CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exp@000;00:1-6 Prepared usingpeauth.cls [Version: 2002/09/19 v2.02]

A Multi-GPU Algorithm for
L arge-scale Neuronal Networks

Raphael Y. de Camargd-, Luiz Rozanté, and
Siang W. Song?

tCenter for Mathematics, Computation and Cognition, Uréigaide Federal do ABC,
$Department of Computer Science, Universidade de Sao PBuail

SUMMARY

L arge-scale simulations of partsof the brain using detailed neuronal modelsto improve our under standing
of brain functionsare becoming areality with the usage of supercomputersand large clusters. However, the
high acquisition and maintenance cost of these computers, including the physical space, air conditioning,
and electrical power, limits the number the scientists that can perform this kind of smulation. Modern
commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUSs)
composed by hundreds of processors that can simultaneously execute thousands of threads and thus
constitute a low-cost solution for many high-perfor mance computing applications.

In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of
simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The
algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations
that model each neuron. Communication among neurons located in different GPUs is coordinated by the
CPU. We aobtained speedups of 40 for the simulation of 200k neuronsthat received random external input
and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer
with 2 graphic boardswith 2 GPUs each, when compared with a modern quad-core CPU.

KEY WORDS. GPU computing, CUDA, simulation, neural networks, Hodgkluxley model

1. INTRODUCTION

To improve our understanding of brain functions, such as argifd]], vision [2], cortical processing[3,

4], and mental illnesses |[5], scientists perform largdessamulations of parts of the brain using
detailed neuronal and connectivity models. In realistmusations, each neuron is modeled by a
set of coupled differential equations (from a couple to gends per neuron), that describe the

*Correspondence to: Raphael Y. de Camargo, Univ. FederaBf§y R. Santa Adélia, 166. Santo André/SP, Brazil, 09270-1
TE-mail: raphael.camargo@ufabc.edu.br

Contract/grant sponsor: Brazilian National Research CbY@NPq); contract/grant number: 550895/2007-8, 47420@9-8,
301652/2009-0

Contract/grant sponsor: CAPES ; contract/grant numbeN®YNational Senior Visiting Professor Program)

Received
Copyright(© 2000 John Wiley & Sons, Ltd. Revised

2 R.Y. DE CAMARGOET AL. %

dynamics of the neuron membrane and ionic chanhéld [6, Yrdts communicate through synaptic
connections, described by their source and target neuoamsinunication propagation delay and
synaptic weight. A simulation can contain millions of neasand billions of synaptic connections,
generating a high demand of computing power [8]. Largeessathulations are currently performed
on supercomputers|[B] 3], such as the IBM BlueGene, and Eepeers[[10, 11, 14]. The acquisition
and maintenance cost of these computers, including theégatypace, air conditioning and electrical
power to maintain those computers, is prohibitively highrfest institutions.

Modern GPUs, based on the CUDA platform[12] 13], have huteld simple processors that,
when used in parallel, can sustain high computing power. fouthe low cost of GPU boards
and small space requirements, their usage constitutes @allent alternative in the area of high-
performance computing. GPUs are optimized for SIMT (Sifigkruction Multiple-Thread) floating-
point operations, where a large number of threads execlngle snstruction, such as in the numerical
integration of a large number of differential equationse TTUDA platform has already been used for
a wide variety of applications, such as simulation of staticasystems of chemical reactions [14],
molecular dynamics [15], electrostatic potentidls] [16d éinid flows [17].

In the area of neural networks, Bernhaetl al. [18] simulated networks of integrate-and-fire
neurons, which are very simple neuron models representeddiggle differential equation. These
implementations are prior to CUDA, which means that the #tinn elements were mapped in
textures and the operations over the elements in geometnigaations. Nageswararet al. [19]
implemented a simulator for large-scale spiking neuralwoets, with neurons based on the
Izhikevich’s simplified spiking neuron modéel [20], whichnsore realistic than the integrate-and-fire
neurons and can generate some realistic behaviors. Thégnddsan efficient algorithm for spike
processing and delivering that work for their simplified ecommication model and on a single GPU.
In contrast, the detailed neuronal models, which we use imwark, include information on cell
morphology and ionic and synaptic channels, resulting ineds of state variables and differential
equations per neuron. The algorithms to solve the detaitzdts are more complex and very different
from the algorithms for simpler models. To the best of ourkisalge, there are no studies about the
simulation in GPUs of large-scale neuronal networks thatdetailed neuronal models. This paper
aims to fill this gap.

We present a CUDA algorithm that enables the execution, dtipteuGPUs, of simulations of large-
scale networks composed of biologically realistic HodgKuxley neurons Each neuron is modeled
as a set of coupled differential equations and dozens a&f statables. We assign a CUDA thread per
neuron and we launch thousands of threads per GPU that petfa numerical integration of the
differential equations in parallel on multiple GPUs. We tlse CPU to coordinate the communication
among neurons executed on different GPUs.

We implemented and performed a detailed experimental atialuof the algorithm, including the
analysis of simulation accuracy, speed-up compared to CBtidability analysis and profiling of
the execution time. We show that it is possible to performusations of networks with over 200k
biologically realistic neurons and 20M synaptic connewiosing a single computer, with 2 graphic
boards with 2 GPUs each, with the same performance of a spraleational cluster.

Simulator source code and experimental setup availafig@t/ncsc.ufabc.edu.br/ ~rcamargo/neuralcuda

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

http://ncsc.ufabc.edu.br/~rcamargo/neuralcuda

% A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 3

)| Muttiprocessor 1 L Multiprocessor N b) 5535555 :@ ‘\‘_
==/ B3 ||) -
i [55 B omoe
e e I 7 - - pa— ;
T | |

Device Global Memory $$$$§§ CUDA _______

Figure 1. The CUDA platform. a) Architecture of a modern GRbhtaining a large global memory and a set of

multiprocessors, each one with an array of floating-pointessors, a small shared memory and a large number

of registers. b) Hierarchical organization of CUDA threadthread blocks and in kernel grids, where each thread
block is assigned to a single multiprocessor.

2. CUDA PLATFORM

Modern graphic boards have powerful GPUs (Graphics Proapéit) composed of hundreds of
simple processors for floating-point operations, enabiivey parallel processing of a large number
of instructions [[12]. Figurd]l shows the GT200 architectumhich is organized as a set of
multiprocessors, each composed of 8 processors, a largbanohregisters, and a small high-speed
shared memory.

The CUDA architecture[[13] supports an extension of the Cgmmming language, where
programmers can define special functions, callethels which are executed in the GPU, while the
remaining of the CUDA programs are executed in the CPU. Fcin &arnel execution, the user must
define the number of threads to launch and divide the threabbcks, forming a grid of blocks. In
CUDA, each kernel block is executed in a single multiproogsshich execute the kernel threads of
each received block in parallel, as shown in Fiddre 1.

To use all then multiprocessors from a GPU, it is necessary to create att tebkbcks. Moreover,
each multiprocessor simultaneously executes group®(halirpg of w threads from a single block,
and several warps should be present on each GPU for efficsageuof its processors. For example,
NVIDIAs GTX 295 boards have 1982MB of global memory and 2 GRlW¢ach one with 240
processors divided among = 30 multiprocessors, and each one with 8192 registers and 16kB o
shared memory. If the warp size is 32, we would need0 * 32 x 4 = 3840 threads per GPU for
efficient execution, supposing we need 4 warps per block.

The main challenge when implementing efficient CUDA progsascoding the application in a
number of threads large enough to keep all the GPU processoupied. Each thread, however, should
also keep most of the state variable that it uses in the smaduat of shared memory available per

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

4 R.Y. DE CAMARGOET AL. %

Neuronal Equivalent electrical circuit
compartments for each compartment

Vo I Vi
SAMAAN

Ra

Vi
AN~
Ra

G 3n @2,

7777

|
.
|
|
|
|
|
|
|
|
|
|
|
|

Figure 2. Model of a single neuron as a set of isopotentialpatments, with each compartment represented by
an electrical circuit.

multiprocessor, since the global memory access latencerng kigh. With more threads per kernel
block, a smaller fraction of the thread state variables fitilin the shared memory, and thus it is
necessary to find a tradeoff between them.

3. SIMULATION OF DETAILED NEURONAL MODELS

Neurons are specialized cells that have a polarized meraliheat maintains a potential difference
of about 60mV between the internal and external mediumsrimdition processing occurs through
changes in this membrane potential. To enable the efficienilation of the neuron dynamics, we
model neurons as a set of isopotential compartments caethégt a radial resistance! [6, 7]. Each
compartment functions as an electrical circuit, with thi weembrane represented by capacitors and
ionic channels by resistances, as shown in Figlire 2.

The membrane potenti#l,, (¢), at timet, is determined by integrating a set of differential equagio
with each equation representing a neuronal compartmeshown in Figuré2. We must integrate a
separate set of differential equations for each neuroneséiach one has different values for its state
variables, such ag,,. The equation for each compartment has the form:

de (t) Em - Vm (t) V741 _ Vm (t) er B Vm (t)

Om dt — Rm + Rfl + Ra + Izon (t) + Iemt (t) (1)
where the constarit,, represents the membrane reverse potertiglthe membrane capacitande,,
the membrane resistance, aRglthe axial resistanc&’ , V" andR,, are the corresponding values for
the neighbor compartments.

The variablel,.,;(t) is the external current applied in the neuron dng(¢) is the current that pass
through ionic channels present in the membrane. The cuffgnin each compartment is given by:

Lion(t) =) (Bi = V(1)) Gi(t)

2

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

@ A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 5

where: represents the ionic channel from each compartni@st, the conductance of the channel at
time ¢ and E; the reverse potential for the ions that pass through channel

Active channels. The voltage dependent active channels are responsiblgifa generation [€,17],
which occurs when the membrane potential reaches a thogsaiodl is the mechanism by which
neurons communicate. Active channels are modeled as a sgate$, that can permit or block
the passage of ions, with independent dynamics of openidgchosing, as proposed by Hodgkin-
Huxley [21]. For example, we can model sodium (Na) channglkaving two gatesy andh, that
control the flow of ions through the channel.

We represent the set of Na channels of each compartmentiagla shannel, with the conductance
of the channel at timegiven byG n o (t) = gmazy, * m> * h, Whereg,q. ., represents the maximum
conductance of the channel. The gate variableendh assume values from 0 to 1.0, representing the
percentage of gates that are open at timehe dynamics of each gate is given by an equation of type:

WU — (V)1 =~ (D) ~ Bun(VImit) @
where ., (V) and 3,,(V) are the rate of opening and closing of the gateand their values are
dependent on the membrane poteritial’here are similar equations for gatewith different functions
ap (V) andg, (V). Functionsy(V) ands(V') are the main determinants of the active channel activity
and different models have distinct functions.

Cells can have others types of channels, such as potassiuoh@fnels, with a single gate type
and conductance given W¥x (1) = gmazy * n?.

Synaptic channels. They are the main communication mechanism in neuronal mks\@] and are
activated by the release of neurotransmitters from a peggicineurory in a synaptic channélof a
postsynaptic neuron, which are triggered by spikes gee@etneuror. The behavior of the neuronal
network is determined by the pattern of connections amoagdurons and the synaptic weight®f
these connections, which determine the strength of inierez Depending on the connection pattern,
networks can act as pattern recognition networks in thealisystem|[[2], control visual attention, or
enable the storage of long-term memoriés [1].

The conductanc€’;(t) of each synaptic channgeht timet is given by:

t — tspk t — tspk
Gi(t) = Zginmwjiifp exp(l — 7751)) 3)
spk
wherespk represents each delivered spikg, .. the maximum conductance of the channej; the
synaptic weight for spikes from source neuron,, the delivery time of each spike andhe channel
time constant, which defines the speed of the activationrantivation of the synaptic channel. After

a period of4 * 7, the contribution of a spike in the postsynaptic cell candmesadered negligible.

4. THE SIMULATION ALGORITHM

The simulation has two main parts, which are: (1) integrati the set of differential equations
representing the compartments of each neuron; and (2) spike processingatherlgorithm verifies

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

6 R.Y. DE CAMARGOET AL. %

s T

Transfer updated list | : Simulati
of received spikes |[«-—F— imulation
from CPU to GPU | setup

GPU

Transfer list of : | Processing Removal of
generated spikes [————>| of generated || old spikes and |:
from GPU to CPU : : spikes spike list update | :

Figure 3. The simulation algorithm. It is composed of thelgation setup and a main loop with two parts: (1)
integration of the set of differential equations of eachrnapand (2) spike processing.

the spikes generated at each neuron and delivers it to thremgeto which it connects. The first part
is the most computationally demanding step of the simutediod which we implemented as a CUDA
kernelfor execution in the GPU. The second part involves the messagchanged among neurons
located in different GPUs and, consequently, we used the ©Ridrform the spike processing.

The simulation algorithm is divided in steps, shown in Fi8r It starts with the simulation setup,
which configures the neurons, allocates memory in the dégieghic board) and transfers the neuron
simulation data from the host (computer) main memory to theim memory. The bulk of the
algorithm consists of the parts 1 and 2, which are executedatedly until the simulation finishes.
Our algorithm permits the usage of multiple GPUs, in whickeca different CPU thread is launched
for every GPU used.

In part 1, the simulator transfers information about detgespikes to the GPU, launches the CUDA
kernel, which solves the differential equations, and, Enalansfers the list of generated spikes from
the device to host memory. In part 2, the algorithm checksstlikes generated by each neuron and
sends the spikes to each neuron that it connects, and thehreyiizes the CPU threads to guarantee
that they all finished the spike delivery. Finally, it proses the list of spikes received at each neuron,
removing old received spikes and organizing the spikegémsferring to the device memory.

We decided to perform a sequencendhtegration steps during each CUDA kernel execution. This
does not cause any effect in the simulation results, sindgalogical neuronal networks there are
communication delays between spike generation and postpsig activation. For a communication
delay of10ms anddét = 0.1ms, we can safely choose = 100. The execution ofi integration steps
per kernel call has two performance advantages: (1) théheaerof each kernel call is too high, due
to the process of switching the execution to the GPU and thema@ation of the shared memory of all
multiprocessors; and (2) the CPU threads must synchronidegispike processing, to guarantee that
the spikes will be delivered at the correct time. Procesaimgegration steps per kernel call reduces
the number of kernel calls and synchronizations by a fadtar. o

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

@ A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 7

Neuronal
compartments Matrix A Triangularized A

‘a a4 0 33 0 4y 0 33 0

dendrite a 0 2, 3y, 0 0 3, 8y, 0
0
0

831 833 833 Ay 0 833 83
soma 0 0 0 85342, 0 0 a
Figure 4. Triangularizable matriA generated using the Hines method. Compartménassigned to line, which
contains non-zero elements only in the columnthat represent the links with other compartmerits

44

4.1. CUDA Kernel

To solve the system of differential equations of each neuvem used the method described by
Hines [22]. In this method, the equations are coded as arlgyestem of the typel « V = B, where
Ais ak x k sparse matrix, with its rows containing the voltage-degendaoefficients from each
compartmenty is a vector of sizé: containing the membrane potentid},(¢) on each compartment,
and B is a vector of size containing the potential independent values. In each iatem step the
linear system is solved and the simulation advances a titaeval §t. Since matrixA is sparse, we can
represent the matrix as an array of sizg:).

If matrix A is triangularizable, we can solve the system by perforntiegitiangularization followed
by back-substitution, where we evaluate first the valué/pf which is the potential of the last
compartment, followed by, and so on. A triangularizable matrix is produced by numigethe
compartments starting at the most distant one and finishithg@domal[22]. Figurigl 4 shows a neuronal
model with 4 compartments and the corresponding A matrirfgedind after the triangularization.

4.1.1. Kernel algorithm

We map each neuron as a single CUDA thread, with each thredidrmpéng all the steps of the
Hines method for its corresponding neuron, since the trikrgation and back-substitution must be
performed sequentially for each neuron. Figure 5 showsithelation steps for each kernel thread.
Step 1 transfers the heavily used data from global memohetstiared memory, reducing the memory
access time. In steps 2 to 6, the kernel performs the nunhémtegration of the neuron equations,
repeating these stepstimes. The kernel finishes in step 7, where the data modifiedglthe kernel
execution, such as the membrane potential and active chgateestates are written back to global
memory. We describe steps 2 to 6 in detail below.

Active channels. To determine the current passing through each active chamretep 2, it is
necessary to evaluate the state of each gate from the charmiet is done by integrating Equatibh 2.
Since the functiona andg are dependent o¥i, they must be evaluated in every integration step. From

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

8 R.Y. DE CAMARGOET AL. %

(1) Copies the neuron states from global to shared memory

For each integration step of the kernel

v

(2) Evaluates the state of active channels
(3) Evaluates the conductance of synaptic channels
(4) Updates the Hines matrix and the right-hand side of the system
(5) If necessary, performs the triangularization of the matrix.
(6) Performs the back-substitution to solve the linear system
i \
Y

(7) Writes the neuron states to global memory

Figure 5. Simulation steps of the CUDA kernel. This algaritts executed in parallel by each kernel thread.

the percentage of gates open for each type of channel it slpedo determine the conductance of
each active channel and the current passing through it.

Active channels are responsible for spike generation, lwhie triggered when the membrane
potential exceeds a sharp threshold. During spike geoeratie channels conductances change very
rapidly and the values of the currents passing through eetdleachannel are used to determine the
potential on each cell compartment. The presence of theeactiannels generates a system of stiff
differential equations, which is the limiting factor fordreasing the step size. To enable the usage of
integration steps of moderate size, we determine the valit®e channel gates (Equatioh 2) and the
currents of the active channels at the midpoint of each tieye, shat is¢ + 6¢/2, which increases the
precision of the integration.

Synaptic channels.In step 3 we evaluate the current in the synaptic channelghwdre activated
by spikes generated in the presynaptic neurons. The siomdaaluates Equatidd 3 for every spike
delivered to each synapse in the neuron. For each neuronge ik the main memory an array
containing the time of each generated spike and the comeépg synaptic weight. But since each
neuron can receive spikes from thousands of neurons, itisassible to transfer the complete array to
the shared memory, so the spike times are obtained from ¢talginemory at every integration step.

The global memory access latency compromises the kernfdrpeance, but we can reduce this
problem by running a higher number of threads per block,fangple, 128 threads. In this case, while
some threads are waiting for the spike information from thaebg memory, others are evaluating
their synaptic channel conductance from spikes obtainedquisly. Moreover, in each global memory
access, we can fetch information about multiple spikes.

Solving the linear system.The kernel solves the linear system of equations represgiite cell
compartments in steps 4 to 6. We perform implicit integraiiothe system of differential equations
that represent the cell compartments (Equdilon 1), siraléoitvs the usage of larger integration steps.

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

@ A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 9

Step 4 is straightforward and consists of updating the 1iigind side (vectoB) of the system and the
matrix A. Next, we triangularize the updated matrixif needed). When there are active channels only
in the cell soma, only the coefficient of the last compartmemhodified and, consequently, there is
no need to triangularize matrik in every step. When the channels are located in other compats,
the triangularization in every step is required, since tbefficients of other compartments are also
changed. Our simulator takes advantage of this and trianigak the matrix4 only when necessary.
After the triangularization, the kernel finishes the intggim step by performing a back-substitution,
where we first evaluate the value of the last compartmentg$owhich we will call compartmeri,
then the value of compartmeht- 1 and so on, until we evaluate all the potentials at tirredt.

4.1.2. Kernel algorithm implementation

The performance of CUDA applications is determined by thetfon of GPU processors active at each
moment. This requires the usage of a large number of threatithat threads have immediate access
to the data they need, which is accomplished by putting thie stariables that each thread needs in
the shared memory. Determining the number of threads (nelmer kernel block is an important
parameter. On the one hand, more neurons mean the pogsifiliigher parallelism, since more
threads can be executed by each multiprocessor. On thetahdy the shared memory will hold only
a smaller part of the neuron state, requiring more accesshs high-latency global memory.

We need to keep separate storage space for the state vaonébkrh neuron, such as thig on each
compartment and ionic and synaptic channels states. Siecehtared memory can hold only part of
these variables, we selected the ones used multiple timeaamnintegration step and whose state must
be kept across the integration steps, such a¥thand the channel gates state. This enables a higher
number of neurons per block, compensating the latency dalgeaccesses to the global memory,
since there will be more threads ready for execution. We bsédeen 32 and 196 threads per block,
depending on the number of compartments per neuron andebésion of floating point numbers.

To perform load-balancing, we define a selection of neurpagyand allocate each simulated neuron
to one of these types. Load-balancing is obtained by digtrij evenly the blocks among the GPUs.
This grouping also promotes a reduction in shared memogajsince we can share static information
that is equal for all neurons of its type, such as morphollggad membrane property information,
which are consolidated in the Hines matrix.

There are several optimizations that can be applied to CUPglieations, such as coalescing
global memory accesses and preventing access conflicte ihahks of the multiprocessors shared
memory. Such optimizations often bring important perfonceenhancements [13]. We applied these
techniques in our code, specially in data that are accedsenl, such as the membrane potential on
each compartment, the current in the active channels arsddtesof the active channel gates. Although
they brought some important gains in performance, thesafaia optimizations are not the focus of
this paper and will not be discussed here.

4.2. Neuronal communications
After finishing the kernel execution, the next step of theudation algorithm, shown in Figuid 3, is

to process the generated spikes. For each neuron, the simgéds the list of generated spikes and
delivers the generated spikes to all neurons to which it eotsn The connectivity of each individual

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

10 R. Y. DE CAMARGOET AL. %

. Delivered
Synaptic spike list

connections
Y e

Genlsralted
spike list %
BRBUEN
AGE T f
f AEEETE]
AUEEEE
Y EEErEC
Neurons

R 27l [1]]

Figure 6. Spike processing and delivery, where the spikasrgéed by the pre-synaptic neurons during the last
kernel execution are delivered to all post-synaptic nesitorwhich they connect.

neuron is defined independently, including the number ofpgas, their weights, and axonal delay.
This allows the simulation algorithm to have the flexibiligquired for the majority of large-scale
simulations developed recently [3/1]4, 2].

The algorithm searches for spikes in all neurons of the sitiari and delivers the spikes to all its
post-synaptic neurons, as shown in Figdre 6. This genexdtege number of delivered spikes, making
the spike processing step of the simulation time and menmrguming. For instance, if there are 100k
neurons, each connected to other 1000 neurons, and the medrenof generates spikes per neuron
per kernel call is 2, there will be 200 million delivered spikafter each kernel call. Each synaptic
channel from each neuron has a delivered spike list thasamall the spikes that contains the spike
time and synaptic weight for each spike delivered to the gijo@hannel. The delivered spike list is
copied to the GPU before starting the CUDA kernel executisriie nextn steps, and is transversed
on every integration step to determine the current on eashpic channel. The spike list resides in
the high-latency device global memory and, consequertiycing the spike list size improves both
performance and memory usage.

We used two strategies to reduce the number of entries inegliveded spike list. The first was to
implement this list as a hash map, which maps the spike tintie thé connection weight. If two or
more spikes generated at the same time are delivered tonhpsy, they are merged in a single entry
by summing the weights of each connection, thus reducingtimeber of spikes to process in each
integration step. The second strategy was to remove thespgi&nerated earlier tham time units
from the current time, where is the time constant of the synaptic channel, since thesespiould
have negligible impact on the neuron synaptic currentserAdelivering the spikes, we traverse the
hash map of each synapse and eliminate the old spikes. Hovwesea with these optimizations, spike
delivery causes most of the memory consumption at the hoshima and is the limiting factor for
increasing the simulation size.

Another option would be to perform spike processing andvdegfiin the GPU. Performing spike
processing completely in the GPU is not possible, sincevtioisld involve communication between

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

@ A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 11

threads of different blocks running on different GPUs. Hearewe could perform most of this task
in the GPU, leaving to the CPU only the task of dispatchingtiessages to the correct GPUs before
the next kernel launch. This possibility is indicated by Bagaranat al. [19], which developed an
algorithm for spike processing and delivery in CUDA. Theaaithm works only for single GPUs and
when using much simpler neuronal and synaptic models, wiherapike time and synaptic weight
information are used only once per generated spike. Butibiclear that an efficient algorithm can
be developed for simulations using multiple GPUs, which Maequire the synchronization among
threads of different GPUs and transfer of large amountsfofimation among the GPUs, and detailed
neuronal and synaptic models, where spike information éxl fer several integration steps. Since
the simulation of neurons is the most computationally dedimanpart of the complete simulation, we
decided to focus this work on the efficient simulation of dethneuronal models, performing the spike
processing and delivery in the CPU.

4.3. Time complexity

To determine the time complexity of the kernel, we evaluatetime necessary to solve the linear
system of differential equations and the currents in thigaeind synaptic channels. The Hines matrix
is sparse and can be implemented as a linear array of¥iz€omp), wherenComyp is the number
of compartments. Consequently, the time spent solvingitieat system i€ (nComp) per neuron at
each integration step. The time to evaluate the currenteofttive ionic channels is dependent only
on the number of active channelsictive. Finally, to determine the time spent evaluating the syioapt
currents, we need to determine the number of active spikesywaptic channel, where each spike
remains active during at least an entire kernel executi@fining nConn as the average number of
connections per neurospk Rate as the mean spike rate of the neurons, Bftkps as the number of
steps per kernel call, results@(nConn * spkRate * kSteps) spikes actives at each synapse.

The complete simulation hasSteps integration steps andN eurons neurons. The total processing
time of the kernel i€)(nSteps * nNeurons x (nComp + nActive + nConn * spkRate * kSteps)),
which indicates that the synaptic processing is the dontifa@tor in kernel processing.

Spike processing and delivery is executed in the CPU afieh karnel call, and it needs to deliver
each generated spike to every post-synaptic neuron. Iﬂl'exjo@(zgﬁjgz) times and the number of
active spikes per neurond@(nConn * spk Rate x kSteps). Consequently, the total processing time of
the spike processing and delivery in the CPWig1Steps * nNeurons * nConn x spkRate), which

is lower than the kernel complexity by a factorieSteps.

5. EXPERIMENTS

We evaluate the simulator to determine the performancesgalitained with the usage of GPUs
in comparison with CPUs and to check the precision of theiobthresults. We performed the
experiments using a computer with a 2.66GHz Intel Core i7 @2@essor, 6 GB of RAM memory

and 2 NVIDIA GTX 295 graphic boards, with 2 GPUs and 1892 MB @fmory on each board. We

used a 64 bits Ubuntu 9.04 operating system, CUDA versiom2d3graphic drivers version 190.18.
We used the g++ compiler, configured to generate optimizdé wgth the option -O3.

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

12 R. Y. DE CAMARGOET AL. %

Besides the GPU implementation, we also implemented thelator using the CPU, with the
objective of comparing the performance gains obtained Withusage of GPUs and the differences
in the simulation results due to precision differences.tth versions, we can configure, at compile
time, the simulation to run with double precision or singtegision floating point numbers. We used
C++ to implement the simulation in the CPU. It shares moshefdode with the GPU version, except
for the kernel, which in the CPU version was coded in a clasd¢ilinesMatrix that solves the
linear system. This class performs the same simulatiors stefhe GPU kernel, but we assign to each
CPU core a fraction of all the neurons, and each core perforensteps for each neuron of its fraction.
One important difference is that the CPU does not have admaeenory controlled by the application,
but a large cache memory that is controlled by the CPU, riesuilh a much simpler code. Neurons
are statically divided equally among the cores during theuation startup, resulting in a balanced
distribution of load among the cores.

In all simulations we used a network with two types of neur(pyamidal and inhibitory). Each
neuron contains the 2 types of active ionic channels (Na andescribed in Sectiop] 3. Pyramidal
neurons have 2 types of synaptic channels, excitatory (AM&#Ad inhibitory (GABA) channels,
while inhibitory neurons have only excitatory synaptic chels. Each pyramidal neuron is connected
randomly toN other pyramidal cells an&/ other inhibitory cells through excitatory AMPA synapses,
and each inhibitory cell is connected to a single pyrami@él through a inhibitory synapse. These
neuron types and network architecture resemble the egistodels of the cerebral cortex [3/5, 2]. We
use the same number of pyramidal and inhibitory cells anghyn@midal cells receive random external
synaptic input.

5.1. Simulation precision

Current GPU architectures have higher performance whengusingle precision floating point
representations, since it has more processors dedicatsidgle precision float) numbers than to
double precisiondoublg ones. Moreover, the amount of shared memory in each motigssor is
very limited (16 kB), and double precision numbers use twieememory[[18]. The next generations
of GPU cards will improve double precision performance ader@bly [23], but it is not clear if the
difference in performance will be eliminated in the neaufet

We compared the differences in performance and precisieanvaxecuting the simulation using
the doubleandfloat data types. We used a network with 100k neurons with 4 commeant and two
connectivity patterns: the first with no connections andskeond with 100 random connections per
neuron, for a total of about 10M connections. We used a sitioalaimé] of 10s, during which the
neurons received random synaptic input and generated aagevef 21 spikes per second per neuron
for the network with no connections and 44 for the connecter We executed 5 series of simulations,
varying for each simulation series the connections betwleeneurons and the input spikes.

Execution time penalties.We evaluated the execution overhead of using double poecisimbers
in the GPU. When we consider only the execution time spenhénkiernel processing, we have a

TWe use the ternexecution timeéo denote the time spent to execute the simulationsamlilation timeto denote the elapsed
time in the simulated neuronal network.

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 13

G

No connections 100 connections/neuron

=
o
=
a
=]
T

CPU, double
o

Number of spikes (x1000)
Number of spikes (x1000)
CPU, double

0 20 40 60 80 100 0 20 40 60 80 100
Interspike interval (ms) Interspike interval (ms)

GPU, float
GPU, float

Number of spikes (x1000)
Number of spikes (x1000)

0 20 40 60 80
Interspike interval (ms) Interspike interval (ms)

[N
o
<]
o
n
=1

40 60 80 100

Figure 7. Comparison of the distribution of interspike imtds when using different precisions in the GPU and
CPU versions. We considered the scenarios with no conmactiod 100 connections per neuron.

performance penalty of 43.8% for the simulation of isolatedirons and 49.8% for the simulations
with 100 connections per neuron, when using double pretisiombers instead of single precision
ones. When we consider the total execution time, these fientdll to 29.9% and 16.5% respectively.
As expected, these results show that the performance mniltthe GPU are considerable and we
should use single precision numbers if they produce corescilts in the simulation. As a comparison,
for the simulations using the CPU, the usage of double-pi@tinumbers incurred an overhead that
was always below 3%.

Precision errors. To evaluate possible differences in simulation resultspyaed the distribution of
inter-spike intervals, which summarizes the neuronal atdork dynamics. Figuifg 7 shows the mean
distribution of inter-spike intervals when considering tbpikes of all neurons in the network. The
topmost graphics shows the distribution of inter-spikefiwals for the simulation in the CPU with
double precision numbers and the bottommost graphics stimvamulation in the GPU with single
precision. The left-hand side graphics show the simulatitn no connections and the right-hand side
ones the simulations with 100 connections per neurons.

With no connections, there is a larger number of inter-spitervals starting at about 15ms and this
value slowly decreases as we increase the interval sizeeMadues correspond to the time between the
input stimulus in the neurons, which is distributed in a gamfashion. In the connected network, there
are three peaks at the intervals 15ms, 57ms, and 72ms, whigaadue to the network architecture,
where pyramidal neurons are connected to inhibitory oneistwimhibits other pyramidal neurons.
This metrics is very useful since it summarizes the dynawifitke network. Comparing the results of
the simulation using the CPU and double precision with th#te GPU with single precision, we can

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

14 R. Y. DE CAMARGOET AL. %

see that the differences are very small, which shows that¢heorks have no significant differences
in their dynamics.

There are scenarios where the usage of double precisionerambuld be important. For instance,
one can consider a network containing a few detailed nelmodels composed of hundreds of
compartments and dozens of ionic channel types. In theselations, the exact response of each
neuron can be as important as the dynamics of the neuronalgitgm. But this kind of model is not
suitable for simulation in GPUSs, since it cannot be easilfifianed among kernel threads.

Since single precision numbers provide sufficient prenisiothe simulations that are suitable for
execution in GPUs and performance is the main issue, wlastes the default floating point type in
our simulator.

5.2. Distribution of the execution times

We evaluated the distribution of execution time in the défe parts of the simulation. The objective
was to determine which tasks contribute most to the totatuken time, thereby allowing a better
understanding of the gains in the execution time obtainethbyusage of GPUs in the simulation.
In this experiment and in the next ones we use single precisionbers for both CPU and GPU
simulations.

We used simulations with 20k and 200k neurons and conngesvof 0, 100 and 1000 random
connections per neuron. We also varied the synaptic weighébling the pyramidal neurons to operate
with 2 mean firing rates: 16 spikes/second (low) and 60 sfskesnd (high). These rates correspond to
those found in the cerebral cortéx [3]. In the 200k neurorusitions, we did not consider the network
with 1000 connections per neuron since 6GB of RAM memory endbmputer was not enough for
spike processing.

We compared the execution times for the same simulationgusia GPU and CPU, with the
difference that the CPU does not need to perform some of éips she GPU simulation performs, such
as transferring data to and from the device memory. For #tpe@ment, we divided the simulation in
3 sections:

e HinesKernel:the time spent in the simulation of each neuron, includirgittiegration of the
differential equations of the compartments and active nbkx and evaluation of the synaptic
channel currents. In the GPU version, this representsitiedpent inside the GPU kernel,

e ConnReadthe time used to process the generated spikes and delivetthine target neurons;

e ConnWrite:the time spent to process the received spikes on each néactrding the removal
of old spikes and, in the GPU version, to prepare this infdiongor transferring to the device
memory.

The topmost graphs in Figuré 8, plotted in logarithmic scst®w the execution time in each of the
steps for the network with 20k neurons (left-hand side grapd 200k neurons (right-hand side graph).
We can see that the total execution time increases rapidiyeaacrease the number of connections
and the spike rate. The increase occurs not only in the spikeepsing steps, but also in the the
simulation of each neuron (HinesKernel), since in eactgiation step it is necessary to evaluate the
synaptic activity on each neuron. Consequently, the maitofahat determines the execution time is
the number of spikes delivered to neurons.

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 15

G

20k Neurons 200k Neurons

10.000 T 10.000
> - HinesKernel >
- w
@ 1.000f [l connRead 1 glooo
= [Jconnwrite £
S 100 § 100
5 g
2]
E g 10
%] (7]

1 1
no connections 100 conn/low 100 conn/high1000 conn/low 1000 conn/high no connections 100 conn/low 100 conn/high
Number of connections, spiking rate and device type (GPU/CPU) Number of conn., spiking rate and device (GPU/CPU)
o 100% ©100%¢
£ £
s 75% _5 75%
K] 3
g 50% é 50%
£ =
B 25% G 25%;f
L B
0 > n " 0 - p
no connections 100 conn/low 100 conn/high1000 conn/low 1000 conn/high no connections 100 conn/low 100 conn/high

Number of connections, spiking rate and device type (GPU/CPU) Number of conn., spiking rate and device (GPU/CPU)

Figure 8. Distribution of execution times in each part of¢iraulation. The topmost graphs, plotted in logarithmic
scale, show the execution times in seconds. The bottommaghg show the percentage of the total time.

The bottommost graphs show the percentage of the executierspent in each of the steps. With
no connections, nearly all the execution time is spent irHinesKernel section for the CPU and about
80% for the GPU version. For networks with 100 and 1000 randonmections per neuron we can
see that most of the GPU execution time is spent in spike psirtg and for the CPU most of the
time is spent in the kernel processing. Actually, the timéig communication steps (ConnRead and
ConnWrite) is the same in the CPU and GPU versions, but shie&drnel is executed faster in the
GPU, the relative contribution of the former in the total exton time is higher in this case. However,
in both cases, as we increase the number of generated anerddlspikes, the relative contribution of
the spike processing part also increases.

This experiment confirms that solving the differential eifpuas of the neurons (HinesKernel) is the
most demanding step, requiring at least 80% of the totalgi@cttime in the CPU simulations. Our
CUDA implementation of the the HinesKernel step resultethipressive speedups, between 20 and
60. As result, the contribution of this step in the GPU sirtialabecomes as low as 11.1% of the
total execution time, in the simulation with 200k neurons &igh firing rates. Consequently, spike
processing is responsible for up to 88.9% of the executioe in the GPU simulation and to obtain
higher speedups our next step will be to develop multi-GRjdrithms to accelerate spike processing.

We also evaluated the performance improvements obtainpdbgrming multiple integration steps
in each kernel call. Figurg]l 9 shows the time spent in the keand communication parts of the
simulation for different numbers of steps. The left-hartegiraph shows the results for the simulation
with 10k neurons and no connections between neurons. Thell@tecution time increased only 3.6%
when the number of steps was reduced from 100 to 50, but eésed 26.5% for 10 steps, and 267.7%

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

16 R. Y. DE CAMARGOET AL. %

No connections - 15 spikes/s 100 conn/neuron - 15 spikes/s 100 conn/neuron - 60 spikes/s
100 1.000 1.000
— 4 —Kernel execution — & —Kernel execution — 4 —Kernel execution
- 8 - Communication - B8 = Communication — 8 — Communication
z —o— Total time O —o— Total time z —o— Total time
o 10 o o 100
£ £ E
= = =
§ (=~ 2 5 ®-8 g
5 3 5
~ (%} - —
8 1 ~-Ya__a-9 o § O T - A —A- - _A-_A-a
i T a a in]
“m
bl
0.1 1 1
1 10 100 1 10 100 1 10 100
Number of steps per kernel call Number of steps per kernel call Number of steps per kernel call

Figure 9. Effect of changing the number of integration spgach kernel launch. The graphs, plotted in log-log
scale, show the execution time of the kernel part, commtioicpart, and complete simulation.

for a single step. The right-hand side graph shows the sefulthe simulation with 100 connections

per neuron and a mean spike rate of 60 spikes per second, thiedeernel overhead was negligible for

50 steps, 2.3% for 10 steps and 25.7% for a single step. Thesise in the kernel execution time was
expected, since there is an overhead for launching the kandetransferring the state of the neurons
from the device global memory to the shared memory. In thea@e with the synaptic connections

the increase was smaller because more time is spent pnogessih integration step.

But in all scenarios of Figurigl 9 the time of the communicatase increased much faster than
the kernel processing, since they must be performed befmie leernel call. In simulation with 100
connections per neuron and 60 spikes/s, the increase iotdi@kecution time was 15.4% for 50 steps
and 111.9% for 10 steps. For the complete simulation, theheael of performing 50 steps per kernel
launch can be acceptable, but for 10 steps the overheadlggho

5.3. Performance gain with the usage of GPUs

We evaluated the performance gains obtained with the usa@®U0s and the speedup obtained as
we increase the number of GPUs. The simulation configuragisimilar to the ones in Sectién 5.1,
except for the number of neurons (1k, 10k, 100k, and 200k)rendonal compartments (4, 8, 12,
and 16). We compared the case with no synaptic connectiahsvith 100 random connections per
neuron, with pyramidal spikes rates of 9 spikes/s and 10esysk respectively. We simulated up to
200k neurons, which due to the amount of memory availablaéngraphic boards, is the maximum
number of neurons that can be simulated in a single GPU. I€&id simulation, we used all the 4
cores of the processor, by launching 4 threads, each onemngbie for one quarter of the neurons.
We measured the speedup of the GPU simulation, in compasigbrthe one using the CPU, when
we varied the number of compartments per neuron. Figure d@sthat as we increase the number of
compartments in a simulation with 100k neurons and no cdiores; the obtained speedup decreases.
This occurs because the amount of state variables per newmases linearly with the number of
compartments per neuron, requiring a reduction in the nuronbaeurons per kernel block. Many

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 17

Speedup vs number of compartments

40 SRR - 1k neurons
[10k neurons
30 |:| 100k neurons
é‘ []200k neurons
g 20
n
) -l H H
0
4 8 12 16

Number of Compartments

Figure 10. Speedup obtained with the usage of 4 GPUs for atinnk using neurons with different complexities,
compared with the usage of 4 CPU cores.

Without connections 100 connections per neuron
40}| — = ~ 1k neurons 12f| - - - 1k neurons b
— 10k neurons - ol 10k neurons |
30l|~ ~ ~ 100k neurons B] -~ ~100k neurons
o —— 200k neurons 2 8| —— 200k neurons 1
o o
(3 [
8 201 o 6r i
»n (7]
4k |
10r -
=]
ol . . ol . . .
1GPU 2 GPUs 3 GPUs 4 GPUs 1GPU 2 GPUs 3 GPUs 4 GPUs
Number of GPUs Number of GPUs

Figure 11. Speedup obtained using different number of GRidgared with the usage of 4 CPU cores.

realistic simulations use at most 8 compartments per neunaking this reduction in performance
less important. We do not show the results for the simulatiith 100 connections per neuron because
the number of compartments per neuron influences its dyrsaarid, consequently, the number of
generated spikes per neuron, which would cause distoriticthe execution time of each simulation.
We also measured the speedup as we increase the number off@Rifaulations with different
number of neurons and connections per neuron. The left$idadjraphic in Figule 11 shows the mean
speedup and the standard deviation, measured over 8 exexafithe simulation with no connections.
The speedup is higher when simulating larger number of mejgpecially when using multiple cores,
since there will be more threads to maintain the GPU procssszupied. For instance, when using
10k neurons, it is better to use only 3 GPUs and when using Lkons, it is better to use only
one. But when simulation has at least 100k neurons, the speeith the number of GPUs increased

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

18 R. Y. DE CAMARGOET AL. %

Speedup using different connectivity and spiking patterns
10 T T

T
I 100 connections, low rate
I 100 connections, medium rate | |
- 100 connections, high rate —
[1000 connections, low rate

I:l 1000 connections, medium rate
[11000 connections, high rate ||

Speedup

! !
100k 200k
Simulation Type

Figure 12. Speedup obtained when executing simulatiomg UsiGPUs, for networks containing 10k, 20k, 100k
and 200k neurons, using 100 and 1000 connections per nendomean firing rates of about 16 spikes/s (low),
45 spikes/s (medium), and 60 spikes/s (high).

almost linearly and we obtained speedups of 40 for 4 GPUko#itjh neuronal networks always have
connections between neurons, this result shows that GRU=ffactive for solving the linear systems
of differential equations and the ionic channel equatictessary to simulate individual neurons.

In the case with 100 connections per neuron, the gains direasisiderable. When using 4 GPUs,
we obtained a speedup of 10 for the simulation of 100k neuaoxs10M synaptic connections, and
9 for the simulation with 200k neurons and 20M connectioree $peedups are lower because of the
time spent in spike processing and delivery, which is penfed in the CPU. Another difference is
that the speedup is lower when we increase the number of nearad, consequently, the number of
synaptic connections. Nevertheless, for the evaluatetbsioes, a speedup of 9 is excellent, allowing a
scientist to substitute a cluster with 9 machines by a siogk

5.4. Scalability with the number of neuronsand connections

We evaluated the changes in the execution time as we changenat network properties, such as
the number of neurons, connections per neuron, and spi&e\Wa performed the simulations using
4 GPUs, comparing the result with the simulation in the CPlemvhsing its 4 cores. The graph in
Figure[12 shows the speedup obtained as we varied the nurhbeumns (from 10k to 200k), the
number of connections per neuron (0, 100 and 1000), and tha speke rate of the pyramidal neurons
(low, with about 16 spikes/s, medium, with about 45 spikeasl high, with about 60 spikes/s).

The obtained speedup varied between 9 and 4, depending osptke rate and number of
connections. When we consider the same number of connegtenneuron and mean spike rate,
the speedup decreases as we increase the number of neurerts, tthe increase in the number of
dispatched spikes. For the same reason, simulations wite Bymaptic connections per neuron and

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

@ A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 19

(a) No connections (b) Total of 10M connections (c) Total of 100M connections (d) 100 connections / neuron
30 40

=
o

15
24

w
o

18

=
o

10

12

Execution time (s)
Execution time (s)
Execution time (s)
Execution time (s)
N
S}

o
=
o

6

0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Number of neurons (x1000) Number of neurons (x1000) Number of neurons (x1000) Number of neurons (x1000)

Figure 13. Scalability of the kernel as we increase the nurmbeeurons (from 10k to 200k) in a network without
connections (a), with fixed number of connections (b, c) aitd %00 connections per neuron (d).

higher spike rates, have a lower speedup. For the simutatigtn 100k and 200k neurons we only
considered the scenario with 100 connections per neuroerawkie obtained speedups between 5 and
7, depending on the firing rate. The results were differarhfthe results obtained in Sectionl5.3 due to
the different firing rates used. Finally, with 100k and 20@kirons we could not simulate the case with
1000 connections per neuron, since the main memory in th@atanwas not enough to accommodate
the complete simulation.

We also evaluated the scalability of the kernel as we inerelhs number of neurons from 10k
to 200k, with a mean spike rate of 16 spikes per second. Fil@rehows that in all scenarios the
increase in the kernel execution time with the number of oesiwvas linear. For the simulations with
no connections (a), with a total of 10M connections (b), aritth*OOM connections (c), the slope
of the line is similar, with the execution times differing byfixed amount, which is the time used to
process the spikes in the synapses of the target neurorrs1@ltconnections per neuron (d), the slope
is much higher, which is expected, since in addition to maerans, there are also more spikes to
process. We can conclude from these results that the keaeligon time is linearly dependent on the
number of neurons and on the total number of connectionseasstimated in Sectidn 4.3.

Another interesting point is that the kernel time increasese slowly than the problem size. When
we increase the number of neurons by a factor of 4 (from 50l0@k®, we obtained an increase in
execution time by a factor of 3.57 in (a), 2.62 in (b) and 1r5€c). This indicates that execution time
is not limited by memory bandwidth or amount of GPU processtiris limited by memory latency,
since with more neurons the GPUs can overlap a larger nunibreemory requests, which is more
evident in the scenario with more connections and, consgtyumore spikes to process.

6. CONCLUSIONS

The proposed algorithm and its implementation enable thalsition of large-scale neuronal networks
composed of 200k detailed neuronal models and 20M conmeciio a single computer with 2

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

20 R. Y. DE CAMARGOET AL.

commodity graphic boards. Our implementation permits asicirable degree of flexibility when
constructing neuronal models, which can have differentlmemof compartments and distribution of
ionic channels. Moreover, the network can have an arbitrampection pattern, allowing the execution
of many types of large-scale simulations.

The simulation of the detailed neuronal models, withoutsgiispatching, was up to 40 times faster
when using GPUs, compared with the execution using 4 CPUscehewing that GPUs can be used
in detailed and complex simulations. For the complete satmh, with spike dispatching, we obtained
speedups between 5 and 10, which means that a single maduip@ed with current generation GPUs
can substitute a small cluster containing from 5 to 10 cotiwaal machines.

Spike dispatching is currently managed by the CPU, since iteicessary to exchange messages
between neurons executing on different GPUs. Our next stiepaxplore the feasibility of transferring
part of the spike dispatching processing to the GPUs, reduttie performance bottleneck. The
algorithm will need to circumvent the lack of efficient symnchization primitives between thread
blocks in CUDA and the information exchange between neuesasuting on different GPUs.

Next, we will develop algorithms that allow the simulatiakeeution on multiple machines, which
will bring other challenges, due to the high network laterif§icient load-distribution and placement
algorithm will be essential to enable the scalability of gimulation with the number of machines.
Finally, we will develop tools that allow users to specifg theurons properties and connectivity using
well known description languages, which will enable sdatwith no or little knowledge of parallel
programming to use the processing power available at bugtgphics cards.

REFERENCES

1. Rolls ET.Memory, Attention, and Decision-Making: A Unifying Congiignal Neuroscience Approac®xford Univesity
Press, 2007.

2. Rangan AV, Tao L, Kovacit G, Cai D. Large-scale compateti modeling of the primary visual corte€oherent Behavior
in Neuronal Networksvol. 3. Springer Series in Computational Neuroscienc€92063-296.

3. Djurfeldt M, Lundqvist M, Johansson C, Rehn M, Ekeberg @péner A. Brain-scale simulation of the neocortex on the
IBM Blue Gene/L supercomputdBM Journal of Research and Developmdanuary 200852(1/2):31-41.

4. 1zhikevich EM, Edelman GM. Large-scale model of mamnmatiaalamocortical system®&roceedings of the National
Academy of Sciencédarch 2008;105(9):3593—3598.

5. Rolls ET, Loh M, Deco G, Winterer G. Computational modélsahizophrenia and dopamine modulation in the prefrontal
cortex.Nature Reviews NeuroscienSeptember 2008:696—709.

6. Bower JM, Beeman DI'he Book of GENESIS: Exploring Realistic Neural Models wit#h GEneral NEural Simulation
SystemSecond edn., Springer-Verlag, 1998.

7. Koch C, Segev | ((eds.)Methods in Neuronal Modeling: From lons to NetwarRsd edn., MIT Press, 1999.

8. Hines M, Carnevale N. Translating network models to pelrdbrdware in NEURONJournal of Neuroscience Methods
April 2008; 169(2):425-455.

9. Markram H. The blue brain projedtlature Reviews NeuroscienEebruary 20067:153-160.

10. Migliore M, Cannia C, Lytton W, Markram H, Hines M. Pasdlinetwork simulations with NEURONJournal of
Computational Neuroscien006;21:119-129.

11. Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewalti® Mefficient parallel simulation of large-scale neuronal
networks on clusters of multiprocessor computBrgo-Par 2007 Parallel Processingiecture Notes in Computer Science
vol. 4641. Springer Berlin / Heidelberg, 2007; 672—-681.

12. Owens JD, Houston M, Luebke D, Green S, Stone JE, PhiliipsGPU computingProceedings of the IEER00S;
96(5):879-899.

13. NVIDIA Corporation.CUDA 2.1 Programming Guid2009.

14. Li H, Petzold L. Efficient parallelization of the stocliassimulation algorithm for chemically reacting systenrs the
GPU.International Journal of High Performance Applicatiopablished online on June 16, 2009; .

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6
Prepared usingpeauth.cls

A MULTI-GPU ALGORITHM FOR LARGE-SCALE NEURONAL NETWORKS 21

15.

16.

17.

18.

19.

20.

22.

23

Anderson JA, Lorenz CD, Travesset A. General purposecutar dynamics simulations fully implemented on graphics
processing unitslournal of Computational Physi&008;227:5342—5359.

Hardy DJ, Stone JE, Schulten K. Multilevel summationletostatic potentials using graphics processing uRdsallel
Computing2009;35:164—177.

Bernaschi M, Fatica M, Melchionna S, Succi S, Kaxiras Hlekible high-performance lattice Boltzmann GPU code
for the simulations of fluid flows in complex geometri€oncurrency and Computation: Practice & Experieri2@10;
22(1):1-14.

Bernhard F, Keriven R. Spiking neurons on GPI®XCS'06: Proc. of the Int. Conference on Computational Soie
Lecture Notes in Computer Scieneel. 3994, Springer Berlin, 2006; 236—-243.

Nageswarana JM, Dutta N, Krichmarb JL, Nicolaua A, Viei®im AV. A configurable simulation environment for the
efficient simulation of large-scale spiking neural netveodn graphics processofseural NetworksAugust 200922(5—
6):791-800.

Izhikevich EM. Simple model of spiking neuronEEE Transactions on Neural NetworR803;14:1569-1572.

. Hodgkin AL, Huxley AF. A quantitative description of ménane current and its application to conduction and exeitat
in nerve.Journal of PhysiologyAugust 1952117(4):500-544.

Hines M. Efficient computation of branched nerve equatimternational Journal Biomedical Computatidanuary 1984;
15(1):69—76.

. NVIDIA Corporation.Whitepaper — nVidia’s Next Generation CUDA Compute Architee: Fermi2009.

Copyright(©) 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:1-6

Pre|

pared usingpeauth.cls

	INTRODUCTION
	CUDA PLATFORM
	SIMULATION OF DETAILED NEURONAL MODELS
	THE SIMULATION ALGORITHM
	CUDA Kernel
	Kernel algorithm
	Kernel algorithm implementation

	Neuronal communications
	Time complexity

	EXPERIMENTS
	Simulation precision
	Distribution of the execution times
	Performance gain with the usage of GPUs
	Scalability with the number of neurons and connections

	CONCLUSIONS

