
Portable checkpointing and communication for BSP applications on dynamic

heterogeneous Grid environments

Raphael Y. de Camargo, Fabio Kon, and Alfredo Goldman

Department of Computer Science

Universidade de São Paulo, Brazil

{rcamargo,kon,gold}@ime.usp.br

Abstract

Executing long-running parallel applications in Oppor-

tunistic Grid environments composed of heterogeneous,

shared user workstations, is a daunting task. Machines may

fail, become unaccessible, or may switch from idle to busy

unexpectedly, compromising the execution of applications.

A mechanism for fault-tolerance that supports these hetero-

geneous architectures is an important requirement for such

a system.

In this paper, we describe the support for fault-tolerant

execution of BSP parallel applications on heterogeneous,

shared workstations. A precompiler instruments applica-

tion source code to save state periodically into checkpoint

files. In case of failure, it is possible to recover the stored

state from these files. Generated checkpoints are portable

and can be recovered in a machine of different architec-

ture, with data representation conversions being performed

at recovery time. The precompiler also modifies BSP par-

allel applications to allow execution on a Grid composed

of machines with different architectures. We implemented a

monitoring and recovering infrastructure in the InteGrade

Grid middleware. Experimental results evaluate the over-

head incurred and the viability of using this approach in a

Grid environment.

1. Introduction

Grid Computing [7] allows leveraging and integrating

distributed computers to increase the amount of available

computing power, providing ubiquitous access to remote re-

sources. Grids for opportunistic computing [14] are mainly

composed of commodity workstations such as household

PCs, corporate employee workstations, and PCs in shared

university laboratories. The objective is to use the idle com-

puting power of these machines to perform useful computa-

tion, allowing organizations to use their existing computing

infrastructure for high-performance computing.

Executing scientific applications over shared worksta-

tions requires a sophisticated software infrastructure. Users

who share the idle portion of their resources with the Grid

should have their quality of service preserved. If an appli-

cation process was executing on an previously idle machine

whose resources are requested back by its owner, the pro-

cess should stop its execution immediately to preserve the

local user’s quality of service. In the case of a parallel appli-

cation consisting of processes that exchange data, stopping

a single process usually requires the reinitialization of the

entire application. To allow the execution of parallel ap-

plications on these environments, we need to address two

issues: the unreliability of the execution environment and

the heterogeneity of the machines.

The unreliability issue can be solved by mechanisms

such as checkpoint-based rollback recovery [6]. Using this

mechanism, the application state is periodically saved into

checkpoints. In case of failure, the application can be reini-

tialized from an intermediate execution state contained in a

previously saved checkpoint.

To deal with the heterogeneity issue, it is necessary to

use mechanisms that consider the differences among ma-

chines. The state stored in a checkpoint should be recov-

erable in a machine with a different architecture. Also, to

better utilize the available resources, parallel applications

should be able to execute using machines with different

architectures. The portability permits the development of

more efficient preemptive scheduling strategies and migra-

tion mechanisms.

In a previous work, we presented a preliminary ver-

sion of our checkpoint-based rollback recovery mechanism

for sequential, parametric, and Bulk Synchronous Paral-

lel (BSP) [22] applications executing over the InteGrade

Grid middleware [5]. In this paper, we extend our previous

work by modifying the checkpointing mechanism to gener-

ate portable checkpoints. We also performed more detailed

experiments with the checkpoint-based rollback recovery

mechanism to test its suitability in a Grid for opportunis-



tic computing. Finally, we used the precompiler technique

to modify the source code of BSP applications to allow its

execution and recovery in heterogeneous machines.

The structure of the paper is as follows. Section 2 de-

scribes the use of source code transformation of applica-

tions to perform portable checkpointing and communica-

tion for BSP applications. Section 3 presents a brief de-

scription of the InteGrade middleware and its architecture,

while Section 4 focuses on the implementation of portable

communication and checkpointing. Section 5 shows re-

sults from experiments performed using the checkpointing

library and InteGrade. Section 6 presents related work on

portable checkpointing. We present our conclusions and

discuss future work in Section 7.

2. Source code transformation of applications

Source code transformation is a technique where the ap-

plication source code is instrumented to perform some ad-

ditional tasks, such as profiling, logging, and state persis-

tence. In this work, we use this technique to modify an ap-

plication source code to save its execution state in a portable

way, allowing the application to later recover its execution

from an intermediate state, possibly in a machine of differ-

ent architecture. We also use this technique to allow data

exchange among processes of a parallel application execut-

ing on machines with different architectures

In this work we use parallel applications based on the

Bulk Synchronous Parallel (BSP) model [22]. But the con-

cepts presented in this work can also be used in other types

of parallel applications, such as MPI [16] and PVM [20]

applications.

2.1. Executing BSP applications on heterogeneous
environments

The BSP model is a bridging model for parallel comput-

ing, linking architecture and software [22]. A BSP abstract

computer consists of a collection of virtual processors, each

with local memory, connected by an interconnection net-

work. A BSP computation consists of a sequence of parallel

supersteps, where each superstep is composed of computa-

tion and communication, followed by a barrier of synchro-

nization.

Several implementations of the BSP model have been de-

veloped, including Oxford’s BSPlib [9], PUB [2], and the

Globus implementation, BSP-G [21]. Although these im-

plementations can execute on different architectures, all the

processes from a single BSP application must execute on

computers with the same architecture. The problem is that

the API from the BSPlib does not provide a way to specify

the type of data being exchanged between processes. Data

is transfered as a stream of bytes.

We extended the BSPlib API, adding a parameter to

some methods, which describes the type of data being trans-

mitted. To allow programs written for the conventional

BSPlib API to execute without extra modifications, our pre-

compiler modifies the BSP application source code to use

this extended API transparently. The type information is

now used to convert the data between different architectures

in the communication among application processes.

A limitation imposed by this approach is that the pro-

grammer is not allowed to perform arbitrary casts to data

registered with the BSPlib as shared memory. This is a

reasonable requirement to provide portable data exchange

among processes executing on different architectures.

Thus, using source code instrumentation, we allow ex-

isting BSP applications to execute on heterogeneous archi-

tectures in a transparent way.

2.2. Portable checkpointing of applications

Application-level checkpointing consists in instrument-

ing an application source code to save its state periodically,

thus allowing recovery after a fail-stop failure [3, 12, 19]. It

contrasts with traditional system-level checkpointing where

the data is saved directly from the process virtual memory

space by a separate process or thread [15, 18].

Since in application-level checkpointing we manipulate

application source code, semantic information regarding the

type of data being saved is available both when saving

and recovering application data. This semantic informa-

tion allows the data saved by a process on an architecture

to be recovered by a process executing on another archi-

tecture [12, 19]. This is an important advantage for appli-

cations running on a Grid composed of heterogeneous ma-

chines since it allows better resource utilization.

The main drawback of application-level checkpointing is

that manually inserting code to save and recover application

state is a tedious and error prone process. But this problem

is solved by providing a precompiler that automatically in-

serts the required code. Other drawbacks of this approach

are the need to have access to the application source code

and the impossibility of generating forced checkpoints1.

In the case of parallel applications, we have also to con-

sider the dependencies among application processes. A

global checkpoint is a set consisting of one checkpoint from

each application process. The global state formed by the

states contained in the checkpoints of the individual pro-

cesses is not necessarily consistent. There are several paral-

lel checkpointing protocols that deal with this problem. The

protocols are classified as coordinated, uncoordinated, and

communication-induced [6].

1In application-level checkpointing, the process state can only be saved

in predefined execution points.



Coordinated protocols have several advantages. The pro-

tocol always generates consistent global checkpoints, and

there is no need to implement a separate algorithm to find

consistent global checkpoints. Also, garbage collection of

obsolete checkpoints is trivial, since all checkpoints except

for the last can be considered obsolete. The disadvantage

is the necessity of a global coordination before generating

new checkpoints.

In this work, we use a coordinated checkpointing proto-

col. It is the natural choice for BSP applications since this

model already requires a synchronization phase after each

superstep. Coordinated checkpointing protocols can also be

used for MPI and PVM applications [3].

3. The InteGrade Grid Middleware

The InteGrade project [8, 10] is a multi-university effort

to build a novel Grid Computing middleware infrastructure

to leverage the idle computing power of personal worksta-

tions for the execution of computationally-intensive parallel

applications.

The basic architectural unit of an InteGrade Grid is the

cluster, a collection of machines usually connected by a lo-

cal network. Clusters can be organized in a peer-to-peer in-

tercluster federation, allowing it to encompass a large num-

ber of machines. The current InteGrade version supports

only a single cluster. An intercluster protocol for InteGrade

is under development.

Figure 1 depicts the most important components in an

InteGrade cluster. The Cluster Manager node represents

one or more nodes that are responsible for managing that

cluster and communicating with managers in other clusters.

Workstations export part of its resources to Grid users. They

can be shared workstations or dedicated machines.

Figure 1. IntraCluster Architecture

The Local Resource Manager (LRM) and the Global Re-

source Manager (GRM) cooperatively handle intra-cluster

resource management. The LRM is executed on each clus-

ter node, collecting dynamic information about node status,

such as memory, CPU, and disk utilization. LRMs send

this information periodically to the GRM, which uses it for

scheduling within the cluster.

The Application Submission and Control Tool (ASCT) al-

lows InteGrade users to submit Grid applications for execu-

tion, monitoring the execution, and collecting the results.

The Execution Manager performs monitoring and recov-

ering of failed applications in InteGrade. It maintains a list

of active processes executing on each node and a list of the

processes from a given parallel application. When the GRM

detects that an LRM is unreachable, it sends a message to

the Execution Manager, and reschedules the processes that

were executing on that node for execution on another node.

If the unreachable node contained processes from a BSP

parallel application, the Execution Manager coordinates the

reinitialization of the entire application from the last con-

sistent global checkpoint. We decided to use a centralized

manager because each InteGrade cluster should not have

more than a few dozen machines. Besides, fault-tolerance

for this component can be achieved using replication strate-

gies.

4. Implementation

The precompiler implementation is based on OpenC++

[4], an open source tool for compile time reflective comput-

ing. It also works as a C/C++ source-to-source compiler,

generating an abstract syntax tree (AST) that can be ana-

lyzed and modified before generating C/C++ code again.

By using this tool, we did not need to implement the lexer

and parser for C/C++.

The precompiler is used for inserting the checkpointing

code and to modify the BSP calls to deal with architecture

portability. The current implementation of the precompiler

covers the C language and has limited C++ support. Fea-

tures such as inheritance, templates, STL containers, and

C++ references will be implemented in future versions.

4.1. Data transformation

Different architectures have different memory represen-

tations for data. To allow applications to execute on hetero-

geneous architectures, it is necessary to provide data con-

verters for each supported architecture. For n architectures,

we can implement converters for each pair of architecture,

which results in n2
− n converters, or use an intermediate

representation, where each architecture has a conveyor for

this intermediate representation, resulting in 2n converters.

The first approach produces a faster conversion, since

there is no conversion to an intermediate representation.

Also, using an intermediate representation requires a trade-

off between memory usage and data precision. The disad-

vantage of the direct conversion is that the number of con-



verters increases quickly with the number of architectures

supported.

We decided to use the direct conversion. We do not ex-

pect to support more than about four architectures, which

keeps the number of converters relatively low2. Also, if the

number of available architectures increases, we can use a

mixed approach, using one of the supported architectures

as the intermediate representation.

We defined one class for each conversion, containing a

method for each type of primitive data. We implemented

conversions between three architectures: x86 and x86 64

running Linux and PowerPC G4 running MacOS X. The

x86 and x86 64 use little endian data representations, dif-

fering only on the size of some data types. The PowerPC

G4 uses big endian data representations and differs from

the other two architectures in all data types. These three

architectures also differ regarding data alignment and mem-

ory address representations, but in our approach these dif-

ferences are resolved easily.

4.2. Portable BSPlib

The InteGrade BSP implementation [17] allows C/C++

applications written for the Oxford BSPlib to be executed

on an InteGrade Grid, requiring only recompilation and re-

linking with the InteGrade BSP library.

In the BSPlib API, the bsp sync method is respon-

sible for the synchronization phase of a superstep. Our

BSP coordination library provides an extended version of

bsp sync. This method is responsible for the coordina-

tion of the parallel checkpointing protocol, guaranteeing

that global consistent checkpoints are generated. It is also

responsible for managing obsolete checkpoints, removing

checkpoints that will no longer be used.

The BSP model provides interprocess communica-

tion based on Direct Remote Memory Access (DRMA)

and Bulk Synchronous Message Passing (BSMP). In the

DRMA case, application processes can register local

memory addresses as virtual shared addresses using the

bsp pushregister method. Once registered, processes

are allowed to write and read from these virtual memory lo-

cations through the bsp get and bsp put methods. We

modified the call to bsp pushregister to include the

data type of the registered address. When a remote pro-

cess writes to a registered memory location, the receiv-

ing process checks the architecture of the other process

and, if necessary, performs the format conversion. In the

case of BSMP, the communication is performed using the

bsp send and bsp move methods. Our extended BSPlib

API contains a version of bsp move with an additional pa-

2Actually, the data representation may be dependent on the compiler

that generated the code. But differences among compilers for a single ar-

chitecture are usually very small.

rameter containing the data type to receive. Again, a con-

version is performed only if the machine architecture of the

sending process is different.

4.3. Portable checkpointing of BSP applications

To generate a checkpoint from the application state, it

is necessary to save the execution stack, the heap area, and

the global variables. Our precompiler instruments the appli-

cation source code to interact with a checkpointing library,

which is responsible for saving and restoring the applica-

tion state. The checkpointing library also provides a timer

that allows the specification of a minimum checkpointing

interval. The current implementation, allows saving the

checkpoint file in the filesystem (either a local or network

filesystem) or in a remote checkpointing repository. Saving

is performed by a separate thread, allowing the application

to continue its execution during the process.

Saving the execution stack state. The execution stack con-

tains runtime data from the active functions during program

execution, including local variables, function parameters,

return address, and some extra control information. The ex-

ecution stack is non-portable, with its structure varying de-

pending on the computer architecture and even on the com-

piler. But even if it were portable, it is not directly acces-

sible from application code, requiring its state to be saved

and reconstructed indirectly.

During application execution, the execution stack state is

constructed as functions are called and local variable values

are declared and modified. By calling these same functions

and recovering the local variable values, it is possible to

reconstruct the execution stack.

Our precompiler modifies the functions in the source

program, including statements to push into a checkpoint-

ing stack the address of declared local variables. The vari-

able address is removed from the stack when the execution

leaves the block were the variable was declared. When

a checkpoint is generated, the values contained at the ad-

dresses from the checkpointing stack are saved into the

checkpoint. Since these addresses point to the location of

the local variables in the execution stack, they always con-

tain updated values for these variables.

To save the list of active functions, an auxiliary local

variable lastFunctionCalled is added to each modi-

fied function. This variable has its value modified to a dif-

ferent value before each function call. Using the value of

this variable for each function in the execution stack, it is

possible to know the complete list of active functions at a

given time. We use this same technique to save the program

counter. We define that checkpoints will be generated only

in certain points during execution, for example, when call-

ing a function checkpoint candidate. A call to this



function defines the exact location in the execution where

the checkpoint was generated.

During application reinitialization, only function calls

and variable declaration code are executed, until reaching

the checkpoint generation point. From this point, applica-

tion execution continues normally. To recover the value of

local variables, the address and data type of the variables

are passed as parameters to the checkpointing library. The

variable type information is used to convert the variable data

representation in case the checkpoint was saved on a differ-

ent architecture. Data is then copied to the local variable

addresses.

Since the data conversion is performed only when re-

covering the application state, there is no overhead during

checkpoint generation. This is important because check-

points are much more likely to be generated than to be used

for recovering. Moreover, the overhead only occurs when

the machine where the checkpoint will be recovered is of a

different architecture.

Figure 2. Instrumented code

In Figure 2, we present a C function instrumented by

our precompiler, where the added code is shown in bold

face. The local variable lastFunctionCalled is added

by the precompiler to record the currently active functions,

while localVar represents a local variable from the un-

modified function. Global variable ckpRecovering in-

dicates the current execution mode, which can be normal or

recovering.

Pointers. Memory addresses referenced by a pointer are

specific to a particular execution and cannot be saved di-

rectly in the checkpoint file. To achieve portability, our

checkpointing library converts memory addresses to offsets

in the generated checkpoint file. When recovering, these

offsets are then converted to addresses of memory allocated

in the target architecture. This strategy is used for both

pointers to memory allocated in the heap area and in the

execution stack.

Replacing memory addresses by offsets requires the

checkpoint file to be generated in three phases. In the

first phase, all pointers are pushed on a pointer stack that

contains the pointer addresses and the memory positions

referenced by these pointers. In this phase, pointers with

multiple levels of indirection are also resolved, including

multi-dimensional matrices allocated dynamically. In this

case, every individual pointer of the matrix is pushed on the

pointer stack. In the second phase, primitive type data and

memory chunks allocated from the heap area are copied into

the checkpoint and their locations are inserted into a mem-

ory position table. Finally, in the third phase, the memory

addresses contained in the pointers are substituted by the

offsets contained in the memory position table. These three

phases require O(s + p) steps, where s is the number of

entries in the checkpointing stack and p is the number of

elements in the pointer stack.

During recovery, if the target architecture is different

from the original, data from memory chunks are converted

to the new architecture. The checkpointing mechanism con-

siders a memory chunk as an array of elements of the deref-

erenced pointer data type and converts these elements while

they are read from the checkpoint file.

To keep track of memory allocated in the heap area,

the checkpoint library maintains a table of allocated mem-

ory areas, including their sizes and position in the check-

point. To keep the heap manager up to date, our precom-

piler replaces memory allocation system calls – malloc,

realloc, and free – in the application source code by

equivalent functions in our checkpointing runtime library.

These functions update our memory manager before mak-

ing the regular allocation system calls.

Structures. The memory representation of structures varies

depending on the architecture and compiler. Data padding

and alignment is performed either because of architectural

requirements or performance improvements. Our solution

to solve this problem is to push the address of the individ-

ual structure members into the stack. For the recovery, the

value of each structure member is read separately. For each

structure in the code, the precompiler generates a function

containing code to push all members of the structure into the

checkpointing stack and a function to recover the structure

members from a checkpoint. Since these functions push and

recover only primitive types, structure portability is trans-

parent. The checkpointing library calls these functions dur-

ing checkpoint generation and recovery.



5. Experiments

We performed experiments using two applications. The

first evaluates the similarity between two large sequences of

characters [1] and the other is a parallelized matrix multipli-

cation application. Both were written according to the BSP

model and use the InteGrade BSPlib implementation.

The sequence similarity application finds the similarity

between two character sequences using a given criterion.

For a pair of sequences of size m and n, executing on p
processors, it requires O((m + n)/p) memory. The matrix

multiplication application divides an matrix in p parts, one

for each processor, and requires O(n2/p) memory. It pro-

duces larger checkpoints and exchanges more data among

processes.

5.1. Checkpointing overhead

We evaluated the overhead caused by checkpoint gen-

eration for minimum intervals between checkpoints of 10,

30 and 60 seconds. For each interval, we measured the

execution time for several cases: no checkpoints gen-

erated (torig), checkpoints saved to the local filesystem

(tlocal, checkpoints saved to a network filesystem (tnfs),

and checkpoints saved in a remote repository (trepos).

We performed experiments with the sequence similarity

and matrix multiplication applications. Due to space lim-

itations, we only show the results for the later. We used

matrices containing 450x450, 900x900, and 1800x1800 el-

ements of type long double. These matrices generates

global checkpoints of size 2.3MB, 9.3MB, and 37.1MB re-

spectively. For each matrix size, we performed a series

of multiplications: 300, 40, and 6 respectively. For each

case, we run the application 5 times. Due to fluctuations

present in a network of shared workstations, we considered

the mean between the two lowest execution times for each

case. We used 10 Athlon XP 1700+ machines with 512Mb

of RAM, connected by a 100Mbps Fast Ethernet network.

Table 1 presents the results we obtained for the 450x450

and 1800x1800 matrices. ckpint represents the minimum

interval between checkpoints and nckp represents the num-

ber of generated checkpoints.

The results show that saving the checkpoint to the lo-

cal filesystem or to a remote repository implemented using

sockets is faster than using NFS. This probably occurs be-

cause of NFS caching policies. When using a remote repos-

itory, the checkpointing overhead was consistently below

10%, even for 1800x1800 matrices and a checkpointing in-

terval of 10s. This indicates that it is feasible to use our

checkpointing mechanism for applications that use a mod-

erate amount of memory, especially long-running applica-

tions.

matrix size = 450x450

ckpint nckp torig tnfs tlocal trepos

10s 12 122.8s 136.0s 134.3s 131.5s

30s 4 122.8s 124.3s 128.5s 126.7s

60s 2 122.8s 125.8s 123.4s 125.5s

matrix size = 1800x1800

ckpint nckp torig tnfs tlocal trepos

10s 10 165.2s 188.8s 176.8s 176.3s

30s 4 165.2s 195.1s 172.7s 171.0s

60s 2 165.2s 170.2s 168.1s 169.0s

Table 1. Execution times for the matrix multi

plication application.

5.2. Execution of BSP applications in the presence
of failures

We simulated a dynamic environment where resources

can become unavailable at any time. For each node, we gen-

erated a number of sequences of failure times representing

moments on which that node becomes unavailable. When

a failure time is reached, the LRM kills all the processes

running on that machine.

To generate the failure times, we used an exponential dis-

tribution [11], with 1/λ representing the mean time between

failures (MTBF). We simulated two scenarios, using 600s
as the MTBF in the first case and 1800s in the second. For

both scenarios, minimum checkpointing intervals of 10, 30

and 60 seconds were used.

We executed the sequence similarity application 5 times

for each minimum checkpointing interval and used the

mean total execution time ttotal. Table 2 shows the results.

ckpint 1/λ ttotal 1/λ ttotal

10s 600s 517.4s 1800s 490.3s

30s 600s 571.2s 1800s 519.3s

60s 600s 699.0s 1800s 534.5s

Table 2. Execution of a BSP application in

presence of failures.

The results indicate that a smaller checkpointing interval

also reduces the total execution time. This occurs because a

smaller amount of computation is lost in every reinitializa-

tion. However, for larger mean time between failures and

for applications that use large amounts of memory, a smaller

checkpointing interval will not always be the best choice.

Besides, when there are several applications running con-

currently in a Grid, it is better to use larger checkpointing

intervals to not overload the network.



5.3. Execution of BSP applications on heteroge
neous nodes

In this experiment, we executed the matrix multiplica-

tion application using nodes with different architectures.

The objective is to determine the impact of heterogeneity in

application execution time. We used a configuration com-

posed of 3 x86 AMD Athlons running Linux and 1 Pow-

erPC G4 running MacOS X and executed the matrix multi-

plication application. We selected this application because

it transfers large amounts of data among nodes. Moreover,

we used matrix elements of type long double to repre-

sent the most demanding case3.

We show the results in Table 3. texec represents the total

execution time, tx86 the time to transfer data received from

the network to the application memory space in the case

where the sending and receiving processes share the same

architecture, and tppc the time to transfer the data when the

involved processes are executing on different architectures.

Matrix size texec tx86 tppc

500x500 28.8s 0.042s 0.217s

1000x1000 156.8s 0.078s 0.430s

2000x2000 373.5s 0.066s 0.348s

Table 3. Execution of a BSP application on

heterogeneous nodes.

The experiment results show that converting data from a

byte stream is more than 5 times slower than a plain data

copy. However, the time spent in the conversion is negli-

gible compared to the total execution time, which indicates

that it is viable to run BSP application on heterogeneous

architectures.

5.4. Restarting an application from a checkpoint

We compared the time necessary to reinitialize an appli-

cation using a checkpoint generated in machines of differ-

ent architectures. The architectures selected for the exper-

iments were x86, x86-64 and PowerPC G4. For this ex-

periment, we used an application that generates a graph of

structures containing 20k nodes, with each node contain-

ing a long double number and pointers to other two

nodes. We again used a long double number because

it requires the highest amount of conversions among archi-

tectures.

The checkpoints were reinitialized in an Athlon 2.0GHz

using checkpoints generated by processes executing on

3Besides the difference in the endianness, a x86 or x86 64 machine

running Linux with GCC3.3 uses 12 bytes of precision for the long

double, while a MacOS with GCC3.1 uses only 8 bytes.

Athlon, Athlon64 and PowerPC G4 machines. When re-

covering from the x86 architecture, it required 0.179s. To

recover from a checkpoint generated in the x86-64 archi-

tecture, it needed 0.186s, an overhead of 3.9% compared to

the x86 case, and from checkpoint generated in the Pow-

erPC, it needed 0.192s, an overhead of 7.2%. Although the

overhead is not negligible, only a very small fraction of the

application execution time is spent on the reinitialization.

Consequently, this overhead will probably be unnoticeable.

6. Related Work

The Oxford BSPlib provides a transparent checkpoint-

ing mechanism for fault-tolerance on homogeneous clusters

by employing system-level checkpointing [9]. Recently,

some research in the area of fault-tolerance for parallel ap-

plications on Grids has been performed. MPICH-GF [23]

provides user-transparent checkpointing for MPI applica-

tions running over the Globus Grid middleware. Kovács

et al. [13] presented a checkpointing mechanism for PVM

applications running over Condor. All those systems em-

ploy system-level checkpointing and a coordinated check-

pointing protocol. Consequently, the generated checkpoints

are not portable and usually larger compared to application-

level checkpointing.

Bronevetsky et al. [3] presented an application-level

checkpointing mechanism for MPI applications. They de-

veloped a coordinated protocol for application-level check-

pointing and a precompiler that modifies the source code of

C applications. But differently from our work, the gener-

ated checkpoints are not portable.

Porch [19] addresses the generation of portable check-

points for single process applications. It is a precompiler

that instruments a C application source code to generate

portable checkpoints. Differently from our approach, the

Porch precompiler requires detailed knowledge about data

positioning in structures and execution stack for each archi-

tecture and compiler it supports.

Karablieh et al. [12] propose using input/output func-

tions from the programming language to save and recover

application data in a portable way. The advantage of this

approach is that it is not necessary to write conversion rou-

tines among the different architectures. The disadvantage is

that this process is slower and generates larger checkpoints.

Moreover, their approach requires an extra level of indirec-

tion for every pointer access during application execution,

generating large overheads for applications that use point-

ers.

7. Conclusions and Ongoing Work

This paper described a mechanism for portable check-

pointing and communication for BSP applications on dy-



namic heterogeneous Grid environments. It is supported by

a precompiler, a portable checkpointing library, an extended

BSPlib API implementation and a monitoring and recover-

ing infrastructure. This mechanism permits execution pro-

gression for single process and BSP parallel applications

even in the presence of partial or complete execution fail-

ures, such as when Grid machines (e.g., user desktops) are

reclaimed by their owners.

Our experiments indicate that the overhead of dealing

with portability is small and can lead to better resource uti-

lization. For example, it is possible to execute a BSP ap-

plication in a laboratory containing machines of different

architectures. If some of the machines become unavailable,

the processes running on these machines can be migrated to

another machines, not necessarily sharing the same archi-

tecture.

We are currently working on a distributed checkpoint

repository, which should improve the scalability and fault-

tolerance of the system. We are also working on the support

for C++ applications.

References

[1] C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. S. W. A par-

allel wavefront algorithm for efficient biological sequence

comparison. In V. Kumar, M. L. Gavrilova, C. J. K. Tan,

and P. L’Ecuyer, editors, The 2003 International Conference

on Computational Science and its Applications. LNCS, vol-

ume 2668, pages 249–258. Springer-Verlag, May 2003.

[2] O. Bonorden, B. H. H. Juurlink, I. von Otte, and I. Rieping.

The paderborn university BSP (PUB) library - design, im-

plementation and performance. In 13th International Par-

allel Processing Symposium / 10th Symposium on Parallel

and Distributed Processing, pages 99–104. IEEE Computer

Society, 1999.

[3] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.

Automated application-level checkpointing of MPI pro-

grams. In R. Eigenmann and M. Rinard, editors, Proceed-

ings of the 9th ACM SIGPLAN PPoPP, pages 84–89. ACM

Press, 2003.

[4] S. Chiba. A metaobject protocol for c++. In Proceedings

of the tenth annual conference on Object-oriented program-

ming systems, languages, and applications. SIGPLAN No-

tices 30(10), pages 285–299, October 1995.

[5] R. Y. de Camargo, A. Goldchleger, F. Kon, and A. Gold-

man. Checkpointing-based rollback recovery for paral-

lel applications on the InteGrade Grid middleware. In

ACM/IFIP/USENIX 2nd International Workshop on Middle-

ware for Grid Computing, Toronto, Canada, October 2004.

[6] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.

A survey of rollback-recovery protocols in message-passing

systems. ACM Computing Surveys, 34(3):375–408, May

2002.

[7] I. Foster and C. Kesselman, editors. The Grid: Blueprint for

a New Computing Infrastructure. Morgan Kaufmann Pub-

lishers, San Francisco, 1999.

[8] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C.

Bezerra. InteGrade: Object-Oriented Grid Middleware

Leveraging Idle Computing Power of Desktop Machines.

Concurrency and Computation: Practice and Experience,

16:449–459, March 2004.
[9] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau,

K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. H. Bissel-

ing. BSPlib: The BSP programming library. Parallel Com-

puting, 24(14):1947–1980, 1998.
[10] InteGrade Project Home Page, 2004. Available at: http:

//gsd.ime.usp.br/integrade.
[11] R. Jain. The art of computer systems performance analysis.

John Wiley & Sons, 1991.
[12] F. Karablieh, R. A. Bazzi, and M. Hicks. Compiler-assisted

heterogeneous checkpointing. In Proceedings of the 20th

IEEE Symposium on Reliable Distributed Systems, pages

56–65, New Orleans, USA, 2001. IEEE Computer Society.
[13] J. Kovács and P. Kacsuk. A Migration Framework for Exe-

cuting Parallel Programs in the Grid. In Proceedings of the

2nd European Across Grids Conference, Nicosia, Cyprus,

January 2004.
[14] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of

Idle Workstations. In Proceedings of the 8th International

Conference of Distributed Computing Systems, pages 104–

111. IEEE Computer Society, June 1988.
[15] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.

Checkpoint and migration of UNIX processes in the Con-

dor distributed processing system. Technical Report UW-

CS-TR-1346, University of Wisconsin - Madison Computer

Sciences Department, April 1997.
[16] MPI Forum. MPI: A Message Passing Interface. In Pro-

ceedings of Supercomputing’93, Portland, USA, 1993. IEEE

Computer Society/ACM.
[17] J. B. Pinheiro Jr., R. Y. de Camargo, A. Goldchleger, and

F. Kon. InteGrade: a tool for executing parallel applications

on a Grid for opportunistic computing. In Proceedings of the

23th Brazilian Symposium on Computer Networks (SBRC

Tools Track), Fortaleza-CE, Brazil, May 2005.
[18] J. S. Plank, M. B. amd G. Kingsley, and K. Li. Libckpt:

Transparent checkpointing under unix. In Proceedings of

the USENIX Winter 1995 Technical Conference, pages 213–

323. USENIX Association, 1995.
[19] V. Strumpen and B. Ramkumar. Portable checkpointing and

recovery in heterogeneous environments. Technical Report

UI-ECE TR-96.6.1, University of Iowa, June 1996.
[20] V. Sunderam. PVM: A framework for parallel dis-

tributed computing. Concurrency: Practice and Experience,

2(4):315–339, 1990.
[21] W. Tong, J. Ding, and L. Cai. Design and implementa-

tion of a grid-enabled BSP. In Proceedings of the 3rd

IEEE/ACM International Symposium on Cluster Computing

and the Grid (CCGrid 2003). IEEE Computer Society, 2003.
[22] L. G. Valiant. A bridging model for parallel computation.

Communications of the ACM, 33:103–111, 1990.
[23] N. Woo, S. Choi, H. Jung, J. Moon, H. Y. Yeom, T. Park, and

H. Park. MPICH-GF: Providing fault tolerance on grid envi-

ronments. In The 3rd IEEE/ACM International Symposium

on Cluster Computing and the Grid (CCGrid2003). IEEE

Computer Society, May 2003. Poster session.


