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SUMMARY

The mobile agent paradigm has emerged as a promising alternative to overcome the
construction challenges of opportunistic grid environments. This model can be used to
implement mechanisms that enable application execution progress even in the presence
of failures such as the mechanisms provided by the MAG middleware (Mobile Agents
for Grids). MAG includes retrying, replication and checkpointing as fault tolerance
techniques; they operate independently from each other and they are not capable of
detecting changes on resource availability. In this paper, we describe a MAG extension
that is capable of migrating agents when nodes fail, which optimizes application progress
by keeping only the most advanced checkpoint, and also migrates slow replicas. The
proposed approach was evaluated via simulations and experiments, which showed
significant improvements.
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1. INTRODUCTION

Opportunistic grids are distributed environments built to leverage the computational power
of idle resources geographically spread across different administrative domains. These
environments comprise many characteristics such as high level of heterogeneity and large
changes on resource availability.
In distributed systems, failures can occur due to several factors, most of them related to

resource heterogeneity and distribution. These failures together with the use of the resources
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by its owners modify grid resource availability (i.e., resources can be active, busy, offline,
crashed, etc.). The opportunistic grid middleware should be able to monitor and detect such
changes, rescheduling applications across the available resources and dynamically tuning the
fault tolerance mechanisms to better adapt to the execution environment.

In this work, we implemented dynamic fault tolerance mechanisms based on task replication
and checkpoints for grid applications. A task replica is a copy of the application binary that
runs independently from the other copies. Through these mechanisms, the middleware is
capable of migrating tasks when nodes fail. It coordinates task replicas and its checkpoints in a
rational manner, keeping only the most advanced checkpoint and migrating slow replicas. These
features dynamically improves application execution, compensates the misspend of resources
introduced by the task replication and solves scalability issues.

These mechanisms compose a feedback control system [1, 2], gathering and analyzing
information about the execution progress and adjusting its behavior accordingly. To build
these mechanisms, we rely on the mobile agent paradigm [3]. Mobile agents are programs that
can move from one resource to another in an autonomous way, carrying its data and execution
state and resuming its execution at the destination. We argue that agents are suitable for
opportunistic environments due to intrinsic agent characteristics such as:

1. Cooperation: agents have the ability to interact and cooperate with other agents; this
can be explored for the development of complex communication mechanisms among
distributed application tasks;

2. Autonomy : agents are autonomous entities, meaning that their execution goes on without
any or with little intervention from the clients that started them. This is a suitable model
for submission and execution of grid applications;

3. Heterogeneity : most mobile agent platforms can be executed in heterogeneous
environments, an important characteristic for better use of computational resources
across multi-organization environments;

4. Reactivity : agents can react to external events such as variation on resources availability;
5. Mobility : agents can migrate from one node to another, moving part of the computation

being executed, helping to balance the load on grid nodes.

Since 2004, our research group has been using the agent paradigm to develop a grid software
infrastructure, leading to the MobiGrid [5] and MAG [6] projects. These projects are based on
the InteGrade middleware [7, 23], which follows an opportunistic approach, where workstations
idle computing power is used for executing computationally-intensive parallel applications.

This work describes enhancements to the MAG middleware that address the dynamism of
opportunistic grids, managing fault-tolerant execution and resource allocation for sequential
and embarrassingly parallel applications. In the next section, we present the related work. In
Section 3, we present the MAG architecture and its fault tolerance mechanisms. In Section 4, we
describe the implementation of the dynamic replication and unified checkpointing mechanisms.
We describe simulation results and experiments that assess our proposal in sections 5 and 6.
Finally, in the last section, we present our conclusions and future work.
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2. RELATED WORK

The most well-known work in the field of opportunistic grid is provided by the SETI@home
project [29] whose research is focused on finding signs of extraterrestrial life by processing
signals received by radio telescopes. This type of application is embarrassingly parallel (also
known as bag-of-tasks or parametric applications) since the input data can be divided into
smaller parts that are distributed and processed by workstations volunteers.

The success of the SETI@home project and the emergence of similar projects as GIMPS [32],
Climateprediction.net [34] and Einstein@home [33] motivated the development of BOINC [31],
a software platform for volunteer computing that allows a single workstation to participate in
various projects.

Anybody can download the BOINC client and integrate their machine to the grid. Therefore,
more attention is paid on security aspects and on the reliability of the results. The detection of
incorrect or corrupted data is conducted through the submission of multiple copies of the same
work unit. The state of the tasks is stored periodically at the user’s machine. Our approach
also uses task replication and checkpointing, however, for different purposes. Task replication is
used both as a strategy for tolerating failures as well as to accelerate the execution. Moreover,
the checkpointing is performed remotely, allowing the comparison of the replicas execution
progress, which is crucial for our approach, as we shall see later.

Another bag-of-tasks approach is based on OurGrid [10], a computational grid that allows
laboratories to share the idle cycles of its resources through a network of favors, promoting
the fair division of processing time between the entities of this grid. This grid provides task
replication through the Workqueue with Replication scheduler (WQR) [11] in a similar way
to our work. However, it lacks checkpointing support. The user must use an external library
since the project does not provide an automatic way to instrument the application binary.

Several works deal with checkpointing techniques to guarantee the progress of sequential long
running applications. One that is directly related to our work is the Grid-WFS framework [12],
where the authors studied several approaches to deal with failures on machines. The handling
techniques were: retrying, checkpointing, replication, and replication with checkpointing.
They concluded that in grid environments with high downtime, as in some opportunistic
environments, the replication with checkpointing outperforms the other ones, using as
comparison the lower completion time. The Condor project also provides some fault tolerance
mechanisms to deal with unstable and opportunistic environments: checkpointing and process
migration [13]. However, Condor does not perform task replication, which could be used to
improve application execution progress in the presence of host and network failures.

In the context of mobile agents, some works stand out. A few of them uses opportunistic
contexts (e.g. UWAgents [20]), but most of them presents characteristics more related to
the middleware, not the application (e.g. ARMS [15] and the works published by Loke [22]
and Martino and Rana [21]). Some of the mobile agents work were done within our project
InteGrade [7]. The first ideas of using mobile agents on an opportunistic grid appeared in [5]
where an architecture based on Aglets [30] is first presented, and then evaluated with the use of
several replicas in [4]. More recently, a work based on the mobile agents framework JADE [26]
was also presented [6], where there is application instrumentation, to provide transparent
checkpointing and some work on fault tolerance.
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Figure 1. InteGrade architecture

To the best of our knowledge, this paper is the first that specifically uses a mobile
agent approach to bind task replication and checkpointing within a grid middleware,
providing dynamic fault tolerance mechanisms for sequential and parametric applications on
opportunistic environments.

3. THE INTEGRADE/MAG MIDDLEWARE

The InteGrade project [7, 23] involves the development of a grid middleware that leverages the
idle computational power of desktop machines. Its architecture follows a hierarchy in which
each node can assume different responsibilities. The Cluster Manager is represented by one or
more nodes that are responsible for managing that cluster and performing communication with
other clusters. A Resource Provider node exports part of its resources, making them available
to grid users. A User Node belongs to a grid user who submits grid applications. As we can
see in Figure 1, the InteGrade architecture follows a two-tier intra-cluster hierarchy combined
with an inter-cluster network.
The MAG project [6] introduces the mobile agent technology as a new way of executing

applications on InteGrade. Through MAG, the grid user can submit Java applications, not
previously supported by the native InteGrade middleware. This is performed by dynamically
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Figure 2. Layered view of InteGrade/MAG middleware

loading sequential grid applications into mobile agents. MAG uses JADE (Java Agent
Development Framework) [26] as the agent platform to provide agent services such as
communication and life cycle monitoring. In JADE, each agent has a private message
queue and the agent communication is performed through message exchanges written in the
Agent Communication Language (ACL), compliant with the FIPA (Foundation for Intelligent
Physical Agents) standard specification [14]. This feature avoids race conditions since the
messages can be read in an asynchronous way, and are processed one at a time∗.

In Figure 2, we have a layered view of MAG’s infrastructure. The InteGrade middleware is
used as an implementation base for MAG. The JADE layer provides communication features,
life cycle management and monitoring of mobile agents. The CORBA layer provides naming
service for JADE and InteGrade components. The InteGrade/MAG is multiplatform as MAG
is implemented in Java and InteGrade follows the IEEE POSIX [25] specifications. Thus, the
OS layer can be performed by several operating systems.

To avoid duplication of efforts, the MAG project was built on top of InteGrade components,
namely, the Global Resource Manager (GRM), the Local Resource Manager (LRM), the
Application Repository (AR) and the Application Submission and Control Tool (ASCT)
(see Figure 1). The GRM is the main grid component and it is executed in the Cluster
Manager Nodes; it holds information about the registered LRMs and it is able to dispatch
tasks to them. The LRM is executed in each Resource Provider node; it loads the execution
environment and executes tasks submitted to them. The AR provides a cluster repository to
store application binaries. Finally, the ASCT provides a user interface for grid application
submission, monitoring and collection of computation results.

∗The agents in the JADE platform are single-threaded
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In addition, the MAG architecture adds components that provide mobile agents capabilities
and fault tolerance mechanisms:

1. The ExecutionManagementAgent (EMA) stores information about current and past
executions such as current execution state (accepted, running or finished), input
arguments and scheduled machines. This information can be retrieved to restore
applications to the point they were before the failure;

2. The AgentHandler runs on top of the LRMs and works as a proxy to the JADE agent
platform, instantiating MAGAgents for each requested execution;

3. The ClusterReplicationManagerAgent (CRM) receives requests for execution with
replicas from the GRM and creates an ERM agent to handle the request;

4. The ExecutionReplicationManagerAgent (ERM) distributes the replicas across the LRMs
in the distributed system;

5. The StableStorage agent receives the compressed checkpoints, storing them in the file
system and retrieving them when prompted. This agent runs in the Cluster Manager
node;

6. The MAGAgent is the MAG main component; it wraps the application, instantiates it,
and catches its exceptions. It also controls the application life cycle;

7. The AgentRecover is created on demand by the MAGAgents to recover an execution
state in the presence of failures.

3.1. Fault-Tolerance in MAG

The MAG fault tolerance mechanisms can be combined to meet different scenarios of resource
availability, resulting in four different strategies:

1. Retrying : every time the application fails (by throwing an runtime exception), its agent
migrates to another node and restarts the execution;

2. Replication: multiple application replicas are submitted for execution at the same time.
When one of the replicas finishes, its agent sends a message to the CRM to discard the
other replicas. In case of failure, retrying is applied;

3. Checkpointing : the MAGAgent periodically saves the execution state of its application
by sending a message to the StableStorage agent. In case of application failure, retrying
is applied, but the execution is resumed from a checkpoint;

4. Checkpointing with Replication: the execution state of each replica is periodically saved in
the StableStorage agent. Retrying and resuming of execution are applied independently
for each replica in case of failures.

Currently, the MAG middleware supports only the submission of embarrassingly parallel
and sequential applications. This is implemented by extending the MagApplication class; the
middleware then wraps the application code into a mobile agent and submits it to the agent
platform. The checkpoint mechanism implementation is based on Java code instrumentation
provided by the MAG/Brakes framework [19].
The following figure is a description of what happens when a submission with task replication

is required in MAG (see Figure 3):
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Figure 3. Application submission on MAG

The user submits an application through the ASCT interface, along with additional
information (1) such as input data, number of replicas, input and output files, etc. The user
can also specify if one machine can process more than one task at the same time. The binary
is stored in the AR (2). The execution request is sent to the GRM (3).

After submission, the GRM checks if there are enough resources according to execution
constraints provided by the user (e.g. if number of replicas is allowed or not to exceed the
number of available LRMs) (4). If so, the GRM delegates execution to the CRM (5). This
component processes specific information to each replica to be generated (e.g. replicates
the input arguments and assigns identifiers to each replica) and creates an ERM agent to
manage the request (6). The ERM proceeds the execution by passing to each LRM the
execution information related to one of the replicas (7). Thereafter, each LRM delegates the
execution to the AgentHandler, which creates a MAGAgent to encapsulate the task (8). The
MAGAgent downloads the binary from the AR (9), instantiates the application, and notifies
the AgentHandler when execution is completed.

4. IMPROVING MAG: TOWARDS AN ADAPTIVE MIDDLEWARE

As shown in Section 3.1, the MAG middleware supports multiple fault tolerance techniques,
but these techniques operate solely. Besides, they do not perform any automatic adjustments
to adapt themselves to changes in resource availability. Events such as network partitioning,
crash failures, machine shutdowns, nodes joining the grid and nodes leaving the grid define the
resource availability of the executing environment. Thus, it is desirable that the middleware
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Figure 4. Unified Checkpoint model

includes fault tolerance mechanisms to adapt dynamically to these changes, providing a better
quality of service for grid users.

4.1. Unified Checkpoint

Since the MAG fault tolerance mechanisms work independently from each other, this model
does not scale well because it makes all replicas perform checkpointing periodically. This
increases the communication traffic between the resource provider nodes and the StableStorage
agent, consuming more grid resources. Another disadvantage of this model is related to resource
heterogeneity: in a heterogeneous environment like opportunistic grids, some replicas will
advance its execution faster than others. If the most advanced replica crashes in a way that
MAG cannot detect, its latest checkpoint will not be used by the slower replicas and part of
the execution will be lost.

To solve this problem, we propose a mechanism named Unified Checkpoint. In this new
model, the replicas periodically send information about their execution progress and only the
most advanced replica is authorized to perform checkpointing. To enable this feature, the
applications must invoke the method incCheckpoint() that increases a progress counter.
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It is up to the application programmer to choose the most appropriate places to put these
invocations into the source code since this is a very application-specific issue†.

When the replica hits a checkpoint, it sends only the progress counter and the StableStorage
compares this value to the ones sent by the other replicas. Only the replica with the highest
counter value is queried to perform the checkpoint. This model is depicted in Figure 4.
In this figure, the replica running on host 2 is the most advanced one. When the replica

running on host 3 crashes, the MAG recovery mechanism is executed: a new replica is created
on host N and the StableStorage is queried for the checkpoint. The checkpoint stored by the
most advanced replica is the only option and so it is sent to the new replica, which resumes
its execution from this advanced stage.

4.2. Replica Replacement

Although the checkpointing and the replication of tasks now operate together to form a more
integrated fault tolerance system, some events such as machine crashes, may reduce the number
of active replicas. In addition, it would be interesting to compare the replica progress counters
to detect slow replicas and decide whether they should be moved to another, hopefully faster,
computing node.
To accomplish that, we propose a feedback control system based on periodical analysis of

resource availability. This system is depicted in Figure 5.
Initially, the grid user sends an application to the grid. The application replicas are created

and submitted to execution on the grid nodes. The number of replicas created is equal to
a fixed number defined by the user, but respecting a maximum value of replicas for each
application, a value that can be defined by grid administrators. While running, these replicas
are susceptible to failures related to intrinsic characteristics of opportunistic environments such
as network partitions, machine shutdowns, out-of-memory errors, etc. These failures reduce
the number of executing replicas and also modify the amount of available resources. These
changes are detected by the system that, after a period without getting responses from the
crashed/offline nodes, updates the list of nodes that are still alive (and the new ones that
have joined or rejoined the grid recently). Furthermore, during this time, some replicas in
machines with limited resources may become delayed. Based on this information, new replicas
are created and the ones that are running slowly are migrated to new nodes. The Unified
Checkpoint is present throughout this process: new replicas resume their execution starting
from the checkpoint of the most advanced replica. This mechanism works even when the most
advanced replica crashes, as its last checkpoint remains stored at the StableStorage so that
the new replica can resume from it.
The StableStorage is a central component of our system. If it crashes, the checkpoints become

unavailable. To avoid this to happen, we can adopt two solutions already implemented, but yet

†Misplacing the incCheckpoint() invocation could degrade the performance of the Unified Checkpoint.
However, we assume that it should be easy for the developer of the application to detect a good place to
put the call. Otherwise, normal checkpointing must be used rather than Unified Checkpoint if one is not sure
about where to put the invocations and do not want to take that risk.
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Figure 5. Dynamic replication: a feedback system model

to be integrated. One solution is provided by the JADE platform. JADE supports synchronous
replication of containers [27]. Through this service, it is possible to instantiate several copies
of the StableStorage in a way that, when the main copy receives a message, this message is
broadcast to the remaining instances to keep them synchronized. If the main copy crashes,
another instance takes its place.
Another solution is provided by the OppStore middleware [8, 9]. The OppStore is an

InteGrade component for distributed storage that uses the free space available on the machine
disks of a grid. These machines must be organized in clusters connected by a peer network as
in the InteGrade architecture. Before being stored, the data is coded in redundant fragments
in a way that the data can be restored from a subset of these fragments.

5. SIMULATIONS

In this section, we describe a series of event-based simulations in various scenarios,
demonstrating the potential value of adding dynamic fault tolerance mechanisms to MAG. Our
analysis focuses on task execution times and resources consumption. To run our simulation
scenarios, we used the GridSim toolkit [17]. The parameters used in our simulation (mostly
borrowed from previous works by Plank and Elwasif and by Beguelin et al. [18, 16]) follow.

• Failure rate (λ) is a random variable representing an arrival rate of failures governed by
a Poisson distribution. TBF (time between failures) is a random variable governed by
an exponential distribution with MTBF representing the mean;
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Figure 6. Performance comparison: Unified Checkpoint versus old model

• Downtime (D) is the average time following a failure of a task before it is up again,
governed by an exponential distribution;

• Number of replicas (N) is the number of copies of an application, with each one running
on a different machine;

• Delay ratio (γ) represents the ratio between the progress counters of the most advanced
replica and the other replicas. This ratio is used to replace delayed replicas.

We simulated a cluster environment with 100 heterogeneous machines connected by a
100Mbps network. The processing power of the resources were generated randomly with
a uniform distribution from 800 to 1600 MIPS, which are typical values for the SPECfp
benchmark [28] for opportunistic grid machines at the time of this writing.

We used three parameters to model the tasks: number of instructions in MI (millions of
instructions), binary size (in bytes) and output file size (in bytes). In our experiments, we
chose to simulate long running and short running tasks and, to do so, we set the long task
length to 6.048 × 108 MI; the short ones have length ten times smaller than the long ones:
6.048 × 107 MI. The binary size is 320 Kilobytes and the output file size is 15.6 Kilobytes,
numbers that were taken from a sample application we run on InteGrade. If we consider the
most powerful machine allowed in our experiments, it would take 105 hours to execute a long
task and 10.5 hours to execute a short task.
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Table I. Average number of substitu-
tions for long running applications

Replicas Num. of subst. (γ: 0.5) Num. of subst. (γ: 0.9)
2 2.0 ±0.16 10.5 ±0.60
4 4.1 ±1.15 28.7 ±5.55
8 10.3 ±3.51 68.1 ±19.22
16 30.2 ±4.40 124.0 ±31.42

We measured the task execution times to compare the performance of the proposed
techniques against the old model. We used 2, 4, 8 and 16 replicas, and fixed 60 minutes
as the MTBF value to obtain a λ of 24 failures per day‡. Downtime (the D parameter) was
fixed to 30 minutes. These values were used to simulate a typical opportunistic environment
for distributed processing such as student laboratories, where machines are regularly turned
off and rebooted. For each number of replicas, we performed 40 simulations, measuring task
execution times, computing the arithmetic mean, and the 95% confidence interval with a t-
Student distribution. We assumed that the application execution time is the execution time
of the replica that finishes first. The results are plotted in Figure 6, Figure 7 and 8.
First of all, it becomes clear that increasing the number of replicas results in shorter execution

times in both strategies. But we can see a considerable gain in the total execution time when
using the dynamic strategy presented in this paper. The potential advantage of adopting the
Unified Checkpoint mechanism occurs independently of the number of replicas used in our
simulation. In all cases, the Unified Checkpoint outperforms the old model obtaining better
execution times (at least 34% faster). This difference increases as the number of replicas
increases, achieving its maximum performance improvement when 16 replicas were submitted
(execution time 47% lower). In the simulated scenarios, which are common in the field of
High-Performance Computing, the amount of time saved when using the Unified Checkpoint
varied between 95 and 107 hours, which means getting the computation results about 4 days
earlier.
In these simulations, the replacement of delayed replicas occurred with γ = 1/2 since we

established that no replica should be more than 50% behind of the unified checkpoint. However,
for a better understanding of the replica replacement mechanism, we also made simulations
with γ = 9/10 to increase the number of substitutions. Figure 7 shows the results for both
scenarios of replica replacement in the Unified Checkpoint model. Those simulations were
carried out in absence of failures since our goal was to observe only the replica replacement
mechanism. Failures would activate the replica recovery mechanism and we wanted to avoid
that. Table I shows the average number of substitutions for each γ used (along with its
respective standard deviations).

‡This means that during a day, in average 24 failures will occur considering all machines of the environment.
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Figure 7. Execution time for different delay ratios

As we can see, there is no significant difference in the execution time, although the average
number of substitutions with γ = 0.9 was higher for all numbers of replicas used. Changing
the γ to a value closer to 1 increased the number of substitutions substantially (between 400%
and 700% of increase in the observed cases). But the results suggest that, from a certain point,
increasing the number of replica substitutions does not lead to smaller execution times.

We also compared the old and new models with few machines to see what happens in a
more competitive scenario when a machine must run more than one application replica at the
same time. These simulations considered no failures since our goal was only to observe how the
resource competition would affect execution time. In these simulations, we used short tasks
and the results are depicted in Figure 8.

It is interesting to note that no large changes happened while the number of replicas remained
between 2 and 16. This happened because not all machines needed to process more than
one replica and the replicas that had one machine just for them brought down the average
execution time. The large changes occurred only when the number of replicas exceeded the
number of machines. At that point, from 16 to 32 replicas, the execution time increases more
than 200% because each replica had to compete with other replicas for the same machine. But
the advantage of the Unified Checkpoint model remains, independently of the number of used
replicas.
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Figure 8. Unified Checkpoint versus old model with 10 machines and short tasks

6. EXPERIMENTS

In this section, we present the results of some experiments performed in a small, controlled
and real environment. We evaluated the impact on memory consumption and processing
performance caused by the introduction of the Unified Checkpoint.
The experiments were performed in an environment composed of heterogeneous and non-

dedicated desktop machines located in two laboratories of the Institute of Mathematics and
Statistics of the University of São Paulo. In total, 17 machines were used: six are located in
the LCPD (Laboratory for Parallel and Distributed Computing) and 11 are located in the
Eclipse Laboratory. These machines run Linux operating system. They are connected by a
Fast Ethernet 100Mbps place and have their settings displayed in Table II.

To simulate a machine local workload, as it would be found in an opportunistic environment,
we scheduled the execution of a script in each machine. The script is a loop with two variations
that differ by the amount of processing power consumed. One variation is two times heavier
than the other. Of course, the fraction of the processing power consumed by the script varies
according to each machine specification, but in all machines used on the experiment, this
fraction was above 25%. This number corresponds to the average fraction observed when
the students were using these machines for ordinary activities like web browsing and word
processing. Following the same reasoning, we scheduled the script to be executed in peak time
– from 8 a.m. to 12 a.m. and from 2 p.m. to 8 p.m. – and, for each time the loop was executed,
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Table II. LCPD and Eclipse machines

LCPD
Machine Processor RAM/Swap OS/Arch Kernel Version Distribution
villa AMD 2.0 GHz 1 GB/1.5 GB Linux i686 2.6.22-14-generic Ubuntu 7.10 (gutsy)
ilhabela AMD 2.0 GHz 1 GB/1.5 GB Linux i686 2.6.22.14-generic Ubuntu 7.10 (gutsy)
taubate AMD 2.0 GHz 3 GB/768 MB Linux x86 64 2.6.22.14-generic Ubuntu 7.10 (gusty)
giga Intel 3.0 GHz 2 GB/2 GB Linux i686 2.6.22.14-generic Debian 5.0 (lenny)
orlandia AMD 2.0 GHz 1 GB/640 MB Linux i686 2.6.22.14-generic Ubuntu 7.10 (gutsy)
motuca AMD 2.2 GHz 1.5 GB/2 GB Linux x86 64 2.6.10 Debian 5.0 (lenny)

Eclipse
mercurio AMD 1.4 GHz 1 GB/0 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
venus AMD 1.4 GHz 1 GB/0 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
terra AMD 1.4 GHz 1 GB/1.5 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
marte AMD 2.0 GHz 1 GB/2 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
jupiter AMD 1.4 GHz 1 GB/0 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
saturno AMD 1.4 GHz 1 GB/1.2 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
urano AMD 1.4 GHz 1 GB/0 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
netuno AMD 1.4 GHz 1 GB/0 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
plutao AMD 1.4 GHz 1 GB/0 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
hubble AMD 1.4 GHz 1 GB/0 GB Linux i686 2.6.27-9-generic Ubuntu 8.10 (intrepid)
callisto AMD 1.5 GHz 1 GB/0 GB Linux i686 2.6.27-7-generic Ubuntu 8.10 (intrepid)

the variation was chosen at random from a uniform distribution. We set the host orlandia to
be the cluster manager and the other machines to be the resource providers.

In our experiments, we used a Java application that calculates the approximate value of
π iteratively using a statistical approach. This application makes extensive use of processing
power and makes several calls to the same method every second. We placed the checkpoint
invocation after this method. Thus, as seen in section 3.1 about the checkpointing mechanism
and considering an interval of approximately 5 seconds between the checkpoints, this
application makes extensive use of the checkpointing mechanism. We believe that most of the
applications should checkpoint in a more moderate rate. However, by doing this, our propose
was to evaluate checkpointing scalability and compensate the reduced number of machines
available for the experiment.
The application was submitted twice: one with the normal checkpointing and one with

the Unified Checkpoint mechanism. Each submission used 16 replicas to perform 2.88 × 1012

iterations. This is a experimental value we have adopted so the implementation period exceeds
24 hours, enabling us to observe the fault tolerance mechanisms during the execution of a
long application. During execution, all fault tolerance mechanisms - retrying, replication and
checkpointing - remained active. The delay ratio adopted to replace replicas was 0.5. With
the normal checkpointing, the running time was 63 hours and 30 minutes. With the Unified
Checkpoint, the running time was 40 hours and 42 minutes. That is, in this example, we save
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more than 20 hours of execution. Only four replica replacement actions were performed during
the Unified Checkpoint execution, due to the small heterogeneity of the cluster.

For monitoring the memory consumption of the main container, we used the JConsole
tool [24]. This tool connects to an instance of the Java virtual machine, allowing the view
of several information as the memory size (heap), the number of classes loaded into memory,
and the number of running threads.
In normal checkpointing, the average memory consumption after the submission was about

17 megabytes, with a peak of 30 megabytes. With Unified Checkpoint, the average was about 20
megabytes and the peak was 34 megabytes. The difference, therefore, was only 4 of megabytes,
due to an increase in the number of objects loaded into memory in Unified Checkpoint solution.

The CPU usage and total memory consumption was low (0,8% and 7,0% respectively,
considering orlandia hardware specification) and remains the same in both checkpointing
solutions. These results show an small increase of 17.6% in memory consumption and low
CPU usage demonstrating the technical feasibility of the Unified Checkpoint mechanism.

7. CONCLUSIONS

Grid computing middleware hides the complexity related to distribution and heterogeneity. It
seeks to address issues such as management and allocation of distributed resources, dynamic
task scheduling, fault tolerance, support for high scalability and heterogeneity of software and
hardware components, protection, and security.
The mobile agents paradigm is suitable for dealing with the complexity of building the

grid software infrastructure due to its intrinsic characteristics such as cooperation, autonomy,
heterogeneity, reactivity and mobility. In this work, we presented the Unified Checkpoint
mechanism, which combines dynamic task replication, replica substitution and checkpointing
to provide fault tolerance for sequential and parametric applications. We used the MAG
middleware as the basis for implementing these mechanisms. This middleware benefits from the
mobile agent paradigm to encapsulate the applications submitted to the grid into mobile agents
that control the applications life cycle and exchange messages to coordinate fault tolerance
actions.
The improvements made on MAG are towards an adaptive middleware, capable of altering its

behavior accordingly to environment changes. The results showed that, within the observed
parameters, our solution helps to reduce the applications execution time further than the
previous model, in which the checkpointing mechanism and replication were not integrated.
The results were favorable to Unified Checkpoint, with a major discrepancy noted in the
submission of long tasks in large clusters. Through the experiments, we submitted an
application in a real cluster of 16 machines managed by the middleware InteGrade/MAG
and we also compared our solution to the previous one. The results showed that our solution
results in a higher memory consumption, but the increase is not significant.

Currently, we are still investigating other self-optimization and adaptive mechanisms to add
to our feedback system. We are measuring the benefits of increasing or decreasing the number
of replicas dynamically according to three factors: failure rate of the execution environment,
number of free resources, and amount of tasks to be scheduled. We are also investigating the
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impact of changing the checkpointing interval according to the failure rate and the size of the
checkpoints to optimize application completion time.
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