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SUMMARY

Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding
of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the
high acquisition and maintenance cost of these computers, including the physical space, air conditioning,
and electrical power, limits the number the scientists that can perform this kind of simulation. Modern
commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs)
composed by hundreds of processors that can simultaneously execute thousands of threads and thus
constitute a low-cost solution for many high-performance computing applications.

In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of
simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The
algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations
that model each neuron. Communication among neurons located in different GPUs is coordinated by the
CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input
and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer
with 2 graphic boards with 2 GPUs each, when compared with a modern quad-core CPU.
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1. INTRODUCTION

To improve our understanding of brain functions, such as memory [1], vision [2], cortical processing [3,
4], and mental illnesses [5], scientists perform large-scale simulations of parts of the brain using
detailed neuronal and connectivity models. In realistic simulations, each neuron is modeled by a
set of coupled differential equations (from a couple to thousands per neuron), that describe the
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2 R. Y. DE CAMARGOET AL.

dynamics of the neuron membrane and ionic channels [6, 7]. Neurons communicate through synaptic
connections, described by their source and target neurons,communication propagation delay and
synaptic weight. A simulation can contain millions of neurons and billions of synaptic connections,
generating a high demand of computing power [8]. Large-scale simulations are currently performed
on supercomputers [9, 3], such as the IBM BlueGene, and largeclusters [10, 11, 4]. The acquisition
and maintenance cost of these computers, including the physical space, air conditioning and electrical
power to maintain those computers, is prohibitively high for most institutions.

Modern GPUs, based on the CUDA platform [12, 13], have hundreds of simple processors that,
when used in parallel, can sustain high computing power. Dueto the low cost of GPU boards
and small space requirements, their usage constitutes an excellent alternative in the area of high-
performance computing. GPUs are optimized for SIMT (Single-Instruction Multiple-Thread) floating-
point operations, where a large number of threads execute a single instruction, such as in the numerical
integration of a large number of differential equations. The CUDA platform has already been used for
a wide variety of applications, such as simulation of stochastic systems of chemical reactions [14],
molecular dynamics [15], electrostatic potentials [16] and fluid flows [17].

In the area of neural networks, Bernhardet al. [18] simulated networks of integrate-and-fire
neurons, which are very simple neuron models represented bya single differential equation. These
implementations are prior to CUDA, which means that the simulation elements were mapped in
textures and the operations over the elements in geometrical operations. Nageswaranaet al. [19]
implemented a simulator for large-scale spiking neural networks, with neurons based on the
Izhikevich’s simplified spiking neuron model [20], which ismore realistic than the integrate-and-fire
neurons and can generate some realistic behaviors. They designed an efficient algorithm for spike
processing and delivering that work for their simplified communication model and on a single GPU.
In contrast, the detailed neuronal models, which we use in our work, include information on cell
morphology and ionic and synaptic channels, resulting in dozens of state variables and differential
equations per neuron. The algorithms to solve the detailed models are more complex and very different
from the algorithms for simpler models. To the best of our knowledge, there are no studies about the
simulation in GPUs of large-scale neuronal networks that use detailed neuronal models. This paper
aims to fill this gap.

We present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-
scale networks composed of biologically realistic Hodgkin-Huxley neurons†. Each neuron is modeled
as a set of coupled differential equations and dozens of state variables. We assign a CUDA thread per
neuron and we launch thousands of threads per GPU that perform the numerical integration of the
differential equations in parallel on multiple GPUs. We usethe CPU to coordinate the communication
among neurons executed on different GPUs.

We implemented and performed a detailed experimental evaluation of the algorithm, including the
analysis of simulation accuracy, speed-up compared to CPUs, scalability analysis and profiling of
the execution time. We show that it is possible to perform simulations of networks with over 200k
biologically realistic neurons and 20M synaptic connections using a single computer, with 2 graphic
boards with 2 GPUs each, with the same performance of a small conventional cluster.

†Simulator source code and experimental setup available athttp://ncsc.ufabc.edu.br/ ˜ rcamargo/neuralcuda .
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Figure 1. The CUDA platform. a) Architecture of a modern GPU,containing a large global memory and a set of
multiprocessors, each one with an array of floating-point processors, a small shared memory and a large number
of registers. b) Hierarchical organization of CUDA threadsin thread blocks and in kernel grids, where each thread

block is assigned to a single multiprocessor.

2. CUDA PLATFORM

Modern graphic boards have powerful GPUs (Graphics Processing Unit) composed of hundreds of
simple processors for floating-point operations, enablingthe parallel processing of a large number
of instructions [12]. Figure 1 shows the GT200 architecture, which is organized as a set of
multiprocessors, each composed of 8 processors, a large number of registers, and a small high-speed
shared memory.

The CUDA architecture [13] supports an extension of the C programming language, where
programmers can define special functions, calledkernels, which are executed in the GPU, while the
remaining of the CUDA programs are executed in the CPU. For each kernel execution, the user must
define the number of threads to launch and divide the threads in blocks, forming a grid of blocks. In
CUDA, each kernel block is executed in a single multiprocessor, which execute the kernel threads of
each received block in parallel, as shown in Figure 1.

To use all then multiprocessors from a GPU, it is necessary to create at least n blocks. Moreover,
each multiprocessor simultaneously executes groups (calledwarps) of w threads from a single block,
and several warps should be present on each GPU for efficient usage of its processors. For example,
NVIDIA’s GTX 295 boards have 1982MB of global memory and 2 GPUs, each one with 240
processors divided amongn = 30 multiprocessors, and each one with 8192 registers and 16kB of
shared memory. If the warp sizew is 32, we would need30 ∗ 32 ∗ 4 = 3840 threads per GPU for
efficient execution, supposing we need 4 warps per block.

The main challenge when implementing efficient CUDA programs is coding the application in a
number of threads large enough to keep all the GPU processorsoccupied. Each thread, however, should
also keep most of the state variable that it uses in the small amount of shared memory available per
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4 R. Y. DE CAMARGOET AL.

Figure 2. Model of a single neuron as a set of isopotential compartments, with each compartment represented by
an electrical circuit.

multiprocessor, since the global memory access latency is very high. With more threads per kernel
block, a smaller fraction of the thread state variables willfit in the shared memory, and thus it is
necessary to find a tradeoff between them.

3. SIMULATION OF DETAILED NEURONAL MODELS

Neurons are specialized cells that have a polarized membrane that maintains a potential difference
of about 60mV between the internal and external mediums. Information processing occurs through
changes in this membrane potential. To enable the efficient simulation of the neuron dynamics, we
model neurons as a set of isopotential compartments connected by a radial resistance [6, 7]. Each
compartment functions as an electrical circuit, with the cell membrane represented by capacitors and
ionic channels by resistances, as shown in Figure 2.

The membrane potentialVm(t), at timet, is determined by integrating a set of differential equations,
with each equation representing a neuronal compartmentm, shown in Figure 2. We must integrate a
separate set of differential equations for each neuron, since each one has different values for its state
variables, such asVm. The equation for each compartment has the form:

Cm

dVm(t)

dt
=

Em − Vm(t)

Rm

+
V ′

m − Vm(t)

R′
a

+
V ′′

m − Vm(t)

Ra

+ Iion(t) + Iext(t) (1)

where the constantEm represents the membrane reverse potential,Cm the membrane capacitance,Rm

the membrane resistance, andRa the axial resistance.V ′
m, V ′′

m andR′
a are the corresponding values for

the neighbor compartments.
The variableIext(t) is the external current applied in the neuron andIion(t) is the current that pass

through ionic channels present in the membrane. The currentIion in each compartment is given by:

Iion(t) =
∑

i

(Ei − Vm(t))Gi(t)

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2000;00:1–6
Prepared usingcpeauth.cls



A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 5

wherei represents the ionic channel from each compartment,Gi(t) the conductance of the channel at
time t andEi the reverse potential for the ions that pass through channeli.

Active channels. The voltage dependent active channels are responsible for spike generation [6, 7],
which occurs when the membrane potential reaches a threshold, and is the mechanism by which
neurons communicate. Active channels are modeled as a set ofgates, that can permit or block
the passage of ions, with independent dynamics of opening and closing, as proposed by Hodgkin-
Huxley [21]. For example, we can model sodium (Na) channels as having two gates,m andh, that
control the flow of ions through the channel.

We represent the set of Na channels of each compartment as a single channel, with the conductance
of the channel at timet given byGNa(t) = gmaxNa

∗m3
∗ h, wheregmaxNa

represents the maximum
conductance of the channel. The gate variablesm andh assume values from 0 to 1.0, representing the
percentage of gates that are open at timet. The dynamics of each gate is given by an equation of type:

dm(t)

dt
= αm(V )(1 − m(t)) − βm(V )m(t) (2)

whereαm(V ) and βm(V ) are the rate of opening and closing of the gatem, and their values are
dependent on the membrane potentialV . There are similar equations for gateh, with different functions
αh(V ) andβh(V ). Functionsα(V ) andβ(V ) are the main determinants of the active channel activity
and different models have distinct functions.

Cells can have others types of channels, such as potassium (K) channels, with a single gate typen
and conductance given byGK(t) = gmaxK

∗ n4.

Synaptic channels.They are the main communication mechanism in neuronal networks [7] and are
activated by the release of neurotransmitters from a presynaptic neuronj in a synaptic channeli of a
postsynaptic neuron, which are triggered by spikes generated at neuronj. The behavior of the neuronal
network is determined by the pattern of connections among the neurons and the synaptic weightsw of
these connections, which determine the strength of interactions. Depending on the connection pattern,
networks can act as pattern recognition networks in the visual system [2], control visual attention, or
enable the storage of long-term memories [1].

The conductanceGi(t) of each synaptic channeli at timet is given by:

Gi(t) =
∑

spk

gimax
wji

t − tspk

τ
exp(1 −

t − tspk

τ
) (3)

wherespk represents each delivered spike,gimax
the maximum conductance of the channel,wji the

synaptic weight for spikes from source neuronj, tspk the delivery time of each spike andτ the channel
time constant, which defines the speed of the activation and inactivation of the synaptic channel. After
a period of4 ∗ τ , the contribution of a spike in the postsynaptic cell can be considered negligible.

4. THE SIMULATION ALGORITHM

The simulation has two main parts, which are: (1) integration of the set of differential equations
representing thek compartments of each neuron; and (2) spike processing, where the algorithm verifies
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6 R. Y. DE CAMARGOET AL.

Figure 3. The simulation algorithm. It is composed of the simulation setup and a main loop with two parts: (1)
integration of the set of differential equations of each neuron; and (2) spike processing.

the spikes generated at each neuron and delivers it to the neurons to which it connects. The first part
is the most computationally demanding step of the simulation and which we implemented as a CUDA
kernel for execution in the GPU. The second part involves the messages exchanged among neurons
located in different GPUs and, consequently, we used the CPUto perform the spike processing.

The simulation algorithm is divided in steps, shown in Figure 3. It starts with the simulation setup,
which configures the neurons, allocates memory in the device(graphic board) and transfers the neuron
simulation data from the host (computer) main memory to the device memory. The bulk of the
algorithm consists of the parts 1 and 2, which are executed repeatedly until the simulation finishes.
Our algorithm permits the usage of multiple GPUs, in which case a different CPU thread is launched
for every GPU used.

In part 1, the simulator transfers information about delivered spikes to the GPU, launches the CUDA
kernel, which solves the differential equations, and, finally, transfers the list of generated spikes from
the device to host memory. In part 2, the algorithm checks thespikes generated by each neuron and
sends the spikes to each neuron that it connects, and then synchronizes the CPU threads to guarantee
that they all finished the spike delivery. Finally, it processes the list of spikes received at each neuron,
removing old received spikes and organizing the spikes for transferring to the device memory.

We decided to perform a sequence ofn integration steps during each CUDA kernel execution. This
does not cause any effect in the simulation results, since inbiological neuronal networks there are
communication delays between spike generation and post-synaptic activation. For a communication
delay of10ms andδt = 0.1ms, we can safely choosen = 100. The execution ofn integration steps
per kernel call has two performance advantages: (1) the overhead of each kernel call is too high, due
to the process of switching the execution to the GPU and the repopulation of the shared memory of all
multiprocessors; and (2) the CPU threads must synchronize during spike processing, to guarantee that
the spikes will be delivered at the correct time. Processingn integration steps per kernel call reduces
the number of kernel calls and synchronizations by a factor of n.
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Figure 4. Triangularizable matrixA generated using the Hines method. Compartmentc is assigned to linec, which
contains non-zero elements only in the columnsc

′ that represent the links with other compartmentsc
′.

4.1. CUDA Kernel

To solve the system of differential equations of each neuron, we used the method described by
Hines [22]. In this method, the equations are coded as a linear system of the typeA ∗ V = B, where
A is a k × k sparse matrix, with its rows containing the voltage-dependent coefficients from each
compartment,V is a vector of sizek containing the membrane potentialVm(t) on each compartment,
andB is a vector of sizek containing the potential independent values. In each integration step the
linear system is solved and the simulation advances a time intervalδt. Since matrixA is sparse, we can
represent the matrix as an array of sizeO(k).

If matrix A is triangularizable, we can solve the system by performing the triangularization followed
by back-substitution, where we evaluate first the value ofVk, which is the potential of the last
compartment, followed byVk−1, and so on. A triangularizable matrix is produced by numbering the
compartments starting at the most distant one and finishing at the soma [22]. Figure 4 shows a neuronal
model with 4 compartments and the corresponding A matrix before and after the triangularization.

4.1.1. Kernel algorithm

We map each neuron as a single CUDA thread, with each thread performing all the steps of the
Hines method for its corresponding neuron, since the triangularization and back-substitution must be
performed sequentially for each neuron. Figure 5 shows the simulation steps for each kernel thread.
Step 1 transfers the heavily used data from global memory to the shared memory, reducing the memory
access time. In steps 2 to 6, the kernel performs the numerical integration of the neuron equations,
repeating these stepsn times. The kernel finishes in step 7, where the data modified during the kernel
execution, such as the membrane potential and active channel gate states are written back to global
memory. We describe steps 2 to 6 in detail below.

Active channels. To determine the current passing through each active channel in step 2, it is
necessary to evaluate the state of each gate from the channel, which is done by integrating Equation 2.
Since the functionsα andβ are dependent onV , they must be evaluated in every integration step. From

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2000;00:1–6
Prepared usingcpeauth.cls



8 R. Y. DE CAMARGOET AL.

Figure 5. Simulation steps of the CUDA kernel. This algorithm is executed in parallel by each kernel thread.

the percentage of gates open for each type of channel it is possible to determine the conductance of
each active channel and the current passing through it.

Active channels are responsible for spike generation, which are triggered when the membrane
potential exceeds a sharp threshold. During spike generation, the channels conductances change very
rapidly and the values of the currents passing through each active channel are used to determine the
potential on each cell compartment. The presence of the active channels generates a system of stiff
differential equations, which is the limiting factor for increasing the step size. To enable the usage of
integration steps of moderate size, we determine the valuesof the channel gates (Equation 2) and the
currents of the active channels at the midpoint of each time step, that is,t + δt/2, which increases the
precision of the integration.

Synaptic channels. In step 3 we evaluate the current in the synaptic channels, which are activated
by spikes generated in the presynaptic neurons. The simulator evaluates Equation 3 for every spike
delivered to each synapse in the neuron. For each neuron, we keep in the main memory an array
containing the time of each generated spike and the corresponding synaptic weight. But since each
neuron can receive spikes from thousands of neurons, it is not possible to transfer the complete array to
the shared memory, so the spike times are obtained from the global memory at every integration step.

The global memory access latency compromises the kernel performance, but we can reduce this
problem by running a higher number of threads per block, for example, 128 threads. In this case, while
some threads are waiting for the spike information from the global memory, others are evaluating
their synaptic channel conductance from spikes obtained previously. Moreover, in each global memory
access, we can fetch information about multiple spikes.

Solving the linear system.The kernel solves the linear system of equations representing the cell
compartments in steps 4 to 6. We perform implicit integration in the system of differential equations
that represent the cell compartments (Equation 1), since itallows the usage of larger integration steps.
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Step 4 is straightforward and consists of updating the right-hand side (vectorB) of the system and the
matrixA. Next, we triangularize the updated matrixA (if needed). When there are active channels only
in the cell soma, only the coefficient of the last compartmentis modified and, consequently, there is
no need to triangularize matrixA in every step. When the channels are located in other compartments,
the triangularization in every step is required, since the coefficients of other compartments are also
changed. Our simulator takes advantage of this and triangularizes the matrixA only when necessary.
After the triangularization, the kernel finishes the integration step by performing a back-substitution,
where we first evaluate the value of the last compartment (soma), which we will call compartmentk,
then the value of compartmentk − 1 and so on, until we evaluate all the potentials at timet + δt.

4.1.2. Kernel algorithm implementation

The performance of CUDA applications is determined by the fraction of GPU processors active at each
moment. This requires the usage of a large number of threads and that threads have immediate access
to the data they need, which is accomplished by putting the state variables that each thread needs in
the shared memory. Determining the number of threads (neurons) per kernel block is an important
parameter. On the one hand, more neurons mean the possibility of higher parallelism, since more
threads can be executed by each multiprocessor. On the otherhand, the shared memory will hold only
a smaller part of the neuron state, requiring more accesses to the high-latency global memory.

We need to keep separate storage space for the state variables of each neuron, such as theVm on each
compartment and ionic and synaptic channels states. Since the shared memory can hold only part of
these variables, we selected the ones used multiple times oneach integration step and whose state must
be kept across the integration steps, such as theVm and the channel gates state. This enables a higher
number of neurons per block, compensating the latency caused by accesses to the global memory,
since there will be more threads ready for execution. We usedbetween 32 and 196 threads per block,
depending on the number of compartments per neuron and the precision of floating point numbers.

To perform load-balancing, we define a selection of neuron types and allocate each simulated neuron
to one of these types. Load-balancing is obtained by distributing evenly the blocks among the GPUs.
This grouping also promotes a reduction in shared memory usage, since we can share static information
that is equal for all neurons of its type, such as morphological and membrane property information,
which are consolidated in the Hines matrix.

There are several optimizations that can be applied to CUDA applications, such as coalescing
global memory accesses and preventing access conflicts in the banks of the multiprocessors shared
memory. Such optimizations often bring important performance enhancements [13]. We applied these
techniques in our code, specially in data that are accessed often, such as the membrane potential on
each compartment, the current in the active channels and thestate of the active channel gates. Although
they brought some important gains in performance, these finegrain optimizations are not the focus of
this paper and will not be discussed here.

4.2. Neuronal communications

After finishing the kernel execution, the next step of the simulation algorithm, shown in Figure 3, is
to process the generated spikes. For each neuron, the simulator gets the list of generated spikes and
delivers the generated spikes to all neurons to which it connects. The connectivity of each individual
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10 R. Y. DE CAMARGOET AL.

Figure 6. Spike processing and delivery, where the spikes generated by the pre-synaptic neurons during the last
kernel execution are delivered to all post-synaptic neurons to which they connect.

neuron is defined independently, including the number of synapses, their weights, and axonal delay.
This allows the simulation algorithm to have the flexibilityrequired for the majority of large-scale
simulations developed recently [3, 1, 4, 2].

The algorithm searches for spikes in all neurons of the simulation and delivers the spikes to all its
post-synaptic neurons, as shown in Figure 6. This generatesa huge number of delivered spikes, making
the spike processing step of the simulation time and memory consuming. For instance, if there are 100k
neurons, each connected to other 1000 neurons, and the mean number of generates spikes per neuron
per kernel call is 2, there will be 200 million delivered spikes after each kernel call. Each synaptic
channel from each neuron has a delivered spike list that contains all the spikes that contains the spike
time and synaptic weight for each spike delivered to the synaptic channel. The delivered spike list is
copied to the GPU before starting the CUDA kernel execution for the nextn steps, and is transversed
on every integration step to determine the current on each synaptic channel. The spike list resides in
the high-latency device global memory and, consequently, reducing the spike list size improves both
performance and memory usage.

We used two strategies to reduce the number of entries in the delivered spike list. The first was to
implement this list as a hash map, which maps the spike time with the connection weight. If two or
more spikes generated at the same time are delivered to the synapse, they are merged in a single entry
by summing the weights of each connection, thus reducing thenumber of spikes to process in each
integration step. The second strategy was to remove the spikes generated earlier than4τ time units
from the current time, whereτ is the time constant of the synaptic channel, since these spikes would
have negligible impact on the neuron synaptic currents. After delivering the spikes, we traverse the
hash map of each synapse and eliminate the old spikes. However, even with these optimizations, spike
delivery causes most of the memory consumption at the host machine and is the limiting factor for
increasing the simulation size.

Another option would be to perform spike processing and delivery in the GPU. Performing spike
processing completely in the GPU is not possible, since thiswould involve communication between
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threads of different blocks running on different GPUs. However, we could perform most of this task
in the GPU, leaving to the CPU only the task of dispatching themessages to the correct GPUs before
the next kernel launch. This possibility is indicated by Nageswaranaet al. [19], which developed an
algorithm for spike processing and delivery in CUDA. The algorithm works only for single GPUs and
when using much simpler neuronal and synaptic models, wherethe spike time and synaptic weight
information are used only once per generated spike. But it isnot clear that an efficient algorithm can
be developed for simulations using multiple GPUs, which would require the synchronization among
threads of different GPUs and transfer of large amounts of information among the GPUs, and detailed
neuronal and synaptic models, where spike information is used for several integration steps. Since
the simulation of neurons is the most computationally demanding part of the complete simulation, we
decided to focus this work on the efficient simulation of detailed neuronal models, performing the spike
processing and delivery in the CPU.

4.3. Time complexity

To determine the time complexity of the kernel, we evaluate the time necessary to solve the linear
system of differential equations and the currents in the active and synaptic channels. The Hines matrix
is sparse and can be implemented as a linear array of sizeO(nComp), wherenComp is the number
of compartments. Consequently, the time spent solving the linear system isO(nComp) per neuron at
each integration step. The time to evaluate the current of the active ionic channels is dependent only
on the number of active channelsnActive. Finally, to determine the time spent evaluating the synaptic
currents, we need to determine the number of active spikes per synaptic channel, where each spike
remains active during at least an entire kernel execution. DefiningnConn as the average number of
connections per neuron,spkRate as the mean spike rate of the neurons, andkSteps as the number of
steps per kernel call, results inO(nConn ∗ spkRate ∗ kSteps) spikes actives at each synapse.

The complete simulation hasnSteps integration steps andnNeurons neurons. The total processing
time of the kernel isO(nSteps ∗ nNeurons ∗ (nComp + nActive + nConn ∗ spkRate ∗ kSteps)),
which indicates that the synaptic processing is the dominant factor in kernel processing.

Spike processing and delivery is executed in the CPU after each kernel call, and it needs to deliver
each generated spike to every post-synaptic neuron. It is called O(nSteps

kSteps
) times and the number of

active spikes per neuron isO(nConn∗ spkRate∗kSteps). Consequently, the total processing time of
the spike processing and delivery in the CPU isO(nSteps ∗ nNeurons ∗ nConn ∗ spkRate), which
is lower than the kernel complexity by a factor ofkSteps.

5. EXPERIMENTS

We evaluate the simulator to determine the performance gains obtained with the usage of GPUs
in comparison with CPUs and to check the precision of the obtained results. We performed the
experiments using a computer with a 2.66GHz Intel Core i7 920processor, 6 GB of RAM memory
and 2 NVIDIA GTX 295 graphic boards, with 2 GPUs and 1892 MB of memory on each board. We
used a 64 bits Ubuntu 9.04 operating system, CUDA version 2.3and graphic drivers version 190.18.
We used the g++ compiler, configured to generate optimized code with the option -O3.
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Besides the GPU implementation, we also implemented the simulator using the CPU, with the
objective of comparing the performance gains obtained withthe usage of GPUs and the differences
in the simulation results due to precision differences. Forboth versions, we can configure, at compile
time, the simulation to run with double precision or single precision floating point numbers. We used
C++ to implement the simulation in the CPU. It shares most of the code with the GPU version, except
for the kernel, which in the CPU version was coded in a class called HinesMatrix that solves the
linear system. This class performs the same simulation steps of the GPU kernel, but we assign to each
CPU core a fraction of all the neurons, and each core performsthe steps for each neuron of its fraction.
One important difference is that the CPU does not have a shared memory controlled by the application,
but a large cache memory that is controlled by the CPU, resulting in a much simpler code. Neurons
are statically divided equally among the cores during the simulation startup, resulting in a balanced
distribution of load among the cores.

In all simulations we used a network with two types of neurons(pyramidal and inhibitory). Each
neuron contains the 2 types of active ionic channels (Na and K) described in Section 3. Pyramidal
neurons have 2 types of synaptic channels, excitatory (AMPA) and inhibitory (GABA) channels,
while inhibitory neurons have only excitatory synaptic channels. Each pyramidal neuron is connected
randomly toN other pyramidal cells andN other inhibitory cells through excitatory AMPA synapses,
and each inhibitory cell is connected to a single pyramidal cell through a inhibitory synapse. These
neuron types and network architecture resemble the existing models of the cerebral cortex [3, 5, 2]. We
use the same number of pyramidal and inhibitory cells and thepyramidal cells receive random external
synaptic input.

5.1. Simulation precision

Current GPU architectures have higher performance when using single precision floating point
representations, since it has more processors dedicated tosingle precision (float) numbers than to
double precision (double) ones. Moreover, the amount of shared memory in each multiprocessor is
very limited (16 kB), and double precision numbers use twicethe memory [13]. The next generations
of GPU cards will improve double precision performance considerably [23], but it is not clear if the
difference in performance will be eliminated in the near future.

We compared the differences in performance and precision when executing the simulation using
thedoubleandfloat data types. We used a network with 100k neurons with 4 compartment and two
connectivity patterns: the first with no connections and thesecond with 100 random connections per
neuron, for a total of about 10M connections. We used a simulation time† of 10s, during which the
neurons received random synaptic input and generated an average of 21 spikes per second per neuron
for the network with no connections and 44 for the connected one. We executed 5 series of simulations,
varying for each simulation series the connections betweenthe neurons and the input spikes.

Execution time penalties.We evaluated the execution overhead of using double precision numbers
in the GPU. When we consider only the execution time spent in the kernel processing, we have a

†We use the termexecution timeto denote the time spent to execute the simulation andsimulation timeto denote the elapsed
time in the simulated neuronal network.
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Figure 7. Comparison of the distribution of interspike intervals when using different precisions in the GPU and
CPU versions. We considered the scenarios with no connections and 100 connections per neuron.

performance penalty of 43.8% for the simulation of isolatedneurons and 49.8% for the simulations
with 100 connections per neuron, when using double precision numbers instead of single precision
ones. When we consider the total execution time, these penalties fall to 29.9% and 16.5% respectively.
As expected, these results show that the performance penalties in the GPU are considerable and we
should use single precision numbers if they produce correctresults in the simulation. As a comparison,
for the simulations using the CPU, the usage of double-precision numbers incurred an overhead that
was always below 3%.

Precision errors. To evaluate possible differences in simulation results, weused the distribution of
inter-spike intervals, which summarizes the neuronal and network dynamics. Figure 7 shows the mean
distribution of inter-spike intervals when considering the spikes of all neurons in the network. The
topmost graphics shows the distribution of inter-spike intervals for the simulation in the CPU with
double precision numbers and the bottommost graphics showsthe simulation in the GPU with single
precision. The left-hand side graphics show the simulationwith no connections and the right-hand side
ones the simulations with 100 connections per neurons.

With no connections, there is a larger number of inter-spikeintervals starting at about 15ms and this
value slowly decreases as we increase the interval size. These values correspond to the time between the
input stimulus in the neurons, which is distributed in a similar fashion. In the connected network, there
are three peaks at the intervals 15ms, 57ms, and 72ms, which appear due to the network architecture,
where pyramidal neurons are connected to inhibitory ones which inhibits other pyramidal neurons.
This metrics is very useful since it summarizes the dynamicsof the network. Comparing the results of
the simulation using the CPU and double precision with that of the GPU with single precision, we can
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see that the differences are very small, which shows that thenetworks have no significant differences
in their dynamics.

There are scenarios where the usage of double precision numbers would be important. For instance,
one can consider a network containing a few detailed neuronal models composed of hundreds of
compartments and dozens of ionic channel types. In these simulations, the exact response of each
neuron can be as important as the dynamics of the neuronal population. But this kind of model is not
suitable for simulation in GPUs, since it cannot be easily partitioned among kernel threads.

Since single precision numbers provide sufficient precision in the simulations that are suitable for
execution in GPUs and performance is the main issue, we usefloat as the default floating point type in
our simulator.

5.2. Distribution of the execution times

We evaluated the distribution of execution time in the different parts of the simulation. The objective
was to determine which tasks contribute most to the total execution time, thereby allowing a better
understanding of the gains in the execution time obtained bythe usage of GPUs in the simulation.
In this experiment and in the next ones we use single precision numbers for both CPU and GPU
simulations.

We used simulations with 20k and 200k neurons and connectivities of 0, 100 and 1000 random
connections per neuron. We also varied the synaptic weights, enabling the pyramidal neurons to operate
with 2 mean firing rates: 16 spikes/second (low) and 60 spikes/second (high). These rates correspond to
those found in the cerebral cortex [3]. In the 200k neuron simulations, we did not consider the network
with 1000 connections per neuron since 6GB of RAM memory in the computer was not enough for
spike processing.

We compared the execution times for the same simulation using the GPU and CPU, with the
difference that the CPU does not need to perform some of the steps the GPU simulation performs, such
as transferring data to and from the device memory. For this experiment, we divided the simulation in
3 sections:

• HinesKernel:the time spent in the simulation of each neuron, including the integration of the
differential equations of the compartments and active channels, and evaluation of the synaptic
channel currents. In the GPU version, this represents the time spent inside the GPU kernel;

• ConnRead:the time used to process the generated spikes and deliver them to the target neurons;
• ConnWrite:the time spent to process the received spikes on each neuron,including the removal

of old spikes and, in the GPU version, to prepare this information for transferring to the device
memory.

The topmost graphs in Figure 8, plotted in logarithmic scale, show the execution time in each of the
steps for the network with 20k neurons (left-hand side graph) and 200k neurons (right-hand side graph).
We can see that the total execution time increases rapidly aswe increase the number of connections
and the spike rate. The increase occurs not only in the spike processing steps, but also in the the
simulation of each neuron (HinesKernel), since in each integration step it is necessary to evaluate the
synaptic activity on each neuron. Consequently, the main factor that determines the execution time is
the number of spikes delivered to neurons.
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Figure 8. Distribution of execution times in each part of thesimulation. The topmost graphs, plotted in logarithmic
scale, show the execution times in seconds. The bottommost graphs show the percentage of the total time.

The bottommost graphs show the percentage of the execution time spent in each of the steps. With
no connections, nearly all the execution time is spent in theHinesKernel section for the CPU and about
80% for the GPU version. For networks with 100 and 1000 randomconnections per neuron we can
see that most of the GPU execution time is spent in spike processing and for the CPU most of the
time is spent in the kernel processing. Actually, the time inthe communication steps (ConnRead and
ConnWrite) is the same in the CPU and GPU versions, but since the kernel is executed faster in the
GPU, the relative contribution of the former in the total execution time is higher in this case. However,
in both cases, as we increase the number of generated and delivered spikes, the relative contribution of
the spike processing part also increases.

This experiment confirms that solving the differential equations of the neurons (HinesKernel) is the
most demanding step, requiring at least 80% of the total execution time in the CPU simulations. Our
CUDA implementation of the the HinesKernel step resulted inimpressive speedups, between 20 and
60. As result, the contribution of this step in the GPU simulation becomes as low as 11.1% of the
total execution time, in the simulation with 200k neurons and high firing rates. Consequently, spike
processing is responsible for up to 88.9% of the execution time in the GPU simulation and to obtain
higher speedups our next step will be to develop multi-GPU algorithms to accelerate spike processing.

We also evaluated the performance improvements obtained byperforming multiple integration steps
in each kernel call. Figure 9 shows the time spent in the kernel and communication parts of the
simulation for different numbers of steps. The left-hand side graph shows the results for the simulation
with 10k neurons and no connections between neurons. The kernel execution time increased only 3.6%
when the number of steps was reduced from 100 to 50, but it increased 26.5% for 10 steps, and 267.7%
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Figure 9. Effect of changing the number of integration stepson each kernel launch. The graphs, plotted in log-log
scale, show the execution time of the kernel part, communication part, and complete simulation.

for a single step. The right-hand side graph shows the results for the simulation with 100 connections
per neuron and a mean spike rate of 60 spikes per second, wherethe kernel overhead was negligible for
50 steps, 2.3% for 10 steps and 25.7% for a single step. The increase in the kernel execution time was
expected, since there is an overhead for launching the kernel and transferring the state of the neurons
from the device global memory to the shared memory. In the scenario with the synaptic connections
the increase was smaller because more time is spent processing each integration step.

But in all scenarios of Figure 9 the time of the communicationphase increased much faster than
the kernel processing, since they must be performed before each kernel call. In simulation with 100
connections per neuron and 60 spikes/s, the increase in the total execution time was 15.4% for 50 steps
and 111.9% for 10 steps. For the complete simulation, the overhead of performing 50 steps per kernel
launch can be acceptable, but for 10 steps the overhead is toohigh.

5.3. Performance gain with the usage of GPUs

We evaluated the performance gains obtained with the usage of GPUs and the speedup obtained as
we increase the number of GPUs. The simulation configurationis similar to the ones in Section 5.1,
except for the number of neurons (1k, 10k, 100k, and 200k) andneuronal compartments (4, 8, 12,
and 16). We compared the case with no synaptic connections and with 100 random connections per
neuron, with pyramidal spikes rates of 9 spikes/s and 10 spikes/s, respectively. We simulated up to
200k neurons, which due to the amount of memory available in the graphic boards, is the maximum
number of neurons that can be simulated in a single GPU. In theCPU simulation, we used all the 4
cores of the processor, by launching 4 threads, each one responsible for one quarter of the neurons.

We measured the speedup of the GPU simulation, in comparisonwith the one using the CPU, when
we varied the number of compartments per neuron. Figure 10 shows that as we increase the number of
compartments in a simulation with 100k neurons and no connections, the obtained speedup decreases.
This occurs because the amount of state variables per neuronincreases linearly with the number of
compartments per neuron, requiring a reduction in the number of neurons per kernel block. Many

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2000;00:1–6
Prepared usingcpeauth.cls



A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 17

 4  8 12 16
0

10

20

30

40

Speedup vs number of compartments

Number of Compartments

S
pe

ed
up

 

 

1k neurons

10k neurons

100k neurons

200k neurons
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Figure 11. Speedup obtained using different number of GPUs compared with the usage of 4 CPU cores.

realistic simulations use at most 8 compartments per neuron, making this reduction in performance
less important. We do not show the results for the simulationwith 100 connections per neuron because
the number of compartments per neuron influences its dynamics and, consequently, the number of
generated spikes per neuron, which would cause distortionsin the execution time of each simulation.

We also measured the speedup as we increase the number of GPUsfor simulations with different
number of neurons and connections per neuron. The left-handside graphic in Figure 11 shows the mean
speedup and the standard deviation, measured over 8 executions of the simulation with no connections.
The speedup is higher when simulating larger number of neurons, specially when using multiple cores,
since there will be more threads to maintain the GPU processors occupied. For instance, when using
10k neurons, it is better to use only 3 GPUs and when using 1k neurons, it is better to use only
one. But when simulation has at least 100k neurons, the speedup with the number of GPUs increased
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45 spikes/s (medium), and 60 spikes/s (high).

almost linearly and we obtained speedups of 40 for 4 GPUs. Although neuronal networks always have
connections between neurons, this result shows that GPUs are effective for solving the linear systems
of differential equations and the ionic channel equations necessary to simulate individual neurons.

In the case with 100 connections per neuron, the gains are still considerable. When using 4 GPUs,
we obtained a speedup of 10 for the simulation of 100k neuronsand 10M synaptic connections, and
9 for the simulation with 200k neurons and 20M connections. The speedups are lower because of the
time spent in spike processing and delivery, which is performed in the CPU. Another difference is
that the speedup is lower when we increase the number of neurons and, consequently, the number of
synaptic connections. Nevertheless, for the evaluated scenarios, a speedup of 9 is excellent, allowing a
scientist to substitute a cluster with 9 machines by a singleone.

5.4. Scalability with the number of neurons and connections

We evaluated the changes in the execution time as we change neuronal network properties, such as
the number of neurons, connections per neuron, and spike rate. We performed the simulations using
4 GPUs, comparing the result with the simulation in the CPU when using its 4 cores. The graph in
Figure 12 shows the speedup obtained as we varied the number of neurons (from 10k to 200k), the
number of connections per neuron (0, 100 and 1000), and the mean spike rate of the pyramidal neurons
(low, with about 16 spikes/s, medium, with about 45 spikes/s, and high, with about 60 spikes/s).

The obtained speedup varied between 9 and 4, depending on thespike rate and number of
connections. When we consider the same number of connections per neuron and mean spike rate,
the speedup decreases as we increase the number of neurons, due to the increase in the number of
dispatched spikes. For the same reason, simulations with more synaptic connections per neuron and
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Figure 13. Scalability of the kernel as we increase the number of neurons (from 10k to 200k) in a network without
connections (a), with fixed number of connections (b, c) and with 100 connections per neuron (d).

higher spike rates, have a lower speedup. For the simulations with 100k and 200k neurons we only
considered the scenario with 100 connections per neuron, where we obtained speedups between 5 and
7, depending on the firing rate. The results were different from the results obtained in Section 5.3 due to
the different firing rates used. Finally, with 100k and 200k neurons we could not simulate the case with
1000 connections per neuron, since the main memory in the computer was not enough to accommodate
the complete simulation.

We also evaluated the scalability of the kernel as we increase the number of neurons from 10k
to 200k, with a mean spike rate of 16 spikes per second. Figure13 shows that in all scenarios the
increase in the kernel execution time with the number of neurons was linear. For the simulations with
no connections (a), with a total of 10M connections (b), and with 100M connections (c), the slope
of the line is similar, with the execution times differing bya fixed amount, which is the time used to
process the spikes in the synapses of the target neurons. With 100 connections per neuron (d), the slope
is much higher, which is expected, since in addition to more neurons, there are also more spikes to
process. We can conclude from these results that the kernel execution time is linearly dependent on the
number of neurons and on the total number of connections, as we estimated in Section 4.3.

Another interesting point is that the kernel time increasesmore slowly than the problem size. When
we increase the number of neurons by a factor of 4 (from 50k to 200k), we obtained an increase in
execution time by a factor of 3.57 in (a), 2.62 in (b) and 1.59 in (c). This indicates that execution time
is not limited by memory bandwidth or amount of GPU processors. It is limited by memory latency,
since with more neurons the GPUs can overlap a larger number of memory requests, which is more
evident in the scenario with more connections and, consequently, more spikes to process.

6. CONCLUSIONS

The proposed algorithm and its implementation enable the simulation of large-scale neuronal networks
composed of 200k detailed neuronal models and 20M connections in a single computer with 2
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commodity graphic boards. Our implementation permits a considerable degree of flexibility when
constructing neuronal models, which can have different number of compartments and distribution of
ionic channels. Moreover, the network can have an arbitraryconnection pattern, allowing the execution
of many types of large-scale simulations.

The simulation of the detailed neuronal models, without spike dispatching, was up to 40 times faster
when using GPUs, compared with the execution using 4 CPU cores, showing that GPUs can be used
in detailed and complex simulations. For the complete simulation, with spike dispatching, we obtained
speedups between 5 and 10, which means that a single machine equipped with current generation GPUs
can substitute a small cluster containing from 5 to 10 conventional machines.

Spike dispatching is currently managed by the CPU, since it is necessary to exchange messages
between neurons executing on different GPUs. Our next step is to explore the feasibility of transferring
part of the spike dispatching processing to the GPUs, reducing the performance bottleneck. The
algorithm will need to circumvent the lack of efficient synchronization primitives between thread
blocks in CUDA and the information exchange between neuronsexecuting on different GPUs.

Next, we will develop algorithms that allow the simulation execution on multiple machines, which
will bring other challenges, due to the high network latency. Efficient load-distribution and placement
algorithm will be essential to enable the scalability of thesimulation with the number of machines.
Finally, we will develop tools that allow users to specify the neurons properties and connectivity using
well known description languages, which will enable scientists with no or little knowledge of parallel
programming to use the processing power available at budgetgraphics cards.
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