
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–10 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Checkpointing-based rollback
recovery for parallel
applications on the InteGrade
Grid middleware
Raphael Y. de Camargo, Andrei Goldchleger, Fabio Kon
and Alfredo Goldman
{rcamargo,andgold,kon,gold}@ime.usp.br

Dept. of Computer Science - University of São Paulo
Rua do Matão, 1010. 05508-090, São Paulo - SP, Brazil

SUMMARY

InteGrade is a grid middleware infrastructure that enables the use of idle computing power from user
workstations. One of its goals is to support the execution of long-running parallel applications that present
a considerable amount of communication among application nodes. However, in an environment composed
of shared user workstations spread across many different LANs, machines may fail, become unaccessible,
or may switch from idle to busy very rapidly, compromising the execution of the parallel application in
some of its nodes. Thus, to provide some mechanism for fault-tolerance becomes a major requirement for
such a system.

In this paper, we describe the support for checkpoint-based rollback recovery of parallel BSP
applications running over the InteGrade middleware. This mechanism consists of periodically saving
application state to permit to restart its execution from an intermediate execution point in case of failure.
A precompiler automatically instruments the source code of a C/C++ application, adding code for saving
and recovering application state. A failure detector monitors the application execution. In case of failure,
the application is restarted from the last saved global checkpoint.

KEY WORDS: Fault-tolerance, Checkpointing, BSP, Grid Computing

1. Introduction

Grid Computing [7] represents a new trend in distributed computing. It allows leveraging and
integrating computers distributed across LANs and WANs to increase the amount of available
computing power, provide ubiquitous access to remote resources, and act as a wide-area, distributed
storage. Grid computing technologies are being adopted by research groups on a wide variety of
scientific fields, such as biology, physics, astronomy, and economics.

InteGrade [8, 11] is a Grid Computing system aimed at commodity workstations such as household
PCs, corporate employee workstations, and PCs in shared university laboratories. InteGrade uses

Copyright c© 2000 John Wiley & Sons, Ltd.



2 R. Y. CAMARGO, A. GOLDCHLEGER, F. KON, AND A. GOLDMAN

the idle computing power of these machines to perform useful computation. The goal is to allow
organizations to use their existing computing infrastructure to perform useful computation, without
requiring the purchase of additional hardware.

Running scientific applications over shared workstations requires a sophisticated software
infrastructure. Users who share the idle portion of their resources should have their quality of service
preserved. If an application process was running on an previously idle machine whose resources are
requested back by its owner, the process should stop its execution immediately to preserve the local
user’s quality of service. In the case of a non-trivial parallel application consisting of many processes,
stopping a single process usually requires the reinitialization of the whole application. Mechanisms
such as checkpoint-based rollback recovery [5] can be implemented in order to solve this kind of
problem.

We implemented a checkpoint-based rollback recovery mechanism for both sequential applications
and parallel applications written in Bulk Synchronous Parallel (BSP) [21] running over the InteGrade
Grid middleware. We provide a precompiler that instruments the application source code to save and
recover its state automatically. We also implemented the runtime libraries necessary for the generation
of checkpoints, monitoring application execution and node failures, and coordination among processes
in BSP applications ∗.

The structure of the paper is as follows. Section 2 describes the major concepts behind the BSP model
and the checkpointing of BSP applications. Section 3 presents a brief description of the InteGrade
middleware and its architecture, while Section 4 focuses on the implementation of the checkpoint-based
recovery mechanism. Section 5 shows results from experiments performed with the checkpointing
library. Section 6 presents related work on checkpointing of parallel applications. We present our
conclusions and discuss future work in Section 7.

2. Checkpointing of BSP Applications

In this section we present a brief introduction to the BSP computing model and our approach for
checkpointing BSP applications.

2.1. Application-Level Checkpointing

Application-level checkpointing consists in instrumenting an application source code in order to save
its state periodically, thus allowing recovering after a fail-stop failure [3, 18, 12]. It contrasts with
traditional system-level checkpointing where the data is saved directly from the process virtual memory
space by a separate process or thread [17, 15].

The main advantage of the application-level approach is that semantic information about memory
contents is available when saving and recovering checkpoint data. Using this approach, only the data
necessary to recover the application state needs to be saved. Also, the semantic information permits the
generation of portable checkpoints [18, 12], which is an important advantage for applications running

∗Actually, only the monitoring and reinitialization parts of the code are specific for InteGrade. Consequently, this mechanism
can be easily ported to other systems.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



CHECKPOINTING-BASED ROLLBACK RECOVERY FOR APPLICATIONS ON INTEGRADE 3

in a grid composed of heterogeneous machines. The main drawback is that manually inserting code
to save and recover an application state is a very error prone process. This problem can be solved
by providing a precompiler which automatically inserts the required code. Other drawbacks of this
approach are the need to have access to the application source code and the impossibility of generating
forced checkpoints†.

2.2. The BSP Computing Model

The Bulk Synchronous Parallel model [21] was introduced by Leslie Valiant, as a bridging model,
linking architecture and software. A BSP abstract computer consists of a collection of virtual
processors, each with local memory, connected by an interconnection network whose only properties
of interest are the time to do a barrier synchronization and the rate at which continuous randomly
addressed data can be delivered. A BSP computation consists of a sequence of parallel supersteps,
where each superstep is composed of computation and communication, followed by a barrier of
synchronization.

An advantage of BSP over other approaches to architecture-independent programming, such as the
message passing libraries PVM [19] or MPI, lies in the simplicity of its interface, as there are only
20 basic functions. Another advantage is the performance predictability. The performance of a BSP
computer is analyzed by assuming that in one time unit an operation can be computed by a processor
on the data available in local memory, and based on three parameters: the number of virtual processors
(P), the ratio of communication throughput to processor throughput (G), the time required to barrier
synchronize all processors (L).

Several implementations of the BSP model have been developed since the initial proposal by Valiant.
They provide to the users full control over communication and synchronization in their applications.
The mapping of virtual BSP processors to physical processors is hidden from the user, no matter what
the real machine architecture is. These implementations include the Oxford’s BSPlib [10], PUB [2],
and the Globus implementation, BSP-G [20].

2.3. Protocols for Checkpointing of Parallel Applications

When checkpointing parallel and distributed applications, we have an additional problem regarding
the dependencies between the application processes. This dependency is generated by the temporal
ordering of events during process execution. For example, process A generates a new checkpoint c1 and
then sends a message m1 to process B. After receiving the message, process B generates checkpoint c2.
Lets denote this message sending event as send(m1) and the receiving of the message as receive(m1).
Here there is a relation of causal precedence between the send(m1) and receive(m1) events, meaning
that the receive(m1) event must necessarily happen after the send(m1). The state formed by the set
of checkpoints {c1, c2} is inconsistent, since it violates this causal precedence relation.

†In application-level checkpointing, the process state can only be saved when checkpoint generation code is reached during
execution. In system-level checkpointing, since the state is obtained directly from the main memory by a separate thread or
process, it can be saved at any moment

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



4 R. Y. CAMARGO, A. GOLDCHLEGER, F. KON, AND A. GOLDMAN

A global checkpoint is a set containing one checkpoint from each of the application processes
and it is consistent if the global state formed by these checkpoints does not violate any causal
precedence relation. If processes generate checkpoints independently, the set containing the last
generated checkpoint from each process may not constitute a consistent global checkpoint. In the
worst case scenario, it can happen that, after a failure, no set of checkpoints forms a consistent state,
requiring the application to restart its execution from its initial state. This problem is usually referred
to as domino effect.

There are different approaches to prevent the domino effect [5]. The first one, called communication-
induced checkpointing, forces the processes to generate extra checkpoints in order to prevent some
types of dependencies among processes. The main problem with this approach is that the number
of forced checkpoints is dependent on the number of messages exchanged, possibly resulting in a
large number of extra checkpoints. Also, it requires sophisticated algorithms for global checkpointing
construction and collection of obsolete checkpoints. Another possibility is to use non-coordinated
checkpointing with message logging [5].

Coordinated checkpointing protocols guarantee the consistency of global checkpoints by
synchronizing the processes before generating a new checkpoint. Since the newly generated global
checkpoint is always consistent, there is no need to implement a separate algorithm for finding this
global checkpoint. Also, garbage collection is trivial, since all checkpoints except the last one are
obsolete. This is the natural choice for BSP applications since BSP already requires a synchronization
phase after each superstep.

3. InteGrade Architecture

The InteGrade project is a multi-university effort to build a novel Grid Computing middleware
infrastructure to leverage the idle computing power of personal workstations. InteGrade features
an object-oriented architecture and is built using the CORBA [16] industry standard for distributed
objects. InteGrade also strives to ensure that users who share the idle portions of their resources in the
Grid shall not perceive any loss in the quality of service provided by their applications.

The basic architectural unit of an InteGrade grid is the cluster, a collection of 1 to 100 machines
connected by a local network. Clusters are then organized in a hierarchical intercluster architecture,
which can potentially encompass millions of machines.

Figure 1 depicts the most important kinds of components in an InteGrade cluster. The Cluster
Manager node represents one or more nodes that are responsible for managing that cluster and
communicating with managers in other clusters. A Grid User Node is one belonging to a user who
submits applications to the Grid. A Resource Provider Node, typically a PC or a workstation in a
shared laboratory, is one that exports part of its resources, making them available to grid users. A
Dedicated Node is one reserved for grid computation. This kind of node is shown to stress that, if
desired, InteGrade can also encompass dedicated resources. Note that these categories may overlap:
for example, a node can be both a Grid User Node and a Resource Provider Node.

The Local Resource Manager (LRM) and the Global Resource Manager (GRM) cooperatively
handle intra-cluster resource management. The LRM is executed in each cluster node, collecting
information about the node status, such as memory, CPU, disk, and network utilization. LRMs send

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



CHECKPOINTING-BASED ROLLBACK RECOVERY FOR APPLICATIONS ON INTEGRADE 5

Dedicated Node Resource
Provider Node

LRM LRM

NCC

LUPA

Grid User Node

Cluster
Manager

LRMLUPA

ASCT

GUPA GRM

...

Figure 1. InteGrade’s Intra-Cluster Architecture

this information periodically to the GRM, which uses it for scheduling within the cluster. This process
is called the Information Update Protocol.

Similarly to the LRM/GRM cooperation, the Local Usage Pattern Analyzer (LUPA) and the Global
Usage Pattern Analyzer (GUPA) handle intra-cluster usage pattern collection and analysis. The LUPA
executes in each node that is a user workstation and collects data about its usage patterns. Based on long
series of data, it derives usage patterns for that node throughout the week. This information is made
available to the GRM through the GUPA, and allows better scheduling decisions due to the possibility
of predicting a node’s idle periods based on its usage patterns.

The Node Control Center (NCC), allows the owners of resource providing machines to set
the conditions for resource sharing. The Application Submission and Control Tool (ASCT) allows
InteGrade users to submit grid applications for execution.

4. Implementation

We have implemented a checkpoint-based rollback recovery system for BSP applications running
over the InteGrade middleware. In this section we present our BSP implementation, our precompiler
for inserting checkpointing code into an application source code, the checkpointing libraries and the
infrastructure for monitoring and recovering application execution.

4.1. The BSP Implementation

The InteGrade BSP implementation [9] allows C/C++ applications written for the Oxford BSPlib to
be executed on the InteGrade grid, requiring only recompilation and relinking with the InteGrade BSP
library. Our implementation currently supports interprocess communication based on Direct Remote
Memory Access (DRMA) and Bulk Synchronous Message Passing, which allows a task to read from
and write to the remote address space of another task. Message passing support is currently being
implemented.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



6 R. Y. CAMARGO, A. GOLDCHLEGER, F. KON, AND A. GOLDMAN

The bsp begin method determines the beginning of the parallel section of a BSP application. As
previously described in Section 2.2, computation in the BSP model is composed of supersteps, and
each of them is finished with a synchronization barrier. Operations such as bsp put (a remote write
on another process’ memory) and bsp pushregister (registration of a memory address so that
it can be remotely read/written) only become effective at the end of the superstep. bsp sync is the
method responsible for establishing synchronization in the end of each superstep.

BSP parallel applications needs coordination in order to perform some initialization tasks, such as
attributing unique process identifiers to each of the application tasks, and broadcasting the IORs to
each of the tasks in order to allow them to communicate directly. The synchronization barriers also
requires central coordination. We decided to build those functionalities directly into the library: one of
the application tasks, called Processor Zero, is responsible for performing the aforementioned tasks.

4.2. Saving and Recovering the Application State

In order to generate a checkpoint from the application state, it is necessary to save the execution stack,
the heap area and the global variables. The precompiler modifies the application code so that it interacts
with a checkpointing runtime library in order to save and recover the application state.

The precompiler implementation uses OpenC++ [4], an open source tool for metacomputing which
also works as a C/C++ source-to-source compiler. It automatically generates an abstract syntactic tree
(AST) that can be analyzed and modified before generating C/C++ code again. Using this tool saved
us from implementing the lexer and parser for C/C++.

The current implementation of the precompiler has limited C++ support. Features such as
inheritance, templates, STL containers and C++ references will be implemented in future versions.
Also, the precompiler does not support the C constructs longjmp and setjmp.

4.2.1. Saving the Execution Stack

The execution stack contains runtime data from the active functions during program execution,
including local variables, function parameters, return address, and some extra control information.
This execution stack is not directly accessible from application code. Consequently, the stack state
must be saved and reconstructed indirectly.

The concept for doing this is simple. During checkpoint generation we save the list of active function
and the values of their parameters and local variables. When recovering, we call the functions in this
list, declare the local variables and skip the remaining code. The values of the local variables and
function parameters are initialized from the values in the checkpoint. If we define that checkpoints
will be generated only in certain points during execution, for example when calling a function Θ, we
know exactly the location of the program counter when generating the checkpoint. The execution after
recovery can then continue from that point.

To accomplish this reconstruction, the precompiler modifies the functions from the source program,
instrumenting them with checkpointing code. Only a subset of the functions need to be modified. This
subset includes the functions that can possibly be in the execution stack during checkpoint generation.
Let us denote by φ the set of functions that needs to be modified. A function f ∈ φ if, and only if, f

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



CHECKPOINTING-BASED ROLLBACK RECOVERY FOR APPLICATIONS ON INTEGRADE 7

calls a checkpointing function‡ or, f calls a function g ∈ φ. To determine which functions need to be
modified, the precompiler initially adds functions that call a checkpointing function. Then it recursively
inserts into φ all functions that call functions in φ, until no more functions are added.

To keep track of the function activation hierarchy, an auxiliary local variable lastFunctionCalled
is added to each function f in φ. This variable is updated before calling functions from φ. Using this
value, it is possible to determine which function f was calling during checkpoint generation. This
permits that we determine all the function in the execution stack during checkpoint generation.

In order to save the local variables, we use an auxiliary stack which keeps the addresses of all
local variables currently in scope. A variable enters scope when it is declared and leaves scope when
execution exits from the block where the variable was declared. Execution can exit a block by reaching
its end or by executing return, break, continue or goto statements. When a checkpoint is
generated, the values contained at the addresses from this auxiliary stack are saved to the checkpoint.

For application reinitialization, it is necessary to execute all the function calls and variable
declarations until reaching the checkpoint generation point. This requires that for each function of φ,
the precompiler determines all variables that are alive before each call to functions of φ. The remaining
code is skipped, otherwise the application would be executing unnecessary code§. After reaching the
checkpoint generation point, the execution continues normally.

In Figure 2 we present a C function instrumented by our precompiler, where the added code is
represented by bold text. The local variable lastFunctionCalled is added by the precompiler to
record the currently active functions, while localVar represents a local variable from the unmodified
function. Global variable ckpRecovering indicates the current execution mode, that can be normal
or recovering. In this example we see the local variables being pushed and popped from the auxiliary
stack, and the data recovering and code skipping that occurs during recovery.

4.2.2. Pointers

During checkpoint generation, it is necessary to save the addresses referenced by pointers in a way that
allows its recovery. Pointers can point to locations in the execution stack and in the heap area.

In the case of data in the heap area, saving the memory address directly is not an option. When
the application is restarted, memory allocated in the heap will probably be in different addresses. A
solution to this problem is to save the data from the heap in the checkpoint and insert in the pointer
value the position of that data in the checkpoint. During recovery, when memory is allocated for that
data, the pointer is then initialized with the address of the memory allocated.

We can use this same strategy for pointers to areas in the execution stack. During checkpoint
generation, we insert in the pointer the position of the data that pointer is referencing.

To keep track of the allocated memory, we implemented a heap manager. It keeps information about
the memory chunks allocated and respective sizes. It also maintains control information used during
checkpoint generation, such as a flag that indicates if that memory chunk has already been saved, and
the position in the checkpoint where it was saved.

‡Here, we denote checkpointing functions as the functions responsible for saving application state into a checkpoint.
§An exception occurs in the case of BSP applications, where some function calls to the library must be re-executed in order to
recover the library state.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



8 R. Y. CAMARGO, A. GOLDCHLEGER, F. KON, AND A. GOLDMAN

Figure 2. Code instrumented by the precompiler

Replacing the memory addresses by positions in the checkpoint has another advantage. If many
pointers reference the same addresses in the heap, they will also contain the same data position in
the checkpoint. This guarantees that memory areas from the heap are saved only once and that these
pointers that reference the same memory address will continue referencing the same memory area after
recovery. This allow pointer graphs structures to be saved and recovered correctly.

To keep the heap manager updated, the precompiler replaces memory allocation system calls –
malloc, realloc, and free – in the application source code by equivalent functions in our
checkpointing runtime library. These functions update our memory manager before making the regular
allocation system call.

4.2.3. Calls to the BSP API

In the case of BSP applications, the precompiler has to do some extra tasks. Function calls to
bsp begin and bsp synch are substituted by equivalent functions in our runtime library. Function
bsp begin ckp registers some BSP memory addresses necessary for checkpoint coordination and
initializes the BSPLib and checkpointing timer.

Function bsp sync ckp is responsible for checkpointing coordination. When called by Processor
Zero, it checks whether a minimum checkpointing interval, which is set by the application, has expired.
If positive, it signals all other processes to generate new checkpoints, issues the bsp sync call, and
returns true. Otherwise, it issues the bsp sync call and returns false. When bsp sync ckp is called

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



CHECKPOINTING-BASED ROLLBACK RECOVERY FOR APPLICATIONS ON INTEGRADE 9

by the other processes, it first checks for the signal for generating a new checkpoint. The function then
calls bsp sync and returns true if the signal was received, and false otherwise.

Depending on the response from the bsp sync ckp call, the process generates a new checkpoint.
Since the checkpoint is generated immediately after a bsp sync call, addresses registered in the BSP
library will contain data from the writes in the previous superstep.

Finally, during reinitialization, calls to functions that modify the state from the BSPLib, such as
bsp begin and bsp pushregister, must be executed again. This is necessary to recover the
internal state from the BSPLib. Another solution would be to save the internal state from the BSP
library, but this would save unnecessary information and would require modifying the BSP library.

4.3. Checkpointing Libraries

Two runtime libraries are provided, a checkpointing library and a BSP coordination library.
The checkpointing library provides the functions to manipulate the checkpoint stack, save the

checkpoint stack data into a checkpoint, and recover checkpointing data, as was described in
Section 4.2. It also provide a timer that allows the specification of a minimum checkpointing interval.
In the current implementation, the data from the checkpointing stack is first copied to a buffer and then
saved to an archive in the filesystem. When the nodes use network filesystem such as NFS, this solution
is enough. A robust checkpoint repository is currently being implement.

The BSP coordination library provides the functions bsp begin ckp and bsp sync ckp
used for coordinating the checkpointing process. They also manage obsolete checkpoints, removing
checkpoints that are not useful. Since we are using a coordinated protocol that always generates
consistent global checkpoints, it is only necessary to keep the last two local checkpoints generated
on each process. Two checkpoints are necessary because it is necessary to guarantee that a new global
checkpoint was generated before deleting the previous local checkpoint.

4.4. InteGrade Monitoring and Recovering Infrastructure

Monitoring and recovering of failed applications in InteGrade is performed by the Execution Manager.
It maintains a list of active processes executing on each node and a list of the processes from a parallel
application. Whenever an execution is scheduled by the GRM, it informs the Execution Manager. The
LRMs that receive the application processes also notify the Execution Manager when the execution
starts and finishes. This guarantees that the Execution Manager always contains a list of all running
processes.

The execution of a process can be finished either normally or abnormally. In the later case, a
reinitialization of the application may or may not be desirable. For example, in the case an application
process receives a segmentation violation signal or exits due to some other problem in the application
itself, it is better not to reinitialize the application and inform the user who submitted the application
about the error. But if the process is explicitly killed, for example because the machine owner needs
the machine resources, it is necessary to reinitialize the killed process in another node.

In case of regular and bag-of-tasks parallel applications, the reinitialization procedure is
straightforward. It is only necessary to reschedule the failed process. In the case of BSP applications,
it is necessary to consider the dependencies between the application processes.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



10 R. Y. CAMARGO, A. GOLDCHLEGER, F. KON, AND A. GOLDMAN

When the Execution Manager receives the message that a process from a BSP application failed
and needs to be reinitialized, it first asks the LRMs where the BSP processes were executing the
number¶ of the last checkpoint generated. The latest global checkpoint containing a local checkpoint
from each BSP application process, all with the same number, is determined. The Execution Manager
then reschedules the failed process for execution in another node and sends a message to the LRMs
containing the remaining processes of the BSP application in order to restart them from the checkpoint
corresponding to the last global checkpoint. Finally, it is necessary to ensure that a checkpoint
generated by a process who was assigned a process id pid is used by the process that receives this
same process id during reinitialization.

5. Experiments
The experiments were performed using a sequence similarity application [1]. It compares two
sequences of characters and finds the similarity among them using a given criterion. For a pair of
sequences of size m and n, the application requires O((m + n)/p) memory, O(m) communication
rounds and O(m ∗ n) computational steps.

We evaluated the overhead caused by checkpoint generation for minimum intervals between
checkpoints of 10 and 60 seconds. We also used a case were no checkpoints were generated, used to
measure the overhead caused by the additional checkpointing code when no checkpoints are performed.
We compared the running time of these 3 cases with the running time of the original code.

The experiments were performed during the night, using 10 1.4GHz machines connected by a 100
Mbps Fast Ethernet network. These machines are used by students during the day and usually remain
idle during the night periods. We run the application 8 times for each checkpointing interval, using 16
pairs of sequences of size 100k as input. For the comparison, we used the 5 lowest execution times
from each case. The results are presented in Table I.

The versions with and without checkpointing code runs in roughly the same time, showing that the
time consumed by the extra code is very small. When using a minimum checkpoint interval of 1 minute,
the overhead is only 3.1%. This is a reasonable interval to use in the dynamic environment where grids
are typically deployed and with parallel applications that may take up to several hours to run. Even in
the case of a minimum interval of 10 seconds, that is a very small interval, the overhead is 12.8%.

Checkpointing of applications containing large amounts of data, such as image processing, will
cause bigger overheads than the ones measured in our example. In these cases, longer intervals between
checkpoints can be used to reduce this overhead. For an application that runs for hours, losing a few
minutes of computation is normally not a problem. Also, considering that it would be very difficult
to execute a long-running parallel application using shared workstations without some checkpointing
mechanism, this overhead is easily justified.

¶We consider each checkpoint generated is designated by an increasing number starting from 0

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



CHECKPOINTING-BASED ROLLBACK RECOVERY FOR APPLICATIONS ON INTEGRADE 11

tmin nckp ttotal torig ovh

∞ 0 967.1s 967.0s 0.1%

60s 15 997.4s 967.0s 3.1%

10s 70 1091.3s 967.0s 12.8%

Table I. Checkpointing overhead for the sequence similarity application. Generated checkpoints for each process
are of size 125k bytes. tmin is the minimum interval between checkpoints, nckp is the number of generated
checkpoints, ttotal is the mean execution time of the modified code, torig is the mean execution time without

checkpointing code, and ovh is the relative overhead introduced by checkpointing.

6. Related Work

The Oxford BSPLib provides a transparent checkpointing mechanism for fault-tolerance. It
employs system-level checkpointing, so it only works on homogeneous clusters. Application-level
checkpointing for MPI applications is presented in [3]. They present a coordinated protocol for
application-level checkpointing. They also provide a precompiler that modifies the source code of
C applications.

Recently, some research in the area of fault-tolerance for parallel applications on grids has also
been published. The MPICH-GF [22] provides user-transparent checkpointing for MPI applications
running over the Globus [6] Grid middleware. The solution employs system-level checkpointing, and
a coordinated checkpointing protocol is used to synchronize the application processes.

A checkpointing mechanism for PVM applications running over Condor [14] is presented in [13].
It also uses system-level checkpointing and a coordinated protocol. In this solution, checkpoint data is
saved in a separate checkpointing server. There is also a separate module to perform the checkpointing
and reinitialization coordination.

An important difference in our approach is the use of application-level checkpointing. It will
allow the generation of portable checkpoints, which is an important requirement for heterogeneous
grid environments. Also, checkpoints generated are usually smaller than when using a system-level
checkpointing approach. Another difference is that our implementation supports the BSP parallel
programming model.

7. Conclusions and Ongoing Work

In this paper, we described the implementation of checkpoint-based rollback recovery for BSP parallel
applications running over the InteGrade middleware. Application-level checkpointing gives us more
flexibility, for example to add support for portability in the near future. A fault-tolerance mechanism is
of great importance for the dynamic and heterogeneous environments where the InteGrade middleware
operates. It permits execution progression for single process and BSP parallel applications even in the
presence of partial or complete execution failures, such as when grid machines (e.g., user desktops) are

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



12 R. Y. CAMARGO, A. GOLDCHLEGER, F. KON, AND A. GOLDMAN

reclaimed by their owners. Preliminary experimental results indicates that checkpointing overhead is
low enough to be used on applications which needs more then a few minutes to complete its execution.

A current restriction is that the saved data is architecture dependent. This dependency arises due
to differences in data representation and memory alignment. Making the the checkpoint portable
requires semantic information regarding the type of data. The precompiler can insert this semantic
information during the source code instrumentation. Also, data addresses must be saved in a
platform independent way. We are currently working in the support for portable checkpoints. In an
heterogeneous environment, such as a Grid, portable checkpoints will allow better resource utilization.

We are also working in the development of a robust storage system for checkpoints and application
files. Data will be stored in a distributed way, with some degree of replication to provide better
fault-tolerance. Once these features are implemented we will then be able to provide an efficient
process migration mechanism for both fault-tolerance and dynamic adaptation in the InteGrade Grid
middleware.

InteGrade is available as free software an can be obtained from the InteGrade project main
site‖. Current versions of the precompiler and checkpointing runtime libraries are available at the
checkpointing subproject page∗∗.

Acknowledgments

Ulisses Hayashida provided the sequence similarity application used in our experiments. José de
Ribamar Braga Pinheiro Júnior helped us to solve several network configuration issues in InteGrade.

REFERENCES

1. ALVES, C. E. R., CÁCERES, E. N., DEHNE, F., AND SONG, S. W. A Parallel Wavefront Algorithm for Efficient
Biological Sequence Comparison. In The 2003 International Conference on Computational Science and its Applications
(May 2003), Springer-Verlag, pp. 249–258.

2. BONORDEN, O., JUULINK, B., VON OTTO, I., AND RIEPING, I. The Paderborn University BSP (PUB) library—design,
implementation and performance. In 13th International Parallel Processing Symposium & 10th Symposium on Parallel
and Distributed Processing (1999), pp. 99–104.

3. BRONEVETSKY, G., MARQUES, D., PINGALI, K., AND STODGHILL, P. Automated application-level checkpointing of
mpi programs. In Proceedings of the 9th ACM SIGPLAN PPoPP (2003), pp. 84–89.

4. CHIBA, S. Compiler-assisted heterogeneous checkpointing. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA) (October 1995), pp. 285–299.

5. ELNOZAHY, M., ALVISI, L., WANG, Y.-M., AND JOHNSON, D. B. A survey of rollback-recovery protocols in message-
passing systems. ACM Computing Surveys 34, 3 (May 2002), 375–408.

6. FOSTER, I., AND KESSELMAN, C. Globus: A Metacomputing Infrastructure Toolkit. International Journal of
Supercomputing Applications 2, 11 (1997), 115–128.

7. FOSTER, I., AND KESSELMAN, C., Eds. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann
Publishers, San Francisco, 1999.

8. GOLDCHLEGER, A., KON, F., GOLDMAN, A., FINGER, M., AND BEZERRA, G. C. InteGrade: Object-Oriented Grid
Middleware Leveraging Idle Computing Power of Desktop Machines. Concurrency and Computation: Practice and
Experience 16 (March 2004), 449–459.

‖http://gsd.ime.usp.br/integrade
∗∗http://gsd.ime.usp.br/integrade/checkpointing.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls



CHECKPOINTING-BASED ROLLBACK RECOVERY FOR APPLICATIONS ON INTEGRADE 13

9. GOLDCHLEGER, A., QUEIROZ, C. A., KON, F., AND GOLDMAN, A. Running highly-coupled parallel applications in a
computational grid. In 22th Brazilian Symposium on Computer Networks (SBRC’2004) (May 2004). Short paper.

10. HILL, J. M. D., MCCOLL, B., STEFANESCU, D. C., GOUDREAU, M. W., LANG, K., RAO, S. B., SUEL, T.,
TSANTILAS, T., AND BISSELING, R. H. BSPlib: The BSP programming library. Parallel Computing 24, 14 (1998),
1947–1980.

11. INTEGRADE. http://gsd.ime.usp.br/integrade, 2004.
12. KARABLIEH, F., BAZZI, R. A., AND HICKS, M. Compiler-assisted heterogeneous checkpointing. In Proceedings of the

20th IEEE Symposium on Reliable Distributed Systems (New Orleans, USA, 2001), pp. 56–65.
13. KOVÁCS, J., AND KACSUK, P. A Migration Framework for Executing Parallel Programs in the Grid. In 2nd European

Accross Grids Conference (January 2004).
14. LITZKOW, M., LIVNY, M., AND MUTKA, M. Condor - A Hunter of Idle Workstations. In Proceedings of the 8th

International Conference of Distributed Computing Systems (June 1988), pp. 104–111.
15. LITZKOW, M., TANNENBAUM, T., BASNEY, J., AND LIVNY, M. Checkpoint and migration of UNIX processes in

the Condor distributed processing system. Tech. Rep. UW-CS-TR-1346, University of Wisconsin - Madison Computer
Sciences Department, April 1997.

16. OBJECT MANAGEMENT GROUP. CORBA v3.0 Specification, July 2002. OMG Document 02-06-33.
17. PLANK, J. S., AMD G. KINGSLEY, M. B., AND LI, K. Libckpt: Transparent checkpointing under unix. In Proceedings

of the USENIX Winter 1995 Technical Conference (1995), pp. 213–323.
18. STRUMPEN, V., AND RAMKUMAR, B. Portable checkpointing and recovery in heterogeneous environments. Tech. Rep.

UI-ECE TR-96.6.1, University of Iowa, June 1996.
19. SUNDERAM, V. S. PVM: a framework for parallel distributed computing. Concurrency, Practice and Experience 2, 4

(1990), 315–340.
20. TONG, W., DING, J., AND CAI, L. Design and implementation of a grid-enabled BSP. In Proceedings of the 3rd

IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003) (2003).
21. VALIANT, L. G. A bridging model for parallel computation. Communications of the ACM 33 (1990), 103–111.
22. WOO, N., CHOI, S., JUNG, H., MOON, J., YEOM, H. Y., PARK, T., AND PARK, H. MPICH-GF: Providing fault

tolerance on grid environments. In The 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid2003) (May 2003). Poster session.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–10
Prepared using cpeauth.cls


