
Generating Parallel Algorithms for Cluster and

Grid Computing?

U. K. Hayashida1, K. Okuda1, J. Panetta2, and S. W. Song1

1 Universidade de São Paulo, Brazil,
{ulisses,kunio,song}@ime.usp.br,
http://www.ime.usp.br/∼song/

2 Instituto Nacional de Pesquisas Espaciais,
Centro de Previsão de Tempo e Estudos Climáticos, Brazil

panetta@cptec.inpe.br

Abstract. We revisit and use the dependence transformation method
to generate parallel algorithms suitable for cluster and grid computing.
We illustrate this method in two applications: to obtain a systolic matrix
product algorithm, and to compute the alignment score of two strings.
The product of two n × n matrices is viewed as multiplying two p × p
matrices whose elements are n/p × n/p submatrices. For m such mul-
tiplications, using p2 processors, the proposed parallel solution gives a

linear speedup of mp
3

(m+2)p−2
or roughly p2. The alignment problem of

two strings of lengths m and n is solved in O(p) communication rounds
and O(mn/p) local computing time. We show promising experimental
results obtained on a 16-node Beowulf cluster and on an 18-node grid
called InteGrade, consisting of desktop computers.

1 Introduction

The abundance of low cost computing resources in clusters and the increasing
network bandwidth make it attractive to run parallel applications with the so-
called grid-based computing. We attempt to use efficiently the computational
resources that are idle to obtain a system of high computing power with the
existing machines. Due to the high communication cost in cluster and grid com-
puting, we are interested in designing parallel applications with low demand on
communication. To this end, we propose a method to design parallel algorithms
with the nice property of each processing having to communicate with only a few
others. It is based on a modification of the dependence transformation method
that was originally proposed to design systolic arrays for VLSI implementation
on silicon chips. Given a sequential algorithm specified as nested loops, or more
formally as a system of uniform recurrence equations, the specified computation
can be transformed into a time-processor space domain adequate to be imple-
mented on a VLSI chip [2, 3, 7, 6, 8, 10].

? Partially supported by CAPES, CNPq Grant Nos. 55.2028/02-9 and 30.5218/03-4.



Some nice properties of systolic arrays include the regularity on the layout
of the processing elements and local communication where each processing ele-
ment communicates only with a few neighbor processors. These features make
it suitable for implementation on a cluster where we wish to avoid costly global
communication primitives. We illustrate the proposed method by deriving paral-
lel algorithms for matrix multiplications and for computing the alignment score
for string comparison. We then present implementation results on a 16-node
Beowulf cluster and also on an 18-node grid, called InteGrade [4], consisting of
desktop computers.

2 Dependence Transformation

Given a sequential algorithm expressed as nested loops or, more formally, as
a system of uniform recurrence equations [5], the dependence transformation
method [3, 10] transforms the computations involved into a time-space represen-
tation. We illustrate this method through an example.

Example 1. Given two n × n matrices A = (aij) and B = (bij), the matrix
product can be expressed by a system of uniform recurrence equations, defined
on the domain of all the points (i, j, k) for 0 ≤ i, j, k < n.

0 ≤ i < n, 0 ≤ j < n, 0 ≤ k < n,
C(i, j, k) = C(i, j, k − 1) + A(i, j − 1, k)B(i − 1, j, k)
A(i, j, k) = A(i, j − 1, k)
B(i, j, k) = B(i − 1, j, k)

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

6 6 6
6 6 6

6 6 6
6 6 6

6 6 6
6 6 6

��

-

6

i

j

k

Fig. 1. Dependence graph assuming n = 3.

A(i,−1, k) and B(−1, j, k) are the coefficients aik and bkj , respectively. The
values of C(i, j,−1) are assumed to be zero. The output values C(i, j, n− 1), at
the right side of the equations, give the desired product. To compute C(i, j, k)
we use the value C(i, j, k − 1) that needs to be computed earlier. We say there

is a dependence vector for variable C, denoted by θc =
(

0 0 1
)T

. Likewise we

have the dependence vectors θa =
(

0 1 0
)T

and θb =
(

1 0 0
)T



Consider a dependence graph which has as vertices the points of the domain
and directed edges from vertices y to z if z depends on y. See Figure 1 for
an example. Each point of the dependence graph represents some elementary
computation that needs to be calculated. Through a time function τ and a
processor allocation function α, we can transform the dependences so that the
points that do not depend on each other can be computed in parallel.

The time function maps each elementary computation of the dependence
graph into a positive integer that represents the time unit it is executed. Consider

a domain point z =
(

z0 z1 z2

)T
. The following is a time function: τ(z) =

λ0z0 +λ1z1 +λ2z2 + δ, where λi and δ are integers, and satisfying the condition:
if z depends on y, then τ(z) > τ(y).

Let λ =
(

λ0 λ1 λ2

)T
. Then τ(z) = λT z + δ. Suppose z depends on y by

the dependence vector θ, that is, z − y = θ. Then we have τ(z) > τ(y) or,
equivalently, τ(z)− τ(y) > 0. This can be written as λT (z − y) > 0, or λT θ > 0,
or λT θ ≥ 1. Thus for each dependence vector θi we have λT θi > 0.

Consider Example 1, we have θc =
(

0 0 1
)T

, θa =
(

0 1 0
)T

, θb =
(

1 0 0
)T

.
It can be shown [10] that τ(z) = z0+z1+z2 is a time function. That is τ(z) = λT z

where λ =
(

1 1 1
)T

.
The processor allocation function α maps each point z (of a domain of n

dimensions) onto a point (of a space n−1 dimensions) α(z) where the elementary
computation associated to z is performed. Different points of the domain that
are computed at the same time instant should be mapped to different processing
elements, that is, ∀z, y in the domain, α(z) = α(y) ⇒ τ(z) 6= τ(y).

Quinton and Robert [10] show how to obtain a processor allocation function
α, given the time function λ, by projecting the domain points according to a
direction given by a vector u that is not orthogonal to λ. Consider a domain of
dimension 3. Let u = (u0 u1 u2)

T be a non-null vector such that λT u 6= 0. It can
be shown [10] that α(z) = (α0(z), α1(z)) is a processor allocation function where
α0(z) = u2z0−u0z2 and α1(z) = u2z1−u1z2. In our example, we wish to obtain
a processor allocation function α that maps each one of the dependence vectors
onto either the null vector or (0 1)T or (0 1)T . The following is a possible
processor allocation function.

α(z) =

(

1 0 0
0 1 0

)





z0

z1

z2



 =

(

z0

z1

)

.

Figure 2 shows how this systolic array computes the matrix product of two
matrices A and B. Each processing element receives an element of matrix A and
an element of matrix B, computes the product of the two elements and adds it to
the element of matrix C it stores. This parallel solution requires a total of 3n−2
computing steps plus the same amount of communication steps. We obtain a
speedup in terms of computing steps of n3/(3n − 2) or n2/3 for large n. Notice
that we waste some time to fill in and flush out the pipeline. If we need to obtain
m matrix products, then the parallel time is improved with the amortization of
the costs of pipeline fill-in and flush-out. For m products of two n× n matrices,



- -+ = + = + =
× × ×

- -+ = + = + =
× × ×

- -+ = + = + =
× × ×

? ? ?

? ? ?
c11 c12 c13

c21 c22 c23

c31 c32 c33

a11a12a13

a21a22a23

a31a32a33

b11

b21

b31

b12

b22

b32

b13

b23

b33

Fig. 2. Computing the product A × B.

we need a total of (m + 1)n − 1 computing steps and communication steps. We
now get a speedup in terms of computing steps of (mn3/((m + 1)n − 1) or n2

for large n and m. Since we use n2 processing elements, we get linear speedup.
Systolic arrays operate in a synchronous and lock-step fashion. Frequent syn-

chronization of all the processor on a cluster or grid is too costly. However, syn-
chronization of the input, compute, output steps of the parallel algorithm on the
cluster can be achieved by using non-blocking sends and blocking receives.

The fine granularity of systolic algorithms is not suitable for cluster or grid
computing due to the disparity between communication and computations speeds.
To achieve a coarser grain, we can view each element of a matrix as a block or a
submatrix. In other words, instead of each processor receives one single element
of each matrix A and matrix B, it receives a submatrix of matrix A and matrix
B. It can be shown that we still get linear speedup.

In the global atmospheric circulation model used for weather forecasting
computation of Fourier and Legendre Transforms are needed [9]. A global model
simulates the behavior of atmospheric fields along the discrete time. Partial dif-
ferential equations are solved in two spaces: the grid space (here we use the
term grid in the Mathematical sense) and the spectral space. The Fourier Trans-
form moves a field between grid and Fourier representations while the Legendre
Transform moves a field between Fourier and spectral representations. Fourier
Transforms are computed by using the well-known FFT (fast Fourier Trans-
form). Legendre Transforms constitute the most time-consuming part and can
be computed as multiple matrix products, handled by the proposed algorithm.

3 A Parallel Algorithm for Alignment of Sequences

In [1] we have proposed a parallel algorithm for efficient sequence alignment.
In this section we show that, by using the proposed dependence transformation
method, it is straightforward to generate this algorithm. Consider two given
strings A and C, where A = a1a2 . . . am and C = c1c2 . . . cn. To align the two



A a c t t c a – t A a c t t c a – t

C a t t c – a c g C a – t t c a c g

Score 1 0 1 0 0 1 0 0 3 Score 1 0 1 1 1 1 0 0 5

Fig. 3. Examples of alignment

strings, we insert spaces in the two sequences in such way that they become equal
in length. See Figure 3 where each column consists of a symbol of A (or a space)
and a symbol of C (or a space). An alignment between A and C is a matching
of the symbols of A and of C in such way that if we draw lines between the
matched symbols, these lines cannot cross each other. Figure 3 shows two simple
alignment examples where we assign a score of 1 when the aligned symbols in a
column match and 0 otherwise. The alignment on the right has a higher score
(5) than that on the left (3).

A more general score assignment for a given string alignment considers inser-
tion/deletion and match/mismatch of symbols, each with the respective scores.
For example, a match has a positive score while the other operations negative
scores. The similarity score S of the alignment between strings A and C can be
computed by the following recurrence equation. For 0 < r ≤ m, 0 < s ≤ n,

S(r, s) = max















S[r, s − 1] − t
S[r − 1, s − 1] + t (match) or
S[r − 1, s − 1] − t (mismatch)
S[r − 1, s] − t

a

c

b

c

bA

a

a

b

(0, 0)
b a a b c a

C

b c a b

(8, 10)

S(i, j − 1)

S(i − 1, j − 1)

S(i, j)

S(i − 1, j)

Fig. 4. Grid DAG G for A = baabcbca and C = baabcabcab.

An l1 × l2 grid DAG (Figure 4) is a directed acyclic graph whose vertices are
the l1l2 points of an l1 × l2 grid, with edges from grid point G(i, j) to the grid
points G(i, j + 1), G(i + 1, j) and G(i + 1, j + 1). In our terminology, the grid
DAG is a dependence graph. Associate an (m+1)× (n+1) grid dag G with the
alignment problem as follows: the (m + 1)(n + 1) vertices of G are in one-to-one
correspondence with the (m + 1)(n + 1) entries of the S-matrix. It is easy to
see that we need to compute a minimum source-sink path in the grid DAG. In
Figure 4 the problem is to find the minimum path from (0,0) to (8,10).



Let us now apply the dependence transformation method. From the recur-

rence equation, we obtain the dependence vectors: d1 =
(

0 1
)T

, d2 =
(

1 1
)T

,

d3 =
(

1 0
)T

. A possible time function is τ(z) = z0 + z1 = λT z where λ =
(

1 1
)T

. For the processor allocation function α, we can use u =
(

1 0
)T

.

•

•
•

• 900x900

�

�

�

� 1200x1200

×

×

×

× 1500x1500

?

?

?

? 1800x1800

2 4 6 8

0

20

40

60

80

100

120

140

No. Processors

M
in

u
te

s

(a) Running times.

•

•

•
• 900x900

�

�

�

� 1200x1200

×

×

×

× 1500x1500

?

?

?
? 1800x1800

2 4 6 8

2

4

6

8

10

No. Processors

S
p
ee

d
u
p

(b) Speedups.

Fig. 5. Matrix product results on a Beowulf cluster.

This will result in the following scheduling of the tasks to be executed by p
processors, each with O(mn/p) local memory. The string A is stored in all pro-
cessors, and the string C is divided into p pieces, of size n

p
, and each processor

Pi, 1 ≤ i ≤ p, receives the i-th piece of C (c(i−1) n

p
+1 . . . ci n

p
). P k

i denotes the

work of Processor Pi at round k. Thus initially P1 starts computing at round 0.
Then P1 and P2 can work at round 1, P1, P2 and P3 at round 2, and so on. In
other words, after computing the k-th part of the sub-matrix Si (denoted Sk

i ),
processor Pi sends to processor Pi+1 the elements of the right boundary (right-
most column) of Sk

i . These elements are denoted by Rk
i . The systolic algorithm

requires O(p) communication rounds and O(mn/p) local computing time.

4 Experimental Results

We ran our experiment on a 16-node Beowulf cluster, using the LAM-MPI in-
terface. Each node has a 1.2GHz AMD Thunderbird Athlon processor, 256 KB
L2 cache, 768 MB of RAM memory and 30.73 GB hard disk. The nodes are con-
nected by a Switch 3COM 3300 FastEthernet 100Mb. We also used an 18-node
grid using InteGrade (see [4]) middleware that provides efficient use of desktop
microcomputers that are idle and available in a computer laboratory for grad-
uate students, consisting of Pentium II 400 Mhz and 3 Athlon 1700+ desktop



◦

◦

◦
◦

◦ 1500x1500

•

•

• •

• 1200x1200

�

�

� �

� 900x900

×

× × ×

× 600x600

2 4 6 8 10 12 14 16

0

20

40

60

80

100

120

No. Processors

M
in

u
te

s

(a) Running times.

◦

◦

◦

◦

◦ 1500x1500

•

•

•

•

• 1200x1200

�

�

�

�

� 900x900

×

×

×

×

× 600x600

2 4 6 8 10 12 14 16

0

2

4

6

8

No. Processors

S
p
ee

d
u
p

(b) Speedups.

Fig. 6. Matrix product results on the InteGrade grid.

◦

◦

◦

◦

◦

◦ 48000x48000

•

•

•

•
•

• 36000x36000

�

�

�
� �

� 24000x24000

×
×

× × ×

× 12000x12000

2 4 6 8

0

10

20

30

40

50

No. Processors

M
in

u
te

s

(a) Running times.

◦

◦

◦

◦

◦

◦ 48000x48000

•

•

•

•

•
• 36000x36000

�

�

�

�

�

� 24000x24000

×

×

×

×

×
× 12000x12000

2 4 6 8

0

2

4

6

8

No. Processors

S
p
ee

d
u
p

(b) Speedups.

Fig. 7. String alignment results on the InteGrade grid.

microcomputers interconnected in a local area network by 100Mb Ethernet. We
have implemented and used some of the communication primitives of the Ox-
ford BSPLib such as bsp put() and bsp get(). The number of processors used is
always a perfect square (1, 4, 9, etc),

Figure 5 shows the results obtained on the Beowulf cluster, for 50 matrix
products of sizes 900 × 900 to 1800 × 1800. The super-linear behavior on some
of the speedup curves can be explained by the more efficient use of cache in the
parallel program. The speedups start to decrease for large matrix sizes, when the
communication costs start to dominate in relation to the overall computation



time. Figure 6 shows the matrix product results on the InteGrade grid of desktop
computers. Figure 7 show the results for the string alignment algorithm, also run
on the InteGrade grid.

5 Conclusion

We propose to use the dependence transformation method, to generate par-
allel algorithms for cluster or grid computing, after some suitable adaptation.
It should be observed that the method is general. In fact we have used this
method to derive parallel algorithms for other problems, such as convolution,
and transitive closure. All these algorithms share the desirable property of lo-
cal communication with a few other processors, with no global communication.
TCP/IP connection start-up is heavy. Thus an important issue to be addressed
is the reuse of connections

6 Acknowledgments

We wish to thank the anonymous referees for their helpful comments.

References

1. C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. W. Song. A parallel wavefront
algorithm for efficient biological sequence comparison. In Proceedings of the 2003

International Conference on Computational Science and its Applications - ICCSA

2003, volume 2668 of Lecture Notes in Computer Science, pages 249–258. Springer
Verlag, 2003.

2. M. Cosnard. Designing parallel algorithms for linearly connected processors and
systolic arrays. Parallel Computing, 1:273–317, 1990.

3. J. A. B. Fortes and D. I. Moldovan. Parallelism detection and transformation tech-
niques useful for VLSI algorithms. Journal of Parallel and Distributed Computing,
2:277–301, 1985.

4. Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger, and Ger-
mano Capistrano Bezerra. InteGrade: Object-Oriented Grid Middleware Leverag-
ing Idle Computing Power of Desktop Machines. Concurrency and Computation:

Practice and Experience, 16:449–459, March 2004.
5. R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for

uniform recurrence equations. Journal of the ACM, 14:563–590, 1967.
6. G. M. Megson. An Introduction to Systolic Algorithm Design. Oxford University

Press, 1992.
7. D. I. Moldovan. Parallel Processing: from Applications to Systems. Morgan Kauf-

mann Publishers, 1993.
8. K. Okuda. Cycle shrinking by dependence reduction. In Proceedings 2nd Interna-

tional Euro-Par Conference, volume 1123 of Lecture Notes in Computer Science,
pages 398–401. Springer Verlag, 1996.

9. S. A. Orszag. Transform methods for calculation of vector coupled sums: Applica-
tion to the spectral form of the vorticity equation. Journal Atmospheric Science,
27:890–895, 1970.

10. P. Quinton and Y. Robert. Algorithmes et architectures systoliques. Masson, 1989.


