A Flexible Fault-Tolerance Mechanism for the
Integrade Grid Middleware

Stanley Araujo de Sousa
and Francisco José da Silva e Silva
Universidade Federal do Maranhao

Rafael Fernandes Lopes
Centro Federal de Educacao Tecnologica
Departamento Académico de Informéatica

Av Portugueses, S/N, Bacanga, Sao Luis, MA, BrasiAv. Getllio Vargas, 04, Monte Castelo, Sao Luis, MA, Brasi

Email: stanleyaraujo@oi.com.br, fssilva@deinf.ufma.br

Abstract— Computer grids have attracted great attention of
both academic and enterprise communities, becoming an atdic-
tive alternative for the execution of applications that denand
huge computational power, allowing the integration of compita-
tional resources spread through different administrativedomains.
The dynamic nature of the grid infrastructure, its high scalability,
and great heterogeneity exacerbates the likelihood of errs
occurrence, imposing fault tolerance as a major requiremenfor
grid middlewares.

This paper describes a flexible fault-tolerance mechanism
implemented on Integrade grid middleware that allows the
customization of several failure handling parameters and he
combination of different failure handling techniques. This paper
also presents several experiments that measure the benefitsour
approach, considering several different execution envinoments
scenarios.

I. INTRODUCTION

A computer grid comprises a hardware and software in-

frastructure that allows integration and sharing of distred

resources, such as software, data and peripherals, insitle a *

among institutions. This computational infrastructures lad-

tracted great attention of academic and enterprise communi

ties, becoming an attractive alternative for executionpglia

cations that demand huge computational power, and aIIowing'
the integration of computational resources spread through

different administrative domains.

Email: rafaelf@cefet-ma.br

configuration, maintenance and recovery in case of failures
solely by human beings. Several recent research projects
[10], [9] have recognize the necessity of providing a greate
autonomy to grid systems, which comprises one of the greates
challenges for the new generation of this kind of middleware
The termautonomic computindias been used to denote a
system that exhibits the following four functional propest

[7]:

« Self-Protection the system should be capable of de-
tecting and protecting its resources from both internal
and external attacks, maintaining its overall security and
integrity;

« Self-Optimization: the system should be able to detect
performance degradation and intelligently perform self-
optimization actions;

Self-Healing the system must be aware of potential
problems and should have the ability to reconfigure itself
in order to continue to function smoothly;

Self-Configuration: the system must have the ability to
dynamically adjust its resources based on its state and the
state of its execution environment.

Computational grids have been used to solve problems inThe AutoGrid project, currently being developed at the

varied areas of scientific, enterprise, and industriaivais,

Federal University of Maranhao, main goal is the develop-

such as: computational biology, image processing for naédid¢nent of a robust and self-managing autonomic grid system.

diagnosis, weather forecast, high energy physics, maetiThe AutoGrid project uses the Integrade grid middleware

simulations, and oil prospection. Grid computing has engrow{6] as the foundation for its implementation, incorporgtin

the conception of a new generation of applications thawallc@utonomic mechanisms to its infrastructure in order to make

combining computations, experiments, observations, atd dits configuration and administration independent from hama

got in real time. The phenomena modeled by these applidatervention. Our research focuses on adding to Integfaee t

tions require diverse software components whose compasiti 2utonomic properties: self-healing, self-optimizatiand self-

and interactions are extremely dynamic. Moreover, the gr@nfiguration.

infrastructure is also heterogeneous and dynamic, agmgga This paper presents our initial effort toward AutoGrid self

a great amount of computation and communication resourchkegling infrastructure: the development of a flexible falu

databases and, sometimes, sensors and specific periphenalsdling mechanism. The generic, dynamic, and heteroge-

The dynamism can be observed in terms of high variation ireous nature of a grid environment requires a failure hagdli

resource availability, node instability, and workloadiaéions mechanism that supports multiple fault tolerance tectesqu

in nodes and network links. since each technigue performs better (i.e. causes a smaller
The dynamic nature of the grid infrastructure, its higlbverhead over the application execution time) for a given

scalability, and great heterogeneity has turn imprackecéb environment condition. We argue that the decision aboutkwvhi

technique should be applied in each situation must be taken This technique can tolerate only the occurrence of up to
by the grid middleware in an autonomic and automatic way, n — 1 failures (only crash failures), where is the total
based on the environment status and previous experiences. number of replicas;

This paper is organized as follows: Section Il presentse Checkpointing periodically saves the process state in
main issues concerning fault tolerance mechanisms for grid a stable storage during the failure free execution time.
environments. Section Ill describes the architecture & th Upon a failure, the process restarts from one of its saved
Integrade middleware. Section IV describes the design and states, thereby reducing the amount of lost computation.
implementation of Integrade flexible failure handling mech Each of the saved states is called a checkpoint. The use
anism. Section V presents the performance evaluation and a of this technique usually imposes some overhead over
comparative analysis among the failure handling techrsique the execution time, caused by the periodic saving of the
implemented with a discussion about which technique ibett execution state.
in each situation. Section VI shows some related works,evhil Stable storage:execution states that will allow to recover
Section VIl presents our conclusions and describes the nexé pre-failure state of applications must be saved in a data
steps of this work. repository that can survive eventual failures of grid nodes

Il. FAULT TOLERANCE IN GRID ENVIRONMENTS A_ stgble storage can be implemented using a centralized or
distributed approach.

Computer grid environments are highly prone to failures
due to several facts, such as [12]: (a) Grids systems dke Flexible fault tolerance mechanism
composed of a wide range of services, software, and hardwar&rid environments have a heterogeneous nature in respect
components, which need to interact with one another. Systémits tasks (e.g., long running tasks, mission criticak$as
failures can result not only from an error on a single comransactional tasks, etc) and its execution environmengt,(e
ponent but also from the interaction between componenys; (iighly reliable execution environments, unreliable exicu
Grid environments are extremely dynamic, with componenggaivironments). This heterogeneity leads to the necessity o
joining and leaving the system all time; (c) The likelihoofd oa flexible failure handling mechanism that supports multi-
errors occurrence is exacerbated by the fact that many gpié fault tolerance techniques, allowing each task to selec
applications will perform long tasks that may require saleran appropriate fault tolerance technique among altemstiv
days of computation. depending on its characteristics and the estimated rkfjabi

To provide the necessary fault tolerance functionalit@s fof its underlying execution environment. For example, if a
grid environments, several services must be availabldy asc grid computing resource on which a task is running has a

Failure detection: grid nodes and applications must bdong downtimé, the task may prefer the “retrying on another
constantly monitored by a failure detection service. Twavailable grid resource” strategy to either the “retrying o
approaches can be used: In fnesh modelgrid components the same resource” or "restarting with checkpointing on the
periodically send heartbeat messages to a failure defeckame resource” strategies. In Hwang et al. [8], one can
announcing that they are alive. In this approach, the monit@und a comparative analysis based on simulations among the
suspects the failure of a componentin the system after aicertfour main failure handling techniquestrying, checkpointing
time interval. However, if there is a large number of moretbr replication andreplication with checkpointThe necessity for
components its heartbeat messages can flood the networkpioviding flexibility to the grid failure handling mechanis
contrast, in thepull modelthe failure detector sends livenessomprises a major requirement of our work on the Integrade
requests “@re you alive?” messages) periodically to gridgrid middleware.
components. In this case, the load on the network is reduced
and depends on the number of liveness requests sent by the
monitor. However, the monitor may not suspect or detect the The Integrade project [6] is a multi-university effort toilol
failure of a component until after it sends it a liveness ey @ novel grid computing middleware infrastructure to legera

Application Failure handling: diverse failure handling the idle computing power of personal workstations for the
strategies can be applied in grid environments in order @ecution of computationally-intensive parallel appiicas.
ensure the continuity of applications executions. The maff'e basic architectural unit of an Integrade grid is thetelus

application failure handling techniques adopted in grigien @ collection of machines usually connected by a local net-
ronments are: work. Clusters can be organized in a hierarchy, allowing to

encompass a large number of machines. Each cluster contains

o Retrying when an application execution fails, it is
restarted from scratch. This is the simplest failure hat"i‘-CIUSter Managemode that executes Integrade components

dling technique but its main drawback is the loss (ﬁesponsible for managing the (?Iuster computing resources
computation time in case of failure: and for inter-cluster communication. Other cluster nodes a

. Replication the same application is submitted for exegalIedWorkstationswhich export part of its resources to Grid
cution a number of times, generating various applicatidf?®">- They C?T ltae sho?red (?]r_tdetdmated .machmes. The main
replicas. All replicas are active and perform the sanf@mponents of Integrade architecture are:
code with the same input parameters at different nodestAverage time between the task failure and it is up again.

IIl. I NTEGRADE OVERVIEW

o Application Submission and Control Tool (ASCT): The scheduled LRM downloads the (previously registered)
a graphical user interface that allows users to subnaipplication binary from the AR (4), requests the appliqatio
applications and control their execution; input files (if any) to the ASCT (5), notifying the acceptance

of its request (6). Before starting the application exemuti

« Application Repository (AR): stores the code of appli- the LRM notifies EM about the application initialization (7)
cations that can be executed on the grid; and starts to monitor the execution progress (8), waiting fo

] its conclusion. At this time, the LRM notifies the EM (9) and

» Local Resource Manager (LRM): a component that {ﬁSCT (10) the end of the application execution. The ASCT

runs in each cluster node, collecting information abo can now download the results (output files) of the executed
the state of resources such as memory, CPU, disk, and1 P

. .] . application (11).
network usage. It is also responsible for instantiating anc&’p (11)

executing applications scheduled to the node;
gapp IV. INTEGRADE FAULT TOLERANCE MECHANISM

« Global Resource ManagerfGRM): manages the cluster

;rec)slg]ljt;](:eeinh%SrgﬁreéV'ng annOFrlrllg?:rI](;rt]'znOf rdest(; ur(r:gtoléso? ?etely based on application level checkpointing. Applma:
ug ' lon up P e§§l checkpointing consists on instrumenting the appibca

and runs the schgdul_e_r that allocates tasks to nodes bag e to periodically save its state, thus allowing recowdtgr
on resources availability;
a fail-stop failure. Integrade provides a precompiler thagerts

« Execution Manager (EM): maintains information about N0 the application source code the statements resperfsibl
each application submission, such as its state, execut@fj€ring and saving its state on a stable storage. Theiadopt
node, input and output parameters, submission and c&f-a checkpoint-based approach introduces, independeftly

clusion timestamps. It also coordinates the applicatidf€ occurrence of failures, an overhead to the normal applic
recovery process, in case of failures. tion execution time. Integrade checkpointing implemeatat

minimizes this overhead by copying the checkpoint data to a
buffer and performing the coding and transfer of checkpmoint
through a separate application thread, allowing the agiitin
Figure 1 shows the interactions among Integrade comg@-concurrently continue its execution [3].
nents in order to execute applications. The user requests alVe developed on Integrade the support for replication,
application execution through the ASCT interface. The apphnother failure handling technique commonly applied od gri
cation must have been previously registered in the apjlicat environments. Replication consists on submit the same-appl
repository. The user can, optionally, assign some requingsn cation with the same set of input parameters a number of times
for the execution, such as the platform in which the apgbeat for execution. Each replica represents an active instafice o
was compiled and the minimum amount of memory necessadhg application, running on a resource different than tieot
for its execution. ASCT forwards the request to the GRM (1)eplicas. Thus, as long as not all replicas fail, the appitica
which executes its scheduling algorithm in order to select avill succeed to execute. When one of the replicas finishes, th
available cluster node. GRM notifies EM that the applicatiogrid middleware must discard (or ignore) the others and'netu
execution was scheduled (2) and forwards the submissi@n didite results to the requesting user.
to the LRM of the selected node (3). Our implementation also allows the user to customize
parameters related to the failure handling mechanism, ds pa
of the application submission process. The user can enable

The original Integrade fault tolerance mechanism was com-

A. Application execution protocol

|ASCT| |GRM| |EM| |LRM| |AR| : ' A))
— , T T T or disable the checkpoint mechanism, set the time interval
ﬂ | | between consecutive checkpoints, enable or disable thie rep
} 3 | : cation mechanism, and set the amount of application replica
4 . e . .
| —m to be generated. In this way, flexibility is achieved not only

| by allowing the customization of different failure handjin
- - : parameters but also by letting the user combine replication
fg‘i , | with checkpointing, resulting in four different failure mdling
‘]T_| : techniquestetrying (without checkpoint or replicationgheck-
|
|
|
|

pointing, replication (without checkpointing), andeplication
with checkpointing

The resulting Integrade fault tolerance infrastructure is
L composed by the following components:
______________ jJ « Execution Manager (EM): maintains information about
each application submission and coordinates the reinitial
ization of applications in case of failures;

Fig. 1. Integrade application execution

« Checkpointing library (ckpLib): provides the function-
i a2 |
] 2

ality to periodically generate checkpoints containing the ‘ | |

application state; ﬁ

3
« Autonomous Data Repositories(ADRSs): a distributed | g s
stable storage residing on machines that share their re- : H
|

|

i

sources with the grid; | }
EE————\————% | 5

|

|

|

|

|

o Cluster Data Repository Manager (CDRM): manages
the available ADRs on a cluster and the location of each
checkpoint data;

|
|
|
|
|
|
|
|
|
|
Tl

ol

« Application Replication Manager (ARM): instantiates
the replicas of a single application execution. When
the first replica concludes its job, the ARM Kkills the
remaining ones, releasing the allocated grid resources. ﬁ
The Global Resource Manager (GRM) instantiates an ?D
ARM on demand for every application submission on
which replication is requested.

|
|
| Lo B
Integrade checkpointing mechanism adds to the basic appli- : : }18 T
|
|
|
|
|

cation execution protocol (Figure 1) steps responsibleg&bin-
ering the application checkpoint and its storage in Autooom

|
|
Data Repositories (ADRs). A precompiler inserts into the . RN I
application code the statements responsible for gatheuialg hf | [il
restoring the application state from a checkpointing liara = } I I
When the checkpointing library needs to store a checkpoint, F ———————— j]. ‘ | |
it queries the CDRM about available ADRs. Checkpoint data
recovery also involves a query to the CDRM, requesting the Fig. 2. Execution protocol with replication
list of ADRs where the application checkpoints were stored.
More details about Integrade checkpointing mechanism ean b o)
found in [2], [3]. EM about each copy of the a_pphcatmn _executlon (1_3 qnd
15). Each LRM starts and begin to monitor the application
A. Integrade Replication Mechanism execution on its node (16 and 17), notifying the ARM upon

.))) its conclusion (18). The ARM informs the EM about the end of
Figure 2 |IIust_rates our mplemer!tatlon of the Integrad® prpe application execution (19) and downloads the appticati
tocol for executing application replicas. The protocolaaal- egyts (generated output files) (20). If some exceptiomee
ity minimizes the impact on the code of prewo_usly develope(g_g_ the machine is turned off) during the result trandfes,
components, concentrating the support for replication oev@ - ARM considers as not finished the computation and it waits
one: the Application Replication Manager (ARM). the terminus of another replica. If no exception occurs, the
Using the Application Submission and Control ToOhRM requests the termination of remaining replicas (21) and
(ASCT), the user issues an application execution requegltifies the ASCT about the successful application exenutio

informing the amount of replicas that must be generate@p). Finally, ASCT can download the results from the ARM
The request is forwarded to the GRM (1) that schedules tbz;g)_

execution to available resources, notifying the EM that the

application has been successfully scheduled (2). The GRM V. PERFORMANCEEVALUATION

instantiates a new ARM passing the execution request comin order to evaluate the benefits of our flexible fault
bined with the scheduled grid nodes (3). The ARM obtains thelerance mechanism, we performed several experiments
application input files (if any) from the ASCT (4) and forward that measure the tradeoff among failure handling techsique
the execution request to the LRM running on each scheduliegplemented on Integraderefrying (Rt), checkpointing
node (5 and 6), generating the application replicas. In thi€k), replication (Rp), and replication with checkpointing
example, only two copies of the application are createdhEa(RpCk)), considering several different execution envingmts
LRM downloads the application binary from the Applicatiorscenarios. The experiments are similar to the simulations
Repository (7 and 8), requests the application input filemfr presented by Hwang et al. [8], but were performed in a real
the ARM (9 and 10), and returns to it a natification thalntegrade cluster. The cluster was composed by 5 machines
the application execution has been accepted (11 and Mith the following configuration: Intel Pentium 4 processor
The ARM notifies the ASCT upon the receive of the firstvith 2.8 GHz and 1 GB of RAM memory, running Linux
acceptance notification from a LRM (12). It also notifies th2.6.10, connected by a 100 Mbps Ethernet network. The

experiments used the following parameters: 40, 60, 120 and 180 seconds. As Table Il shows, when the
downtime increases te: g replication and replication with

« Failure-free execution time (F): execution time of a task checkpointingoutperformed the other two techniques.
in the absence of failures;

TABLE Il
« Failure Rate (\): random variable representing an arrival BooTsTRAP APPLICATION COMPLETION TIME(IN SECONDS) FOR EACH
rate of failures; FAILURE HANDLING TECHNIQUE (DOWNTIME = 795 &~ £))

« Mean Time to Failure (MTTF) : mean interval between MTTE Rt Ck Rp | RpCk
adjacent failures; 20 00 899.06 | 527.24 | 280.82
40 %) 450.85 | 241.01 | 181.67
« Downtime (D): average time following a failure of a task 60 | 1117.59] 408.61 | 180.12| 158.22
before it is up again: 120 626.02 | 286.75| 157.11 | 157.70
p again, 180 | 319.55 | 246.81 | 157.06 | 157.61

o Number of replicas (V): number of replicated tasks,) .
each running on a different machine; In a second set of experiments, we adopted a matrix

multiplication application. Each matrix consists1ai0 x 1700
« Checkpoint Interval (C): time interval between two elements of type float. The application presented a failure-
consecutive checkpoints in failure-free runsAKfcheck- free execution time I{) of 115.75 seconds. The experiment
points are created during, thenC = F' | K. objective is to evaluate the impact of the checkpoint data

In order to simulate the occurrence of failures, we devedop&ize, since the matrix multiplication application genesag
a small application responsible for generating a pseudgormn huge checkpoint of 67.8 MB, in contrast to tf@otstrap
number that represents the moment where the next applicat@plication, whose checkpoint data has only 274.82 KB.
failure must occur using an exponential distribution. When In a first experiment, we fixed the downtimé) to 0
the failure moment is reached, a regular application beisgconds and varied the MTTF to 15, 20, 30, 60 and 100
executed in the grid is abruptly aborted. When replicatiggecondsN was set to 3 and’ to 5 seconds. Table Il shows
based techniques were being tested, a uniform distributas that in an environment with high failure rate (MTTF equals
used to select the replica to be aborted. 15 and 20 seconds}kheckpointingand checkpointing with

A first set of experiments used an application calewbt- replication presented a better performance, while for MTTF
strap [4], a generic method to estimate the variability in> 30 seconds¥ZIE > 0.26), the use of those techniques is
statistics. The application presented a failure-free etiea inappropriate, due to the overhead caused by the checkpmpint

time (F) of 157.13 seconds. capture.

In the first experiment, we fixed the downtim®) to 0
seconds and varied the MTTF to 20, 40, 60, 120 and 180 sec- TABLE I
onds. We used 3 repncagfo on replication based techniques MATRIX MULTIPLICATION APPLICATION COMPLETION TIME (IN SECONDQ
and set the checkpoint interval’f for checkpointingbased FOR EACH FAILURE HANDLING TECHNIQUE(DOWNTIME = 0'S)
techniques to 5 seconds. VTTE T o Rp RPCK

Table | presents the results obtained. For MTTF equal to 15 > 181.28 | 255.44 | 154.52
20 seconds and 40 seconds, the technigheskpointingand 20 oo | 173.38 184.13| 154.20
replication with checkpointingresented a better performance 28 i;;-ég ig?-gg ﬁ?ég iggfg
than the other two. However, for a MTTE 120 seconds 100 T 228 10 | 15559 | 11600 | 149.74

(MLLE > 0.76), replication and replication with checkpoint-
ing were lightly better tharcheckpointingand considerable

. . - E
better tharretrying. Altering the downtime value td> = 57 seconds~),

we obtained the results presented on Table IV. As we can

TABLE | see, when the downtime increases~oL, replication and
BOOTSTRAP APPLICATION COMPLETION TIME(IN SECONDS FOR EAcH Ieplication with checkpointingoutperformed the other two
FAILURE HANDLING TECHNIQUE (DOWNTIME = 0 S) techniques.
MTTF Rt Ck Rp RpCk TABLE IV
20) 184.55 | 324.78 | 162.16 MATRIX MULTIPLICATION APPLICATION COMPLETION TIME (IN SECONDS)
40 00 172.30 | 175.81 | 158.72

—575~ F
50 89924 | 167.07 | 16026 | 157.81 FOR EACH FAILURE HANDLING TECHNIQUE(DOWNTIME =57s~ 3)

120 408.89 | 161.36 | 157.14 | 157.76

180 | 229.62 | 159.87 | 157.13| 157.51 MTTF Rt Ck Rp RpCk

15 oo | 788.97 | 505.37 | 261.87

) 20 oo | 724.90| 197.87| 192.76

In a second experiment, we used the same values\for 30 = 73067 | 16495 | 188.12
(3) and C' (5 seconds), altering the downtime value i 60 | 77251 | 346.73 | 125.02 | 168.03
= 79 seconds# Z). We also varied the MTTF to 20, 100 | 407.83 | 287.38 | 116.33 | 157.24

Considering the experimental results and the objective fafilure handling parameters but also by letting the user-com
minimizing the application response time, we can concludéne replication with checkpointing, resulting in four féifent
that in environments with high fault rates (low MTTF), thefailure handling techniquesetrying (without checkpoint or
use of checkpointing presented the best results, specialiyplication), checkpointing replication (without checkpoint-
when combined with replication. If the execution enviromine ing), andreplication with checkpointing
presents a low fault rate (high MTTF), the use of replication We evaluated the benefits of our flexible mechanism by
becomes more attractive. In environments with low faule raperforming several experiments that measure the tradeoff
and low downtime, the use of checkpointing can be considemong the failure handling techniques implemented on In-
a good choice for applications with small checkpoint sizéggrade. Considering the objective of minimizing the appli
since the response time is very close to the one obtained witition response time, the results demonstrated that thte bes
replication, with the advantage of using less grid resarde failure handling technique varied as we altered envirortmen
the application checkpoint size or the environment dowatinparameters such as the MTTF and the downtime, sustaining the

increase, replication becomes more attractive. conclusion that grid middlewares can benefit from providing
different failure handling strategies.
V1. RELATED WORK. Towards our objective of developing an autonomic grid

niddleware, we are currently implementing the support for
automatic decision of the failure handling technique to be
plied in case of failure, given an application submission
tegrade will choose the best failure handling technique
on the local executing machine or in a checkpoint server. consideri_ng the current_grid execution environment. We are
augmenting Integrade with the Adapta framework, a reflectiv

OurGrid [1] uses task replication to provide fault toleranc : : .
: . . middleware that provides support for developing self-gigap
and for improving performance. OurGrid does not support o S
, . . . component-based distributed applications.
checkpoint natively, but users can optionally use thirdt par

software (e.g. a checkpoint library). OurGrid also progitiee REFERENCES

necessary infrastructure to manage the checkpomt usage’ S [1] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenbergur@id: An

as a stable storage. The checkpointing approach, althasigh, ~ approach to easily assemble grids with equitable resourasng. In

not transparent. Proc. of the 9th Workshop on Job Scheduling Strategies foallgh
CoordAgent [5] is a mobile-agent-based middleware. It prop,, oroccssingJune 2003.

) g [] > g - N p [2] R.Y.de Camargo, R. Cerqueira, and F. Kon. Strategietmckpoint

vides a checkpointing mechanism that inserts state-aagtur Storage on Opportunistic Grid€EEE Distributed Systems Onlin&(9),

functions into a user source code through a language pre- September 2006.

- . 3] R. Y. de Camargo, A. Goldchleger, F. Kon, and A. Goldman.
processor. CoordAgent uses two comp|ler-compller toolé. Checkpointing-based rollback recovery for parallel aggilons on the

ANTLR for C/C++ and JavaCC for java source code, since integrade grid middleware. IACM/IFIP/USENIX 2nd International
both Ianguages are supported for application development. Workshop on Middleware for Grid Computingoronto, Canada, October

. 2004.
There are several differences between Integrade fault t0[|4] B. Efron and R. TibshiraniAn Introduction to the BootstrapgChapman

erance mechanisms and the ones described above, such as Hall, New York, 1993.

the use of a distributed stable storage and provision dfl M. Fukuda, Y. Tanaka, L. F. Bic, and S. Kobayashi. A motifgent-
based pc gridlEEE Computer 2003.

Ch_eCkp_Ointing for paraIIeI BSP applications (nc_)t presd_rua_ [6] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C.zBra.
this article for shortness reasons). We would like to higjni Integrade: Object-oriented grid middleware leveraginig idomputing
the flexibility of Integrade approach that allows the user to Power of desktop machinesConcurrency and Computation: Practice

. . . & Experience. Vol. 16, pp. 449-452004.
combine different fault-tolerance techniques. [7] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M.ré&har,

Hwang et al. [8] present a flexible fault tolerance frame- and H. Liu. The autonomic computing paradigi@luster Computing:
work for grids environments. The framework uses a workflow The Journal of Networks, Software Tools, and Applicatiokiwer

. . . Academic Publishers3(5), 2005.
approach, where users can specify failure handling pae®iet g s Hwang and C. Kesselman. Gridworkflow: A flexible fagunandiing
using a XML based language called WPDkqrkflow Process framework for the grid.hpdg 00:126, 2003.
Definition Languagg The failure handling framework, Grid- [®] J. Kaufman, T. Lehman, G. Deen, and J. Thomas. Op-

. . ; timalgrid: autonomic computing on the grid. http:/iwww-
WEFS, provides support for multiple failure recovery tech- 128.ibm.com/developerworks/library/gr-opgrid/.

niques (retrying, checkpointing, replication and reglima [10] P. Leong, C. Miao, and F. Sung. Agent mediated autoncseivice

with checkpointing) Grid-WFS checkpointing mechanism is orchestration in grid environment. Brd IEEE International Conference
’ on Industrial Informatics August 2005.

not transparent, in contrast with Integrade. Integrad® al§ 1} m. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Chyemint

provides a distributed stable storage. and Migration of UNIX Processes in the Condor Distributedd@ssing
System. Technical report, University of Wisconsin-MadisApril 1997.

[12] P. Townend and J. Xu. Fault Tolerance within a Grid Bomiment. In
Proceedings of AHM20Q3age 272, 2003.

The Condor project provides fault tolerance for grid a
plications through a checkpoint approach [11]. Checkjognt
at Condor is “transparent”: developers do not need to wri
specific checkpointing code. Checkpoints are stored in fil

VIl. CONCLUSION AND ONGOING WORK

This paper presented a flexible fault-tolerance mechanism
implemented on Integrade grid middleware. Flexibility is
achieved not only by allowing the customization of differen

