. There
are two forms of sequence alignment: global and local. In
the global alignment we want to achieve the highest degree
of similarity of the entire sequence; in the local alignment
we consider the similarity between subsequences.

To solve the Local Alignment Problem we use the Smith-
Waterman algorithm [19], which is a variation of the global
alignment algorithm of Needleman-Wunsch [17].

For two sequences of sizem andn the algorithms runs
in O(m × n) time with O(m × n) space. To align two
sequences, the algorithm considers three possibilities [16]:

1. Align one element ofS1 with one element ofS2;

2. Align one element ofS1 with a gap;

3. Align one element ofS2 with a gap.

For each case the algorithm uses anm × n matrix and
saves the case which gives a better alignment. We refer the
reader to the book by Setubal and Meidanis [18] for details
of the sequential algorithm. A substitution matrix is used to
score an alignment between two elements. In our tests was
used the BLOSUM62 substitution matrix, and for scoring
the alignment of an element with a gap was used a linear
function.

Algorithm 4 PARALLEL LOCAL ALIGNMENT ALGO-
RITHM
Input: (1) SequencesS1 of sizem andS2 of sizen, (2) Number

of processorsp (3) Rank of processori (3) Each processor of
ranki holdss1[0..m − 1] ands2[i ∗ (n/p)..(i + 1) ∗ (n/p)]

Output: Best local alignment betweenS1 andS2

matrix A(m+1, blockSize+1), matrix B(m+1, blockSize+1),
matrix C(m+1, blockSize+1)

1: blockSize← n/p
2: next← i + 1
3: previous← i− 1
4: col← 1
5: for round← 0 to p− 1 do
6: col← col + blockSize
7: if i 6= 0 then
8: receive(A[0, col..col + blockSize], previous)
9: receive(B[0, col..col + blockSize], previous)

10: receive(C[0, col..col + blockSize], previous)
11: end if
12: computeA[1..m, col..col + blockSize]
13: computeB[1..m, col..col + blockSize]
14: computeC[1..m, col..col + blockSize]
15: if i 6= p− 1 then
16: send(A[m, col..col + blockSize], next)
17: send(B[m, col..col + blockSize], next)
18: send(C[m, col..col + blockSize], next)
19: end if
20: end for

4.1. The Parallel Algorithm

We present anO(p) communication round andO(m ×
n/p) time BSP/CGM algorithm usingp processors to com-
pute the local alignment of two sequencesS1 andS2 of sizes
m andn, respectively. The parallel algorithm is shown in
Algorithm 4.

4.2. Experimental Results

We ran the parallel local alignment algorithm on the
cluster using LAM-MPI and on the grid running InteGrade
middleware and MPI. Again the purpose of the experiment
is to compare the two executions, on the cluster using LAM-
MPI and on the grid using the InteGrade middleware and
MPI.

Figure 5 shows the running times (in seconds) on the
cluster using LAM-MPI.
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Figure 5. Running Times for Local Alignment
on the cluster using LAM-MPI

Figure 6 shows the running times (in seconds) on the grid
using InteGrade MPI.
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Figure 6. Running times for Local Alignment
on the grid InteGrade MPI

Figure 7 shows the corresponding curve comparing com-
pares the running times on the cluster using standard LAM-



MPI and on the grid running the InteGrade middleware and
MPI.
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5. Conclusions

The present work has the objective of studying the per-
formance of running parallel applications with communi-
cation among processors under the InteGrade middleware.
We presented two algorithms to evaluate the performance
of the InteGrade middleware. The applications running un-
der the InteGrade grid take slightly more time than those
running under the standard MPI in a cluster. The results
are considered to be satisfactory, since the time difference
is not substantial. This shows the overhead of the InteGrade
middleware is acceptable, in view of the benefits obtained
to ease the use of grid computing by the user.
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