
A Flexible Fault-Tolerance Mechanism for the
Integrade Grid Middleware

Stanley Araujo de Sousa
and Francisco José da Silva e Silva

Universidade Federal do Maranhão
Av Portugueses, S/N, Bacanga, São Luis, MA, Brasil

Email: stanleyaraujo@oi.com.br, fssilva@deinf.ufma.br

Rafael Fernandes Lopes
Centro Federal de Educação Tecnológica
Departamento Acadêmico de Informática

Av. Getúlio Vargas, 04, Monte Castelo, São Luis, MA, Brasil
Email: rafaelf@cefet-ma.br

Abstract— Computer grids have attracted great attention of
both academic and enterprise communities, becoming an attrac-
tive alternative for the execution of applications that demand
huge computational power, allowing the integration of computa-
tional resources spread through different administrativedomains.
The dynamic nature of the grid infrastructure, its high scalability,
and great heterogeneity exacerbates the likelihood of errors
occurrence, imposing fault tolerance as a major requirement for
grid middlewares.

This paper describes a flexible fault-tolerance mechanism
implemented on Integrade grid middleware that allows the
customization of several failure handling parameters and the
combination of different failure handling techniques. This paper
also presents several experiments that measure the benefitsof our
approach, considering several different execution environments
scenarios.

I. I NTRODUCTION

A computer grid comprises a hardware and software in-
frastructure that allows integration and sharing of distributed
resources, such as software, data and peripherals, inside and
among institutions. This computational infrastructure has at-
tracted great attention of academic and enterprise communi-
ties, becoming an attractive alternative for execution of appli-
cations that demand huge computational power, and allowing
the integration of computational resources spread through
different administrative domains.

Computational grids have been used to solve problems in
varied areas of scientific, enterprise, and industrial activities,
such as: computational biology, image processing for medical
diagnosis, weather forecast, high energy physics, marketing
simulations, and oil prospection. Grid computing has empower
the conception of a new generation of applications that allow
combining computations, experiments, observations, and data
got in real time. The phenomena modeled by these applica-
tions require diverse software components whose compositions
and interactions are extremely dynamic. Moreover, the grid
infrastructure is also heterogeneous and dynamic, aggregating
a great amount of computation and communication resources,
databases and, sometimes, sensors and specific peripherals.
The dynamism can be observed in terms of high variation in
resource availability, node instability, and workload variations
in nodes and network links.

The dynamic nature of the grid infrastructure, its high
scalability, and great heterogeneity has turn impracticable its

configuration, maintenance and recovery in case of failures
solely by human beings. Several recent research projects
[10], [9] have recognize the necessity of providing a greater
autonomy to grid systems, which comprises one of the greatest
challenges for the new generation of this kind of middleware.
The term autonomic computinghas been used to denote a
system that exhibits the following four functional properties
[7]:

• Self-Protection: the system should be capable of de-
tecting and protecting its resources from both internal
and external attacks, maintaining its overall security and
integrity;

• Self-Optimization: the system should be able to detect
performance degradation and intelligently perform self-
optimization actions;

• Self-Healing: the system must be aware of potential
problems and should have the ability to reconfigure itself
in order to continue to function smoothly;

• Self-Configuration: the system must have the ability to
dynamically adjust its resources based on its state and the
state of its execution environment.

The AutoGrid project, currently being developed at the
Federal University of Maranhão, main goal is the develop-
ment of a robust and self-managing autonomic grid system.
The AutoGrid project uses the Integrade grid middleware
[6] as the foundation for its implementation, incorporating
autonomic mechanisms to its infrastructure in order to make
its configuration and administration independent from human
intervention. Our research focuses on adding to Integrade three
autonomic properties: self-healing, self-optimization,and self-
configuration.

This paper presents our initial effort toward AutoGrid self-
healing infrastructure: the development of a flexible failure
handling mechanism. The generic, dynamic, and heteroge-
neous nature of a grid environment requires a failure handling
mechanism that supports multiple fault tolerance techniques,
since each technique performs better (i.e. causes a smaller
overhead over the application execution time) for a given
environment condition. We argue that the decision about which



technique should be applied in each situation must be taken
by the grid middleware in an autonomic and automatic way,
based on the environment status and previous experiences.

This paper is organized as follows: Section II presents
main issues concerning fault tolerance mechanisms for grid
environments. Section III describes the architecture of the
Integrade middleware. Section IV describes the design and
implementation of Integrade flexible failure handling mech-
anism. Section V presents the performance evaluation and a
comparative analysis among the failure handling techniques
implemented with a discussion about which technique is better
in each situation. Section VI shows some related works, while
Section VII presents our conclusions and describes the next
steps of this work.

II. FAULT TOLERANCE IN GRID ENVIRONMENTS

Computer grid environments are highly prone to failures
due to several facts, such as [12]: (a) Grids systems are
composed of a wide range of services, software, and hardware
components, which need to interact with one another. System
failures can result not only from an error on a single com-
ponent but also from the interaction between components; (b)
Grid environments are extremely dynamic, with components
joining and leaving the system all time; (c) The likelihood of
errors occurrence is exacerbated by the fact that many grid
applications will perform long tasks that may require several
days of computation.

To provide the necessary fault tolerance functionalities for
grid environments, several services must be available, such as:

Failure detection: grid nodes and applications must be
constantly monitored by a failure detection service. Two
approaches can be used: In thepush model, grid components
periodically send heartbeat messages to a failure detector,
announcing that they are alive. In this approach, the monitor
suspects the failure of a component in the system after a certain
time interval. However, if there is a large number of monitored
components its heartbeat messages can flood the network. In
contrast, in thepull modelthe failure detector sends liveness
requests (“are you alive?” messages) periodically to grid
components. In this case, the load on the network is reduced
and depends on the number of liveness requests sent by the
monitor. However, the monitor may not suspect or detect the
failure of a component until after it sends it a liveness request;

Application Failure handling: diverse failure handling
strategies can be applied in grid environments in order to
ensure the continuity of applications executions. The main
application failure handling techniques adopted in grid envi-
ronments are:

• Retrying: when an application execution fails, it is
restarted from scratch. This is the simplest failure han-
dling technique but its main drawback is the loss of
computation time in case of failure;

• Replication: the same application is submitted for exe-
cution a number of times, generating various application
replicas. All replicas are active and perform the same
code with the same input parameters at different nodes.

This technique can tolerate only the occurrence of up to
n − 1 failures (only crash failures), wheren is the total
number of replicas;

• Checkpointing: periodically saves the process state in
a stable storage during the failure free execution time.
Upon a failure, the process restarts from one of its saved
states, thereby reducing the amount of lost computation.
Each of the saved states is called a checkpoint. The use
of this technique usually imposes some overhead over
the execution time, caused by the periodic saving of the
execution state.

Stable storage:execution states that will allow to recover
the pre-failure state of applications must be saved in a data
repository that can survive eventual failures of grid nodes.
A stable storage can be implemented using a centralized or
distributed approach.

A. Flexible fault tolerance mechanism

Grid environments have a heterogeneous nature in respect
to its tasks (e.g., long running tasks, mission critical tasks,
transactional tasks, etc) and its execution environment (e.g.,
highly reliable execution environments, unreliable execution
environments). This heterogeneity leads to the necessity of
a flexible failure handling mechanism that supports multi-
ple fault tolerance techniques, allowing each task to select
an appropriate fault tolerance technique among alternatives
depending on its characteristics and the estimated reliability
of its underlying execution environment. For example, if a
grid computing resource on which a task is running has a
long downtime1, the task may prefer the “retrying on another
available grid resource” strategy to either the “retrying on
the same resource” or ”restarting with checkpointing on the
same resource” strategies. In Hwang et al. [8], one can
found a comparative analysis based on simulations among the
four main failure handling techniques:retrying, checkpointing,
replication and replication with checkpoint. The necessity for
providing flexibility to the grid failure handling mechanism
comprises a major requirement of our work on the Integrade
grid middleware.

III. I NTEGRADE OVERVIEW

The Integrade project [6] is a multi-university effort to build
a novel grid computing middleware infrastructure to leverage
the idle computing power of personal workstations for the
execution of computationally-intensive parallel applications.
The basic architectural unit of an Integrade grid is the cluster,
a collection of machines usually connected by a local net-
work. Clusters can be organized in a hierarchy, allowing to
encompass a large number of machines. Each cluster contains
a Cluster Managernode that executes Integrade components
responsible for managing the cluster computing resources
and for inter-cluster communication. Other cluster nodes are
calledWorkstations, which export part of its resources to Grid
users. They can be shared or dedicated machines. The main
components of Integrade architecture are:

1Average time between the task failure and it is up again.



• Application Submission and Control Tool (ASCT):
a graphical user interface that allows users to submit
applications and control their execution;

• Application Repository (AR): stores the code of appli-
cations that can be executed on the grid;

• Local Resource Manager (LRM): a component that
runs in each cluster node, collecting information about
the state of resources such as memory, CPU, disk, and
network usage. It is also responsible for instantiating and
executing applications scheduled to the node;

• Global Resource Manager(GRM): manages the cluster
resources by receiving notifications of resource usage
from the LRMs (through an information update protocol),
and runs the scheduler that allocates tasks to nodes based
on resources availability;

• Execution Manager (EM): maintains information about
each application submission, such as its state, executing
node, input and output parameters, submission and con-
clusion timestamps. It also coordinates the application
recovery process, in case of failures.

A. Application execution protocol

Figure 1 shows the interactions among Integrade compo-
nents in order to execute applications. The user requests an
application execution through the ASCT interface. The appli-
cation must have been previously registered in the application
repository. The user can, optionally, assign some requirements
for the execution, such as the platform in which the application
was compiled and the minimum amount of memory necessary
for its execution. ASCT forwards the request to the GRM (1),
which executes its scheduling algorithm in order to select an
available cluster node. GRM notifies EM that the application
execution was scheduled (2) and forwards the submission data
to the LRM of the selected node (3).

Fig. 1. Integrade application execution

The scheduled LRM downloads the (previously registered)
application binary from the AR (4), requests the application
input files (if any) to the ASCT (5), notifying the acceptance
of its request (6). Before starting the application execution,
the LRM notifies EM about the application initialization (7),
and starts to monitor the execution progress (8), waiting for
its conclusion. At this time, the LRM notifies the EM (9) and
ASCT (10) the end of the application execution. The ASCT
can now download the results (output files) of the executed
application (11).

IV. I NTEGRADE FAULT TOLERANCE MECHANISM

The original Integrade fault tolerance mechanism was com-
pletely based on application level checkpointing. Application-
level checkpointing consists on instrumenting the application
code to periodically save its state, thus allowing recoveryafter
a fail-stop failure. Integrade provides a precompiler thatinserts
into the application source code the statements responsible for
gathering and saving its state on a stable storage. The adoption
of a checkpoint-based approach introduces, independentlyof
the occurrence of failures, an overhead to the normal applica-
tion execution time. Integrade checkpointing implementation
minimizes this overhead by copying the checkpoint data to a
buffer and performing the coding and transfer of checkpoints
through a separate application thread, allowing the application
to concurrently continue its execution [3].

We developed on Integrade the support for replication,
another failure handling technique commonly applied on grid
environments. Replication consists on submit the same appli-
cation with the same set of input parameters a number of times
for execution. Each replica represents an active instance of
the application, running on a resource different than the other
replicas. Thus, as long as not all replicas fail, the application
will succeed to execute. When one of the replicas finishes, the
grid middleware must discard (or ignore) the others and return
the results to the requesting user.

Our implementation also allows the user to customize
parameters related to the failure handling mechanism, as part
of the application submission process. The user can enable
or disable the checkpoint mechanism, set the time interval
between consecutive checkpoints, enable or disable the repli-
cation mechanism, and set the amount of application replicas
to be generated. In this way, flexibility is achieved not only
by allowing the customization of different failure handling
parameters but also by letting the user combine replication
with checkpointing, resulting in four different failure handling
techniques:retrying (without checkpoint or replication),check-
pointing, replication (without checkpointing), andreplication
with checkpointing.

The resulting Integrade fault tolerance infrastructure is
composed by the following components:

• Execution Manager (EM): maintains information about
each application submission and coordinates the reinitial-
ization of applications in case of failures;



• Checkpointing library (ckpLib): provides the function-
ality to periodically generate checkpoints containing the
application state;

• Autonomous Data Repositories(ADRs): a distributed
stable storage residing on machines that share their re-
sources with the grid;

• Cluster Data Repository Manager (CDRM): manages
the available ADRs on a cluster and the location of each
checkpoint data;

• Application Replication Manager (ARM): instantiates
the replicas of a single application execution. When
the first replica concludes its job, the ARM kills the
remaining ones, releasing the allocated grid resources.
The Global Resource Manager (GRM) instantiates an
ARM on demand for every application submission on
which replication is requested.

Integrade checkpointing mechanism adds to the basic appli-
cation execution protocol (Figure 1) steps responsible forgath-
ering the application checkpoint and its storage in Autonomous
Data Repositories (ADRs). A precompiler inserts into the
application code the statements responsible for gatheringand
restoring the application state from a checkpointing library.
When the checkpointing library needs to store a checkpoint,
it queries the CDRM about available ADRs. Checkpoint data
recovery also involves a query to the CDRM, requesting the
list of ADRs where the application checkpoints were stored.
More details about Integrade checkpointing mechanism can be
found in [2], [3].

A. Integrade Replication Mechanism

Figure 2 illustrates our implementation of the Integrade pro-
tocol for executing application replicas. The protocol rational-
ity minimizes the impact on the code of previously developed
components, concentrating the support for replication on anew
one: the Application Replication Manager (ARM).

Using the Application Submission and Control Tool
(ASCT), the user issues an application execution request
informing the amount of replicas that must be generated.
The request is forwarded to the GRM (1) that schedules the
execution to available resources, notifying the EM that the
application has been successfully scheduled (2). The GRM
instantiates a new ARM passing the execution request com-
bined with the scheduled grid nodes (3). The ARM obtains the
application input files (if any) from the ASCT (4) and forwards
the execution request to the LRM running on each scheduled
node (5 and 6), generating the application replicas. In this
example, only two copies of the application are created. Each
LRM downloads the application binary from the Application
Repository (7 and 8), requests the application input files from
the ARM (9 and 10), and returns to it a notification that
the application execution has been accepted (11 and 14).
The ARM notifies the ASCT upon the receive of the first
acceptance notification from a LRM (12). It also notifies the

Fig. 2. Execution protocol with replication

EM about each copy of the application execution (13 and
15). Each LRM starts and begin to monitor the application
execution on its node (16 and 17), notifying the ARM upon
its conclusion (18). The ARM informs the EM about the end of
the application execution (19) and downloads the application
results (generated output files) (20). If some exception occurs
(e.g. the machine is turned off) during the result transfer,the
ARM considers as not finished the computation and it waits
the terminus of another replica. If no exception occurs, the
ARM requests the termination of remaining replicas (21) and
notifies the ASCT about the successful application execution
(22). Finally, ASCT can download the results from the ARM
(23).

V. PERFORMANCEEVALUATION

In order to evaluate the benefits of our flexible fault
tolerance mechanism, we performed several experiments
that measure the tradeoff among failure handling techniques
implemented on Integrade (retrying (Rt), checkpointing
(Ck), replication (Rp), and replication with checkpointing
(RpCk)), considering several different execution environments
scenarios. The experiments are similar to the simulations
presented by Hwang et al. [8], but were performed in a real
Integrade cluster. The cluster was composed by 5 machines
with the following configuration: Intel Pentium 4 processor
with 2.8 GHz and 1 GB of RAM memory, running Linux
2.6.10, connected by a 100 Mbps Ethernet network. The



experiments used the following parameters:

• Failure-free execution time (F ): execution time of a task
in the absence of failures;

• Failure Rate (λ): random variable representing an arrival
rate of failures;

• Mean Time to Failure (MTTF) : mean interval between
adjacent failures;

• Downtime (D): average time following a failure of a task
before it is up again;

• Number of replicas (N ): number of replicated tasks,
each running on a different machine;

• Checkpoint Interval (C): time interval between two
consecutive checkpoints in failure-free runs. IfK check-
points are created duringF , thenC = F / K.

In order to simulate the occurrence of failures, we developed
a small application responsible for generating a pseudo random
number that represents the moment where the next application
failure must occur using an exponential distribution. When
the failure moment is reached, a regular application being
executed in the grid is abruptly aborted. When replication
based techniques were being tested, a uniform distributionwas
used to select the replica to be aborted.

A first set of experiments used an application calledboot-
strap [4], a generic method to estimate the variability in
statistics. The application presented a failure-free execution
time (F ) of 157.13 seconds.

In the first experiment, we fixed the downtime (D) to 0
seconds and varied the MTTF to 20, 40, 60, 120 and 180 sec-
onds. We used 3 replicas (N ) on replicationbased techniques
and set the checkpoint interval (C) for checkpointingbased
techniques to 5 seconds.

Table I presents the results obtained. For MTTF equal to
20 seconds and 40 seconds, the techniquescheckpointingand
replication with checkpointingpresented a better performance
than the other two. However, for a MTTF≥ 120 seconds
(MTTF

F
≥ 0.76), replication and replication with checkpoint-

ing were lightly better thancheckpointingand considerable
better thanretrying.

TABLE I

BOOTSTRAP APPLICATION COMPLETION TIME(IN SECONDS) FOR EACH

FAILURE HANDLING TECHNIQUE (DOWNTIME = 0 S)

MTTF Rt Ck Rp RpCk
20 ∞ 184.55 324.78 162.16
40 ∞ 172.30 175.81 158.72
60 899.24 167.07 160.26 157.81
120 408.89 161.36 157.14 157.76
180 229.62 159.87 157.13 157.51

In a second experiment, we used the same values forN

(3) and C (5 seconds), altering the downtime value toD

= 79 seconds (≈ F

2
). We also varied the MTTF to 20,

40, 60, 120 and 180 seconds. As Table II shows, when the
downtime increases to≈ F

2
, replication and replication with

checkpointingoutperformed the other two techniques.

TABLE II

BOOTSTRAP APPLICATION COMPLETION TIME(IN SECONDS) FOR EACH

FAILURE HANDLING TECHNIQUE (DOWNTIME = 79S≈
F

2
)

MTTF Rt Ck Rp RpCk
20 ∞ 899.06 527.24 280.82
40 ∞ 450.85 241.01 181.67
60 1117.59 408.61 180.12 158.22
120 626.02 286.75 157.11 157.70
180 319.55 246.81 157.06 157.61

In a second set of experiments, we adopted a matrix
multiplication application. Each matrix consists of1700×1700

elements of type float. The application presented a failure-
free execution time (F ) of 115.75 seconds. The experiment
objective is to evaluate the impact of the checkpoint data
size, since the matrix multiplication application generates a
huge checkpoint of 67.8 MB, in contrast to thebootstrap
application, whose checkpoint data has only 274.82 KB.

In a first experiment, we fixed the downtime (D) to 0
seconds and varied the MTTF to 15, 20, 30, 60 and 100
seconds.N was set to 3 andC to 5 seconds. Table III shows
that in an environment with high failure rate (MTTF equals
15 and 20 seconds),checkpointingand checkpointing with
replication presented a better performance, while for MTTF
≥ 30 seconds (MTTF

F
≥ 0.26), the use of those techniques is

inappropriate, due to the overhead caused by the checkpointing
capture.

TABLE III

MATRIX MULTIPLICATION APPLICATION COMPLETION TIME (IN SECONDS)

FOR EACH FAILURE HANDLING TECHNIQUE(DOWNTIME = 0 S)

MTTF Rt Ck Rp RpCk
15 ∞ 181.28 255.44 154.52
20 ∞ 173.38 184.13 154.20
30 877.29 166.80 135.18 152.33
60 429.60 157.64 117.37 150.16
100 228.10 155.59 116.00 149.74

Altering the downtime value toD = 57 seconds (≈ F

2
),

we obtained the results presented on Table IV. As we can
see, when the downtime increases to≈ F

2
, replication and

replication with checkpointingoutperformed the other two
techniques.

TABLE IV

MATRIX MULTIPLICATION APPLICATION COMPLETION TIME (IN SECONDS)

FOR EACH FAILURE HANDLING TECHNIQUE(DOWNTIME = 57S≈
F

2
)

MTTF Rt Ck Rp RpCk
15 ∞ 788.97 505.37 261.87
20 ∞ 724.90 197.87 192.76
30 ∞ 430.67 164.95 188.12
60 772.51 346.73 125.02 168.03
100 407.83 287.38 116.33 157.24



Considering the experimental results and the objective of
minimizing the application response time, we can conclude
that in environments with high fault rates (low MTTF), the
use of checkpointing presented the best results, specially
when combined with replication. If the execution environment
presents a low fault rate (high MTTF), the use of replication
becomes more attractive. In environments with low fault rate
and low downtime, the use of checkpointing can be consider
a good choice for applications with small checkpoint size,
since the response time is very close to the one obtained with
replication, with the advantage of using less grid resources. As
the application checkpoint size or the environment downtime
increase, replication becomes more attractive.

VI. RELATED WORK.

The Condor project provides fault tolerance for grid ap-
plications through a checkpoint approach [11]. Checkpointing
at Condor is “transparent”: developers do not need to write
specific checkpointing code. Checkpoints are stored in files
on the local executing machine or in a checkpoint server.

OurGrid [1] uses task replication to provide fault tolerance
and for improving performance. OurGrid does not support
checkpoint natively, but users can optionally use third part
software (e.g. a checkpoint library). OurGrid also provides the
necessary infrastructure to manage the checkpoint usage, such
as a stable storage. The checkpointing approach, although,is
not transparent.

CoordAgent [5] is a mobile-agent-based middleware. It pro-
vides a checkpointing mechanism that inserts state-capturing
functions into a user source code through a language pre-
processor. CoordAgent uses two compiler-compiler tools:
ANTLR for C/C++ and JavaCC for java source code, since
both languages are supported for application development.

There are several differences between Integrade fault tol-
erance mechanisms and the ones described above, such as
the use of a distributed stable storage and provision of
checkpointing for parallel BSP applications (not presented on
this article for shortness reasons). We would like to highlight
the flexibility of Integrade approach that allows the user to
combine different fault-tolerance techniques.

Hwang et al. [8] present a flexible fault tolerance frame-
work for grids environments. The framework uses a workflow
approach, where users can specify failure handling parameters
using a XML based language called WPDL (workflow Process
Definition Language). The failure handling framework, Grid-
WFS, provides support for multiple failure recovery tech-
niques (retrying, checkpointing, replication and replication
with checkpointing). Grid-WFS checkpointing mechanism is
not transparent, in contrast with Integrade. Integrade also
provides a distributed stable storage.

VII. C ONCLUSION AND ONGOING WORK

This paper presented a flexible fault-tolerance mechanism
implemented on Integrade grid middleware. Flexibility is
achieved not only by allowing the customization of different

failure handling parameters but also by letting the user com-
bine replication with checkpointing, resulting in four different
failure handling techniques:retrying (without checkpoint or
replication), checkpointing, replication (without checkpoint-
ing), andreplication with checkpointing.

We evaluated the benefits of our flexible mechanism by
performing several experiments that measure the tradeoff
among the failure handling techniques implemented on In-
tegrade. Considering the objective of minimizing the appli-
cation response time, the results demonstrated that the best
failure handling technique varied as we altered environment
parameters such as the MTTF and the downtime, sustaining the
conclusion that grid middlewares can benefit from providing
different failure handling strategies.

Towards our objective of developing an autonomic grid
middleware, we are currently implementing the support for
automatic decision of the failure handling technique to be
applied in case of failure, given an application submission.
Integrade will choose the best failure handling technique
considering the current grid execution environment. We are
augmenting Integrade with the Adapta framework, a reflective
middleware that provides support for developing self-adaptive
component-based distributed applications.

REFERENCES

[1] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. OurGrid: An
approach to easily assemble grids with equitable resource sharing. In
Proc. of the 9th Workshop on Job Scheduling Strategies for Parallel
Processing, June 2003.

[2] R. Y. de Camargo, R. Cerqueira, and F. Kon. Strategies forCheckpoint
Storage on Opportunistic Grids.IEEE Distributed Systems Online, 7(9),
September 2006.

[3] R. Y. de Camargo, A. Goldchleger, F. Kon, and A. Goldman.
Checkpointing-based rollback recovery for parallel applications on the
integrade grid middleware. InACM/IFIP/USENIX 2nd International
Workshop on Middleware for Grid Computing, Toronto, Canada, October
2004.

[4] B. Efron and R. Tibshirani.An Introduction to the Bootstrap. Chapman
& Hall, New York, 1993.

[5] M. Fukuda, Y. Tanaka, L. F. Bic, and S. Kobayashi. A mobile-agent-
based pc grid.IEEE Computer, 2003.

[6] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C. Bezerra.
Integrade: Object-oriented grid middleware leveraging idle computing
power of desktop machines.Concurrency and Computation: Practice
& Experience. Vol. 16, pp. 449-459, 2004.

[7] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar,
and H. Liu. The autonomic computing paradigm.Cluster Computing:
The Journal of Networks, Software Tools, and Applications,Kluwer
Academic Publishers, 8(5), 2005.

[8] S. Hwang and C. Kesselman. Gridworkflow: A flexible failure handling
framework for the grid.hpdc, 00:126, 2003.

[9] J. Kaufman, T. Lehman, G. Deen, and J. Thomas. Op-
timalgrid: autonomic computing on the grid. http://www-
128.ibm.com/developerworks/library/gr-opgrid/.

[10] P. Leong, C. Miao, and F. Sung. Agent mediated autonomicservice
orchestration in grid environment. In3rd IEEE International Conference
on Industrial Informatics, August 2005.

[11] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint
and Migration of UNIX Processes in the Condor Distributed Processing
System. Technical report, University of Wisconsin-Madison, April 1997.

[12] P. Townend and J. Xu. Fault Tolerance within a Grid Environment. In
Proceedings of AHM2003, page 272, 2003.


