
Strategies for Storage of Checkpointing Data using
Non-dedicated Repositories on Grid Systems ∗

Raphael Y. de Camargo
Dept. of Computer Science

University of São Paulo, Brazil

rcamargo@ime.usp.br

Renato Cerqueira
Dept. of Computer Science

PUC-Rio, Brazil

rcerq@inf.puc-rio.br

Fabio Kon
Dept. of Computer Science

University of São Paulo, Brazil

kon@ime.usp.br

ABSTRACT
Dealing with the large amounts of data generated by long-
running parallel applications is one of the most challeng-
ing aspects of Grid Computing. Periodic checkpoints might
be taken to guarantee application progression, producing
even more data. The classical approach is to employ high-
throughput checkpoint servers connected to the computa-
tional nodes by high speed networks. In the case of Op-
portunistic Grid Computing, we do not want to be forced
to rely on such dedicated hardware. Instead, we want to
use the shared Grid nodes to store application data in a
distributed fashion.

In this work, we evaluate several strategies to store check-
points on distributed non-dedicated repositories. We con-
sider the tradeoff among computational overhead, storage
overhead, and degree of fault-tolerance of these strategies.
We compare the use of replication, parity information, and
information dispersal (IDA). We used InteGrade, an object-
oriented Grid middleware, to implement the storage strate-
gies and perform evaluation experiments.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Distrib-
uted Systems—distributed applications; C.4 [Performance

of Systems]: [fault tolerance]; E.4 [Coding and Infor-

mation Theory]: [error control codes]

General Terms
Performance, Reliability

Keywords
Fault-tolerance, Distributed storage, Data coding, Check-
pointing, Grid Computing

∗This work is supported by a grant from CNPq, Brazil, pro-
cess #55.2028/02-9.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC’05, November 28-December 2, 2005Grenoble, France
Copyright 2005 ACM 1-59593-269-0/05/11 ...$5.00.

1. INTRODUCTION
Executing computationally intensive parallel applications

on dynamic heterogeneous environments, such as Computa-
tional Grids [3, 8, 4], is a daunting task. This is particularly
true when using non-dedicated resources, as in the case of
opportunistic computing [11]. Machines may fail, become
unavailable, or change from idle to occupied unexpectedly,
compromising the execution of applications.

Different from dedicated resources, whose MTBF (mean-
time between failures) is typically in the order of weeks or
even months [12], non-dedicated resources can become un-
available several times during a single day. Moreover, some
machines can remain unavailable for more time than avail-
able.

A fault-tolerance mechanism, such as checkpoint-based
rollback recovery [7], can be used to guarantee application
execution progression in the presence of frequent failures.
Moreover, the checkpointing mechanism can be used for pro-
cess migration, allowing the implementation of efficient pre-
emptive scheduling algorithms for parallel applications on
the Grid.

The generated checkpoints need to be saved on a stable
storage medium. The machine where the application is run-
ning cannot be considered a stable storage medium because
it can become unavailable. The usual solution is to install
checkpoint servers connected to the nodes by a high speed
network. But since our focus is on an opportunistic com-
puting environment, we do not want to be forced to rely on
such dedicated hardware. The natural choice would be to
use the Grid nodes as the storage medium for checkpoints.

We use InteGrade1 [10], a multi-university effort to build
a Grid middleware to leverage the computing power of idle
shared workstations, as the platform for the implementation
of the distributed storage system and experiments. The cur-
rent InteGrade version has support for portable checkpoint-
ing of sequential, parameter sweeping, and BSP parallel ap-
plications [5].

A distributed storage system must ensure scalability and
fault-tolerance for the storage, management, and recovery of
application data. We expect to fulfill the scalability require-
ment by developing algorithms to distribute the data on
non-dedicated repositories. We explore several techniques
to provide fault-tolerance, such as data replication, Infor-
mation Dispersal Algorithms (IDA) [17], and addition of
parity information.

In this paper, we describe the implementation of a dis-

1http://integrade.incubadora.fapesp.br/

tributed repository system for InteGrade. The repository
uses non-dedicated Grid nodes to store checkpoint data and
supports several storage strategies. We used this repository
implementation to perform experiments comparing several
distributed storage strategies.

This article is organized as follows. In Section 2, we show
related work in the area of distributed storage. In Sec-
tion 3, we introduce several storage strategies that can be
used, while, in Section 4, we present how the distributed
infrastructure was implemented on InteGrade. In Section 5,
we show experimental results and, finally, in Section 6, we
present conclusions and future work.

2. RELATED WORK
Our research has some shared objectives with peer-to-

peer content distribution technologies [2]. In peer-to-peer
networks, the storage nodes are usually responsible for in-
dexing, searching, and management of the network. This
results in a design with good fault-tolerant and scalability
properties, useful for systems containing large numbers of
highly transient nodes, and where performance is not a ma-
jor factor.

There are several works in the area of distributed storage,
some which use coding techniques to improve fault-tolerance
and security. Diferently from our work, they deal with ded-
icated storage servers.

Malluhi and Johnston [13] use an optimized version of the
Information Dispersal Algorithm (IDA) [17] and 2D parity
coding schemes, comparing their efficiency analytically. In
our work we perform experimental evaluations and focus on
non-dedicated repostories.

Alon et al. [1] developed a strategy for storage when up
to half of the system is faulty. They use IDA and append
hash information to provide both information retrieval and
integrity. Garay et al. [9] alse address the problem of secure
storage and retrieval of information using IDA and crypto-
graphic techniques. Ellard et al. [6] also allow the secure
distributed storage of data, but works only with immutable
data objects. Our work differs from by focusing on the com-
parison of several storage techniques instead of implement-
ing a single storage method. Besides, we use non-dedicated
repositories.

There is also some research in the area of distributed stor-
age of checkpoints from parallel applications. Sobe [18] an-
alyzes the use of two different parity techniques to store
checkpoints in distributed systems. The authors present a
analytical study comparing the two models, but differently
from our work, they do not perform experiments.

Pruyne and Livny [16] performed studies about the usage
of multiple checkpoints servers to store checkpoints from
parallel applications. But they only compared the usage
of single and dual checkpoint servers and the servers were
dedicated.

Plank et al. [15] propose the usage of diskless checkpoint-
ing. It consists of storing checkpointing data on system
volatile memory, removing the overhead of stable storage.
Similarly to our work, they evaluate the scenario where
checkpoint data is stored on the processing nodes and one or
more backup nodes. But the focus of their work is on com-
paring diskless with disk-based checkpointing. Also, the ex-
periments were performed using parity information for fault-
tolerance.

Distributed storage systems, which use dedicated repos-

itories, target performance. Peer-to-peer storage systems,
which use non-dedicated resources, focus on flexibility. Our
work is positioned between these two areas, seeking to pro-
vide performance while maintaining the flexibility of using
non-dedicated repositories. We expect to achieve these ob-
jectives by focusing on the particular requirements of Grid
environments.

3. STORAGE STRATEGIES
An storage strategy needs to deal with scalability, compu-

tational cost, and fault-tolerance issues. We analyzed sev-
eral data replication, error correction, and coding techniques
with regard to the above criteria.

Another important issue to be taken into consideration
relates to deciding into which nodes checkpoints should be
stored. It is possible to distribute the data over the nodes
executing the application, other Grid nodes, or both.

Finally, we are not dealing with data integrity and con-
fidentiality. These features are being developed in parallel
within the InteGrade project by another members of the
group. But for typical scientific applications we want to
execute on an opportunistic Grid, data integrity and confi-
dentiality are not primary issues.

3.1 Data replication
Using data replication, we store full replicas of the gener-

ated checkpoints. If one of the replicas becomes unaccessi-
ble, we can use another. The advantage is that no extra cod-
ing is necessary, but the disadvantage is that it is necessary
to transfer and store large amounts of data. For instance,
to guarantee safety against a single failure it is necessary to
save two copies of the checkpoint.

In our Grid scenario, transferring two times the check-
point data would generate too much network traffic, so we
decided to store a copy of the checkpoint locally and another
remotely. Even though a failure in a machine running the
application will make one of the checkpoints unaccessible,
it will be possible to retrieve the other copy. Moreover, the
other application processes will be able to use their local
checkpoint copies. Consequently, this storage mode pro-
vides recovery as long as one of the two nodes containing a
checkpoint replica is available.

3.2 Parity
In order to avoid the large storage requirements of data

replication, an alternative would be to calculate the parity
of the checkpoint data. Instead of storing two full replicas
of the checkpoint, one stores only the checkpoint with some
additional parity information. The amount of parity insfor-
mation determines the level of fault-tolerance achieved. We
consider two of several approaches for evaluating checkpoint
parity:

• Parity over local checkpoints: in this scheme, each
node calculates the parity of its checkpoint locally. It
first divides the generated checkpoint into m slices and
calculates the parity over these slices. A checkpoint C
of size n is divided into m slices Uk of size n/m, given
by:

Uk = (uk
0 , uk

0 , ..., uk
n/m), 0 ≤ k < m

The elements pi, 0 ≤ i < n/m of the parity informa-

tion vector P are calculated by:

pi = (u0
i ⊕ u1

i ⊕ ... ⊕ um
i), 0 ≤ i < n/m,

where ⊕ represents the exclusive-or operation. The
slices Ui and parity vector P from each process are
then distributed for storage on other nodes.

• Parity over global checkpoint: in this case, the
parity calculation is performed over the global check-
point. An application composed of m processes gener-
ates m checkpoints Ck of size n, given by:

Ck = (uk
0 , uk

0 , ..., uk
n), 0 ≤ k < m

The elements pi, 0 ≤ i < n of the parity information
vector P are calculated by:

pi = (u0
i ⊕ u1

i ⊕ ... ⊕ um
i), 0 ≤ i < n

Each node keeps a copy of its local checkpoint and
sends a copy for parity calculation. The parity infor-
mation is then stored in an additional node.

Sobe [18] performed an analytical comparison of the two
parity strategies for storing checkpointing data from parallel
application. They show that parity over local checkpoints
is normally faster, since the parity is calculated in parallel
on each local node. The disadvantage is that it needs to
create more network connections, so it is not scalable when
distributing data over a large number of nodes.

Recovery when a machine executing a single application
process fails is also faster using parity over local checkpoints.
In this case, to reconstruct the missing checkpoint data and
restart the application process, it is only necessary to fetch
the slices relative the failed process. When using global
parity, it is necessary to fetch data from all checkpoints to
reconstruct the missing checkpoint.

The advantage of using parity, compared to other storage
strategies, is that its evaluation is very efficient, requiring
only simple exclusive-or operations. But the drawback is
that failure of two nodes containing the checkpoint data will
make the state unrecoverable.

3.3 Information dispersal algorithms
The classic information dispersal algorithm (IDA) [17] was

developed by Rabin and generates a space optimal coding
of data. Using IDA, one can code a vector U of size n, into
m + k encoded vectors of size n/m, with the property that
one can regenerate U using only m encoded vectors. By
using this encoding, one can achieve different levels of fault-
tolerance by tuning the values of m and k. In practice, it
is possible to tolerate k failures with an overhead of only
k/m ∗ n elements.

This algorithm requires the computation of mathematical
operations over a Galois field GF (q), a finite field of q el-
ements, where q is either prime or a power px of a prime
number p. When using q = px, arithmetic operations over
the field are carried by representing the numbers as poly-
nomials of degree x and coefficients in [0, p − 1]. Sums are
calculated with XOR operations, while multiplications are
carried out by multiplying the polynomials modulo an irre-
ducible polynomial of degree x. In our case, we will use p = 2
and x = 8, representing a byte. To speedup calculations, we
perform simple table look up for the multiplications.

The algorithm also requires the generation of m + k lin-
early independent vectors αi of size m. These vectors can be

easily generated by choosing n distinct values ai, 0 ≤ i < n
and setting αi = (i, ai, ..., a

n−1

i), 0 ≤ i < n. These vectors
are then organized as a matrix G defined as:

G = [αT
0 , αT

1 , . . . , αT
m+k]

We now break a file F into n/m information words Ui of
size m and generate n/m code words V of size m+k where:

Vi = Ui × G

The m + k encoded vectors Ei, 0 ≤ i < m + k are given by:

Ei = (V0[i], V1[i], . . . , Vn/m[i])

To recover the original information words Ui, we need to
recover k of the encoded m+k slices. We then construct code
words V ′

j , which are equivalent to the original code words
Vi, but containing only the components of the k recovered
slices. Similarly, we construct a matrix G′, containing only
elements relative to the recovered slices. We now recover Ui

multiplying the encoded words V ′

j with the inverse of G′:

Ui = V ′

i × G′−1,

The main drawback of this approach is that coding requires
O((m + k) ∗ n ∗ m) steps and decoding O(n ∗ m ∗ m) steps,
in addition to the inversion of an m x m matrix.

Malluhi and Johnston [13] proposed an algorithm that im-
proves coding computation complexity to O(n ∗ m ∗ k) and
also improve decoding. They showed that we can diagonal-
ize the first m columns G and still have a valid algorithm.
Consequently, the first m fields of code words Vi involves
simple data copying. Coding is only necessary for the last k
fields. This approach reduces encoding complexity consid-
erably.

The biggest advantage of the IDA algorithm is that it
provides the desired degree of fault-tolerance without much
space overhead. For an application composed of 10 nodes, if
we set m as 10, it is possible to tolerate failure of one node
with a 10% space overhead, two failures with 20% overhead
and so on. The disadvantage of this approach is the compu-
tational complexity of coding the data.

3.4 Error-correcting codes
Error correcting codes allow the location and correction

of errors in a stream of data. One of the most common
codes, Reed-Solomon [14], allows the correction of k/2 er-
rors, where k is the number of extra bits used. Informa-
tion dispersal algorithms can correct k errors using the same
additional k bits. The difference occurs because when us-
ing Information Dispersal Algorithms we have to know in
advance the presence of errors and their location. Reed-
Solomon codes can detect and correct errors in arbitrary
places. Since in our environment we are always able to deter-
mine where data loss occur, IDA provides a better trade-off
than error-correction codes.

4. CHECKPOINTING-BASED ROLLBACK
RECOVERY ON INTEGRADE

Figure 1 shows the main modules present on a InteGrade
cluster. InteGrade clusters are typically composed of a few
dozen machines located in a single local network. A col-
lection of hierarchically organized InteGrade clusters form
an InteGrade Grid. The current stable version of InteGrade
supports only single clusters. A single cluster is adequate for

InteGrade Cluster

Cluster Resource Manager

GRM

CRM EM

AR

Resource
Provider

LRM

Checkpoint
Repository

Checkpoint
Library

Grid
Application

Resource
Provider

LRM

Checkpoint
Repository

Checkpoint
Library

Grid
Application

Resource
Provider

LRM

Checkpoint
Repository

Checkpoint
Library

Grid
Application

Figure 1: InteGrade’s Intra-Cluster Architecture.

performing experiments comparing the overhead of different
checkpointing strategies.

The Global Resource Manager (GRM) is responsible for
its cluster resource management, including the scheduling
of application execution requests. Local Resource Managers
(LRM) manage the resources of a single machine, monitor-
ing and controlling the execution of applications on that ma-
chine. The Application Repository (AR) stores application
meta-data and binaries. Finally, the Application Submission
and Control Tool (ASCT) permits users to submit applica-
tions for execution, monitor executions, and view execution
results through a graphical interface.

4.1 Checkpointing modules
The checkpointing-based rollback recovery architecture on

InteGrade is composed of the checkpointing library (ckpLib),
the Execution Manager (EM), the distributed checkpoint
repositories (ckpRep), and the Checkpoint Repository Man-
ager (CRM).

To store a checkpoint, a checkpointing library queries the
CRM about available checkpoint repositories and transfers
the checkpoint data to the repositories. The number of re-
quested repositories and the data transfered to each repos-
itory depend on the chosen storage strategy. Checkpoint
repositories are instantiated on the same machines that host
Grid applications.

The Execution Manager (EM) maintains a list of appli-
cations executing on the cluster. The LRM and GRM no-
tify the Execution Manager when applications start and fin-
ish their execution. The EM coordinates the reinitialization
process when an application fails, which can happen either
because one of its nodes is unreachable or because one of
its processes died. The reinitialization process also allows
recovery from failures during checkpoint generation and ap-
plication reinitialization.

The restarted processes query the Checkpoint Repository
Manager (CRM) for the checkpoint repositories containing
the last checkpoint. The CRM mantains meta-data con-

taining information about stored checkpoints, such as the
encoding used and the location of checkpoint slices.

The use of a centralized EM and CRM is justified by the
ease of implementation and development of simpler algo-
rithms that require less message exchanges. Although the
current versions of these components require a dedicated
machine, future versions will have fault-tolerance support
through replication and/or logging, and will run on non-
dedicated machines.

A centralized CRM provides other important benefit. The
CRM has a central view of the available repositories, the
amount of storage space available in each of them, and the
number of processes simultaneously using the repositories.
This allows the CRM to employ scheduling and data distri-
bution strategies by determining which repositories should
be assigned to each application and when checkpoints should
be stored.

4.2 Checkpointing Library
To provide portable checkpointing, we developed an appli-

cation-level checkpointing mechanism for regular, parameter
sweeping, and BSP parallel applications [5]. The portability
allows a stored state to be recovered on a machine with a
different architecture. We developed a pre-compiler that
instruments C/C++ application code in order to save its
state periodically. The current version of the pre-compiler
works with a subset of C++.

The storage strategy to be used is passed through a config-
uration file to the checkpointing library. The checkpointing
library is implemented in C++, with a separate class for
each kind of storage strategy. The strategies include storing
the file locally or remotely, using the techniques described
in Section 3.

Coding and transfer of checkpoints is performed by a sep-
arate thread of the application. During checkpoint genera-
tion, the data to be coded and stored is copied to a separate
buffer, allowing the application to continue its execution
while data is coded and stored. This greatly reduces the
checkpointing overhead, since the application does not need
remain stopped while the checkpoint is stored.

5. EXPERIMENTS
We performed the experiments on a laboratory contain-

ing 11 AthlonXP 1700+ with 1GB of RAM, connected by
a switched 100Mbps Fast Ethernet network. During the
day the machines are used by students, so the experiments
were performed during the night period. The objective is to
measure the overhead of checkpoint storage during normal
operation, that is, without machines becoming unavaliable.

For the experiments, we used a matrix multiplication ap-
plication with matrices of different sizes and composed of
long double elements. Matrix multiplication calculations
are used in several engineering and scientific applications.

We evaluated the time necessary to encode and decode
data and the overhead of using different storage strategies.

5.1 Data encoding and decoding
We first measured the time spent to encode and decode

a checkpoint using IDA and local parity. We used different
data sizes and number of slices for the comparison. In the
graphs, IDA(m, k), represents the IDA algorithm using m
and k as described in Section 3.3. Figure 2 shows the results
we obtained.

0 50 100 150 200
Data size (Mbytes)

0

5

10

15

20
E

nc
od

in
g

tim
e

(s
)

IDA(9,1)
IDA(8,2)
IDA(7,3)
IDA(6,4)
Parity

Data coding

0 50 100 150 200
Data size (Mbytes)

0

2

4

6

8

D
ec

od
in

g
tim

e
(s

)

IDA(9,1)
IDA(8,2)
IDA(7,3)
IDA(6,4)
Parity

Data decoding

Figure 2: Time to code and decode a file.

As we can see, local parity calculation is faster than IDA
on all scenarios, as expected. The most interesting result,
however, is that coding with IDA is not as expensive as
expected. Encoding 100Mbytes of data requires only a few
seconds, with the time spent on encoding increasing linearly
with the number of extra slices (k), and data size. The same
is true for decoding. Recovering the data should not take
more than a few seconds.

The results of this experiments are very satisfactory. With
further optimizations in vector multiplications we can achieve
even better results. In the future, our fault-tolerance mech-
anism switch between different storage strategies, such as lo-
cal parity, IDA and replication, depending on fault-tolerance
requirements, storage space and network bandwidth.

5.2 Execution overhead
We also evaluated the overhead incurred by checkpoint-

ing, coding, and distributed storage over parallel application
executions. The objective was to compare the overhead for
several of the storage strategies described in Section 3. We
evaluated the following scenarios:

1. No storage: checkpoints are generated but not stored;

2. Centralized repository: checkpoints are stored in a cen-
tralized repository;

3. Replication: one copy of the checkpoint is stored lo-
cally and another in a remote repository.

1 2 3 4 5 6

0

1%

2%

3%
1350 x 1350

1 2 3 4 5 6

0

1%

2%
2700 x 2700

1 2 3 4 5 6

0

1%

2%

3%
5400 x 5400

Figure 3: Checkpointing storage overhead for the

matrix multiplication application.

4. Parity over local checkpoints: the checkpoint is bro-
ken into 10 slices, with one of them containing parity
information. The slices are then stored in distributed
repositories;

5. IDA(m=9,k=1): checkpoint is coded into 10 slices,
from which 9 are sufficient to recover from a failure.
The slices are then stored in distributed repositories;

6. IDA(m=8,k=2): checkpoint is coded into 10 slices,
from which 8 are sufficient to recover from a failure.
The slices are then stored in distributed repositories.

When using replication, checkpoints stored remotely are
distributed through the 9 nodes executing the application.
For scenarios 4, 5, and 6, which generate 10 slices, we used an
additional node to store the remaining slice. We decided to
store the checkpoints in the machines executing application
processes because this allowed us to evaluate the impact of
checkpoint storage in application execution time.

Table 1: Execution parameters.

matrix size ttotal tseg nckp sizelocal sizeglobal

1350x1350 908.5s 54.8s 17 7.3MB 65.6MB

2700x2700 2117.0s 303.1s 7 29.2MB 262.4MB

5400x5400 4281.6s 616.1s 7 116.6MB 1047.7MB

Table 1 contains the execution parameters of the experi-
ment. We used 9 nodes to perform the matrix multiplication
and 3 matrix sizes: 1350x1350, 2700x2700, and 5400x5400.
To perform the benchmark, we divided the total execution
time (ttotal) in segments (tseg) bounded by the checkpoint
generation times. nckp represents the number of generated
checkpoints, which are separated by a mean interval of tseg.
We represent the size of local and global checkpoints by
sizelocal and sizeglobal respectively.

In Figure 3, we show the overhead of storing checkpoints
in comparison to the case where the application generates

but does not store checkpoints. The x-axis contains the 6
storage scenarios presented on this section. The y-axis has
the normalized execution time.

The results show that using IDA causes the highest over-
head. This was expected since it is necessary to perform
data encoding. But the extra overhead is almost always be-
low 2%, a very small overhead, especially when considering
the large checkpoint sizes. Although for 5400x5400 matrices
the checkpoint interval was 10 minutes, we could reduce this
value to 5 minutes or less and still get a reasonable overhead.

Using parity, replication, or centralized storage it is pos-
sible to get smaller overheads, but with a lower degree of
fault-tolerance. But IDA seems to provide a better trade-off
between speed, resource usage, and level of fault-tolerance.
Moreover, we could manipulate the IDA parameters m and
k to match the desired degree of fault-tolerance.

6. CONCLUSIONS
In this work, we described the implementation of a dis-

tributed storage system for checkpoints and output files of
applications for the InteGrade middleware. We analyzed
several storage strategies and compared their overhead over
application execution, the recovery time, and the computa-
tional time used in coding.

We showed that the overhead for global checkpoints of
over 1GB is still small when using typical checkpoint inter-
vals of a few minutes. More importantly, the time spent
encoding data with IDA is not high for data segments of a
few hundred Megabytes. IDA allows achieving different de-
grees of fault-tolerance with optimal space overhead, which
will contribute to minimize the amount of network traffic.

We are now working on ways to deal with applications
that generate even larger amounts of data, in the order of
tenths of Gigabytes. Under these conditions, the encoding
time and network usage grow very large, possibly implying
that some sort of data transfer scheduling or positioning
technique must be employed.

Our next step is to explore the usage of multiple InteGrade
clusters. When there are multiple clusters, some interesting
options become available, such as storing checkpoint data lo-
cally versus scattering IDA slices throughout the Grid. This
can make checkpoint recovery reliable even in the presence
cluster disconnections.

7. REFERENCES
[1] Alon, N., Kaplan, H., Krivelevich, M., Malkhi,

D., and Stern, J. P. Scalable secure storage when
half the system is faulty. In ICALP ’00: Proceedings
of the 27th International Colloquium on Automata,
Languages and Programming (London, UK, 2000),
Springer-Verlag, pp. 576–587.

[2] Androutsellis-Theotokis, S., and Spinellis, D.

A survey of peer-to-peer content distribution
technologies. ACM Computing Surveys 36, 4 (2004),
335–371.

[3] Berman, F., Fox, G., and Hey, T. Grid
Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons, 2003.

[4] de Camargo, R. Y., Goldchleger, A., Carneiro,

M., and Kon, F. The Grid architectural pattern:
Leveraging distributed processing capabilities. In

Pattern Languages of Program Design 5 (2005),
Addison-Wesley Publishing Company. Accepted.

[5] de Camargo, R. Y., Kon, F., and Goldman, A.

Portable checkpointing and communication for BSP
applications on dynamic heterogeneous Grid
environments. In SBAC-PAD’05: The 17th
International Symposium on Computer Architecture
and High Performance Computing (Rio de Janeiro,
Brazil, October 2005).

[6] Ellard, D., and Megquier, J. DISP: Practical,
efficient, secure and fault-tolerant distributed data
storage. IEEE Transactions on Storage 1, 1 (2005),
71–94.

[7] Elnozahy, M., Alvisi, L., Wang, Y.-M., and

Johnson, D. B. A survey of rollback-recovery
protocols in message-passing systems. ACM
Computing Surveys 34, 3 (May 2002), 375–408.

[8] Foster, I., and Kesselman, C. The Grid 2:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 2003.

[9] Garay, J. A., Gennaro, R., Jutla, C. S., and

Rabin, T. Secure distributed storage and retrieval. In
WDAG ’97: Proceedings of the 11th International
Workshop on Distributed Algorithms (London, UK,
1997), Springer-Verlag, pp. 275–289.

[10] Goldchleger, A., Kon, F., Goldman, A., Finger,

M., and Bezerra, G. C. InteGrade: Object-oriented
grid middleware leveraging idle computing power of
desktop machines. Concurrency and Computation:
Practice and Experience 16 (March 2004), 449–459.

[11] Litzkow, M., Livny, M., and Mutka, M. Condor -
A hunter of idle workstations. In ICDCS ’88:
Proceedings of the 8th Int. Conference of Distributed
Computing Systems (June 1988), pp. 104–111.

[12] Long, D., Muir, A., and Golding, R. A
longitudinal survey of internet host reliability. In
SRDS ’95: Proceedings of the 14TH Symposium on
Reliable Distributed Systems (Washington, DC, USA,
1995), IEEE Computer Society, p. 2.

[13] Malluhi, Q. M., and Johnston, W. E. Coding for
high availability of a distributed-parallel storage
system. IEEE Transactions Parallel Distributed
Systems 9, 12 (1998), 1237–1252.

[14] Plank, J. S. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software,
Practice and Experience 27, 9 (1997), 995–1012.

[15] Plank, J. S., Li, K., and Puening, M. A. Diskless
checkpointing. IEEE Transactions on Parallel and
Distributed Systems 9, 10 (1998), 972–986.

[16] Pruyne, J., and Livny, M. Managing checkpoints
for parallel programs. In IPPS ’96: Proceedings of the
Workshop on Job Scheduling Strategies for Parallel
Processing (London, UK, 1996), Springer-Verlag,
pp. 140–154.

[17] Rabin, M. O. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal
of the ACM 36, 2 (1989), 335–348.

[18] Sobe, P. Stable checkpointing in distributed systems
without shared disks. In IPDPS ’03: Proceedings of
the 17th International Symposium on Parallel and
Distributed Processing (Washington, DC, USA, 2003),
IEEE Computer Society, p. 214.2.

