
Design and Implementation of a Middleware

for Data Storage in Opportunistic Grids

Raphael Y. de Camargo∗ and Fabio Kon

Dept. of Computer Science, Universidade de São Paulo, Brazil

Email: {rcamargo,kon}@ime.usp.br

Abstract

Shared machines in opportunistic grids typically have

large quantities of unused disk space. These resources

could be used to store application and checkpointing data

when the machines are idle, allowing those machines to

share not only computational cycles, but also disk space.

In this paper, we present the design and implementation of

OppStore, a middleware that provides reliable distributed

data storage using the free disk space from shared grid ma-

chines. The system utilizes a two-level peer-to-peer orga-

nization to connect grid machines in a scalable and fault-

tolerant way. Finally, we use the concept of virtual ids to

deal with resource heterogeneity, enabling heterogeneity-

aware load-balancing selection of storage sites.

1. Introduction

Opportunistic grids are a class of computational grids fo-

cusing on the usage of idle processor cycles from shared

workstations [5, 10, 11] to execute computationally inten-

sive parallel applications. But, besides processor cycles, ap-

plications from several areas, such as bioinformatics, data

mining, and image processing, consume and/or produce

large amounts of data, requiring an efficient data manage-

ment infrastructure.

Current systems for data storage in computational grids

usually store several replicas of files in dedicated servers

managed by replica management systems [3, 4, 14]. These

systems usually target high-performance computing plat-

forms, with applications that require very large amounts

(terabytes or petabytes) of data and run on supercomput-

ers connected by specialized high-speed networks. But this

infrastructure is only available to institutions that can afford

the high costs associated with it.

Meanwhile, shared machines from opportunistic grids

often have large amounts of unused disk space. Combining

∗Supported by a grant from CNPq, Brazil, process #141966/03-3.

the free disk space of a few hundred machines, we can easily

achieve several terabytes of distributed storage space. Us-

ing these machines for storing data would improve resource

utilization and enable a low-cost solution for data storage

on institutions that have limited budget, for example in de-

veloping countries.

But data management on shared workstations requires

a sophisticated middleware infrastructure. These machines

are frequently turned off or restarted and can be used only

when they are idle. A distributed storage system using these

machines must ensure data availability in this highly dy-

namic and unstable environment. Also, computational grids

may encompass tens of thousands machines, requiring the

system to be self-organizing and highly scalable. Moreover,

these machines can be highly heterogeneous.

In a previous work [7], we proposed OppStore, a mid-

dleware that explores the usage of a peer-to-peer overlay

network for storage of read-only data in non-dedicated ma-

chines in the context of opportunistic grids. We also intro-

duced the concept of virtual ids to deal with load-balancing

and node heterogeneity. Using virtual ids, in addition to the

original node id provided by Pastry [16], each node receives

an extra virtual id, creating a virtual id space located on top

of the Pastry id space.

In this paper, we describe the implementation of Opp-

Store and its deployment in two current opportunistic grids.

We also show obtained experimental and simulation results.

We found that using OppStore with virtual ids improved

stored data availability significantly and the delay for stor-

ing and retrieving data seemed acceptable for most cases.

2. Related Work

FreeLoader [18] aims to use free desktop storage space

and I/O bandwidth to store scientific data. The system di-

vides a file into several fragments to improve performance.

Similarly to our work, it targets non-dedicated resources

for data storage. But it only considers static sets of ma-

chines from a single cluster, while we deal with dynamic



sets of machines distributed across several clusters. Also,

Freeloader does not consider load-balancing and machine

availability when choosing storage sites.

JuxMem [1] implements a data sharing service for grid

applications by combining the concepts of peer-to-peer and

distributed shared memory. As in our work, it organizes

grid machines as a federation of clusters connected by a

peer-to-peer model, with a node elected as cluster man-

ager in each cluster. Differently from our work, the authors

focus on the development of a writable distributed shared

memory for grid applications. This requires maintaining

several full replicas of stored data, which incurs large stor-

age and network overheads, specially when operating with

non-dedicated machines, where the replication level must

be higher. Also, they do not employ mechanisms for load-

balancing and the availability properties of machines is not

considered when choosing storage sites.

A common technique for data grids is the usage of

data replication in conjunction with a replica location sys-

tem [3, 4, 14]. Some replica management systems [4, 14]

use compression schemes, such as Bloom filters, allowing

replica managers to have complete knowledge about replica

locations on the grid. The search mechanism is fast and the

system has a high degree of fault-tolerance. But due to the

global knowledge of replica locations, these systems have

limited scalability. Also, the servers maintaining the replica

locations are usually configured statically.

Cai et al. [3] built a replica location system using a

distributed hash table to provide self-organization and im-

proved fault-tolerance and scalability for the replica loca-

tion system. The system only deals with replica location,

while OppStore also deals with storage in non-dedicated

repositories, including the selection of appropriate reposi-

tories. Also, the proposed replica location service employs

load balancing only for replica location queries and consid-

ers that all the servers have equal capacities. Our system

uses a load-balancing technique that takes into account the

heterogeneity of shared machines in grid clusters.

3. Peer-to-peer Networks and Virtual Ids

In OppStore, we extended the Pastry [16] protocol to in-

clude the concept of virtual ids. Pastry provides a peer-to-

peer routing substrate that implements a distributed hash ta-

ble. Pastry assigns to each node a random identifier, called

Pastry id, from a range of valid identifiers, called Pastry id

space. A message routed through Pastry is guaranteed to

reach the node with the closest id to the message id. Pastry

nodes maintain several tables, including the leafset, which

contains a list of the node logical neighbors. At each step,

the message is routed through nodes successively close to

the target node, until it reaches a node containing the target

node on its leafset. Then the message is redirected directly

to the destination node.

An important problem with most DHTs is that issuing

random ids to nodes results in some nodes being responsible

for ranges in the id space O(log n) times larger than other

nodes. Moreover, the heterogeneity of nodes is not consid-

ered. Finally, it should be possible to change the node ids

dynamically to deal with changing environments.

To deal with these limitations, we assign to each node

an additional identifier, called virtual id [7], using the same

range of valid identifiers from Pastry, which we now call

virtual id space. Virtual ids can be changed dynamically to

reflect the heterogeneity of nodes and to adapt to dynamic

environments where nodes constantly leave and join the net-

work or change their characteristics. The virtual partition

protocol redistributes the range of virtual space covered by

a set of neighbors, assigning to each node responsibility for

an id range proportional to its capacity. This capacity can be

a function of one or more metrics, such as node availability,

free disk space, bandwidth, and processing power.

Figure 1. Virtual id space.

To allow routing in the virtual id space, each node main-

tains an additional table, called virtual leafset, shown in Fig-

ure 1. This table maps the original id space covered by the

Pastry leafset of a node into the virtual id space, allowing

the transition across these two spaces. Routing is performed

using the Pastry algorithm, except for the last hop, where

the node uses the virtual leafset to locate the destination

node instead of the Pastry leafset. Consequently, routing

in the virtual space requires the same number of hops as

routing in the Pastry space.

Creating a virtual space adds only a small number of ele-

ments to Pastry, allowing us to perform heterogeneity-aware

load-balancing with a small maintenance overhead.

4. OppStore Design

We designed OppStore as a middleware that enables the

reliable and efficient storage of read-only data using the

free storage space from idle machines in opportunistic grids.

OppStore uses a peer-to-peer substrate to route data storage

2



and retrieval requests to the target machines. In the follow-

ing section, we briefly describe the OppStore architecture

and outline its main protocol. We then analyze the usage of

virtual ids to deal with machine and cluster heterogeneity.

4.1. Middleware architecture

OppStore organizes grid machines as a cluster federa-

tion, where each cluster contains a Cluster Data Repository

Manager (CDRM) and several Autonomous Data Reposito-

ries (ADR), one for each cluster machine. This organiza-

tion should resemble the physical one, with machines from

a single laboratory or institutional department located in the

same cluster. CDRMs form a structured overlay network,

using the Pastry [16] distributed hash table (DHT) algo-

rithm. We use 160 bit ids to identify CDRMs and stored

data uniquely. Each cluster is responsible for storing data

from a portion of the DHT id space. ADRs are simple

data repositories that accept requests for data storage and

retrieval in a single machine. They use very few system re-

sources, and can be configured by the machine owner, for

example, to allow data upload and download only when the

machine is idle or at any time, but limiting the borrowed

bandwidth. Figure 2 shows the main OppStore components.

ADR

ADR

ADR

CDRMADR

ADR

ADR

CDRM

CDRM CDRM

CDRM

ADR

ADR

ADR

ADR

ADR

ADR

ADR

ADR

ADR

Grid
application

broker

OppStore cluster

Pastry ring

Figure 2. OppStore Architecture.

The two-level architectural design facilitates the man-

agement of system dynamism. If the system organized

all grid machines in a single peer-to-peer overlay network,

the constant changes in machine availability, which typi-

cally occur in opportunistic environments, would have to be

treated as node joining and departure operations, which are

expensive operations. When using a two-level design, this

dynamism can be managed in the local cluster.

The federation structure also allows the system to dis-

perse grid data throughout the Grid. During storage, the

system slices the data into several redundant coded frag-

ments and stores them in different grid clusters. This distri-

bution improves data availability and fault-tolerance, since

fragments are located in geographically dispersed clusters.

When performing data retrieval, applications can simulta-

neously download file fragments from highest bandwidth

clusters, enabling efficient data retrieval.

4.2. Data storage and retrieval

Clients access the distributed storage system through the

access broker library, which is responsible for contacting

other OppStore components to perform file storage and re-

trieval operations. Several types of data can be stored in a

grid system, with each type having different requirements.

OppStore allows a client application to choose one of two

storage modes: perennial and ephemeral.

The perennial mode is used for data with long lifetimes.

The broker performs file storage in two phases. In the first

phase, the broker breaks the file contents into several re-

dundant fragments using an information dispersal algorithm

(IDA) [6, 13] and evaluates their secure hashes. The bro-

ker then sends the list of fragment hashes to the cluster

CDRM, which routes messages in the overlay network to

other CDRMs using the fragment hashes as message ids,

requesting the addresses of suitable ADRs to store the frag-

ments. The cluster CDRM then sends the ADR address list

back to the broker, which uploads the fragments directly to

the ADRs. In the second phase, the broker constructs a File

Fragment Index (FFI), containing the location and the se-

cure hash of each fragment. The broker then sets the FFI id

as the secure hash from the fragments hashes and requests

the cluster CDRM to store the FFI.

To download a file, the broker queries its cluster CDRM

for the file FFI. The CDRM routes the request to the CDRM

responsible for the file id, which returns the FFI. The broker

then downloads the file fragments directly from the ADRs,

checks the fragments integrity and reconstructs the file.

We should emphasize that file contents are not routed

through the overlay network. They are transferred directly

from the broker to the ADRs and vice versa. Also, placing

fragment storage locations in the FFI provides an important

advantage: the fragment locations are not tied to the cluster

responsible for their ids. In other words, when the id range

for which a CDRM is responsible changes, there is no need

to move the fragments across clusters. The FFIs are still

retrieved using their ids and, consequently, would need to

be moved, but their size is small compared to file contents.

The ephemeral mode is used for data that requires high

bandwidth and only needs to be available for a few hours.

This class of storage would be used to store checkpoint-

ing [6, 9] data and temporary application data. An example

of temporary data occurs in workflow applications, where

data output by one application stage is used by a later ap-

plication stage running in the same cluster. In this storage

mode, the system stores the data only in the local cluster and

can use IDA or data replication to provide fault-tolerance.

3



4.3. Using virtual ids in OppStore

OppStore determines the storage location of fragments

by routing the fragment identifier to the CDRM responsible

for that identifier. To allow OppStore to consider the ma-

chine heterogeneities when selecting storage sites, we cre-

ate a virtual space for the CDRMs in addition to the Pastry

id space. This virtual space is much cheaper to maintain

than the Pastry one and virtual ids can be changed with little

overhead. To determine the CDRMs virtual ids, we define

the capacity of each machine as its squared mean availabil-

ity, which takes values from 0 to 1. Also, when the available

storage space of a machine falls below a threshold, 1 GB in

our case, the system linearly decreases the machine capacity

according to the available space.

We define as the cluster capacity the sum of the capac-

ities of all cluster machines. OppStore creates a single

virtual id space, using the cluster capacities to define the

CDRMs virtual ids. This virtual space is used for routing

when selecting the cluster that will host a file fragment. The

objective is to store fragments in clusters containing ma-

chines with higher availability and larger amounts of avail-

able storage space. Actually, we can consider that each

CDRM is responsible for managing the virtual spaces of

all machines in its cluster.

Routing and selection of CDRMs responsible for FFI ids

is performed in the Pastry id space. Pastry ids are indepen-

dent from the virtual ids and, consequently, CDRMs can

change their virtual ids without requiring the migration of

FFIs. This migration will only be necessary when CDRMs

join or leave the Grid, which should be less frequent. More-

over, since fragment locations are stored in the FFIs, the

fragment contents also do not need to migrate due to virtual

and Pastry id changes. Actually, transfers of fragment con-

tents is only necessary when a significant part of fragments

from a file are lost due to ADR departures. In this case,

the lost fragments are reconstructed. Therefore, by using

the Pastry and virtual spaces simultaneously, OppStore can

adapt to dynamic conditions with very low overhead.

5. Implementation

The three main components of OppStore are: CDRMs,

ADRs, and access brokers. In this section, we discuss their

implementation and the management of stored data.

5.1. Cluster Data Repository Manager

CDRMs are responsible for managing their cluster

ADRs, for selecting storage locations for data fragments,

and for storing File Fragment Indexes (FFIs). Each CDRM

maintains information about all ADRs from its cluster, in-

cluding their id range, network address, state, capacity, and

available storage space. When a CDRM receives a frag-

ment storage request, it chooses an ADR. The probability

of choosing an ADR is proportional to its capacity.

CDRMs are also responsible for the storage of FFIs.

Since FFIs are small, containing only a few ADR addresses

and fragment hash values, they are stored in the CDRM ma-

chine. To provide fault-tolerance, information contained in

a CDRM is replicated in another r neighboring CDRMs.

If a CDRM fails, an ADR from its cluster launches a new

CDRM. Finally, CDRMs maintain a mapping of all frag-

ments stored in the cluster ADRs, which is used to recon-

struct the missing fragments in case of ADR departures.

5.2. Autonomous Data Repository

Each ADR is responsible for the storage of fragments

corresponding to a range of ids proportional to its capacity.

The ADR capacity is proportional to its mean availability.

When a new node joins the cluster, it contacts the CDRM

and provides its network address and available disk space.

In the beginning, the CDRM uses the mean availability of

cluster ADRs to evaluate the new ADR capacity. As avail-

ability values are collected from the ADR, the CDRM ad-

justs the ADR capacity accordingly.

The network address that ADRs provide to the CDRM

when joining the cluster is used by access brokers to con-

nect to those ADRs and transfer fragment contents. Differ-

ent protocols can be used for connections from brokers to

ADRs. In the case of TCP connections, the address can be

the pair (IP address, port). For ADRs behind NATs, this ad-

dress may contain the IP address of a proxy, which can be

used to establish a TCP connection.

ADRs can be in three different states: idle, occupied,

and unavailable. The ADRs are responsible for notifying

the cluster CDRM about state changes. ADRs also send

periodic keep alive messages to the cluster CDRM, allow-

ing the detection of ADR failures. ADRs can be located in

shared or dedicated machines. In case of shared machines,

its owner can configure the machine to upload data only

when it is idle or at any time, but possibly limiting the up-

load bandwidth when the machine is being used (occupied).

Dedicated machines are always considered to be idle and,

consequently, have a higher capacity.

5.3. Access Broker

The access broker is a library that allows applications to

access the storage services of OppStore. It provides a C API

containing methods for data storage and retrieval in syn-

chronous and asynchronous modes. For data storage, calls

to the broker can return (1) immediately, (2) after the bro-

ker finishes coding the data, or (3) after completing the file

storage. In the first two cases, the application can provide

4



a callback function to the broker. Similarly, the library pro-

vides functions for data retrieval that return (1) immediately

or (2) after finishing the complete data retrieval operation.

As described in Section 4.2, data stored in OppStore is

coded into redundant fragments using the information dis-

persal algorithm (IDA) [6, 13]. IDA is an erasure code that

allows one to code a vector U of size n, into m+k encoded

vectors of size n/m, with the property that one can regener-

ate U using only m of the m+k encoded vectors. Analytical

studies [15,19] show that, for a given redundancy level, data

stored using erasure coding has a mean availability several

times higher than using replication.

To reconstruct a file, the access broker only needs to

download a subset of the stored fragments. Consequently,

the broker can choose to download the fragments from the

closest and/or fastest ADRs. The broker records the up-

load/download bitrates from previous transfers and uses this

historical information to select the ADRs. We use a simple

aging algorithm to estimate the bandwidth of a cluster, us-

ing some randomization to prevent that the same clusters are

always selected. Also, as described later, OppStore has a

caching mechanism to improve data retrieval performance.

Data integrity verification is enforced by calculating the

SHA-1 secure hash of the file and fragment contents, stor-

ing then in the FFI. The system optionally provides data en-

cryption for stored fragments. During storage and retrieval

requests, the client can optionally provide a key, that the

broker uses to encrypt and decrypt data. Note that OppStore

does not provide key-management for data encryption, and

the client is responsible for obtaining the key. We chose this

approach because the key-management infrastructure is de-

pendent on the deployment environment.

5.4. Data Management

OppStore caches the data necessary to reconstruct a file

in the cluster in which the storage request was issued to im-

prove data recovery performance. During the data storage

process, when a CDRM returns to the access broker the ad-

dresses of remote ADRs, it also includes the address of one

or more ADRs from its cluster. These local ADRs function

as data caches if data is later requested from the same clus-

ter. The access broker uploads a copy of some of the file

fragments to these ADRs, and write their addresses in the

FFI to allow tracking of the cached fragments. Caching for

specific files can be disabled by the client if it knows that

data is unlikely to be used in the local cluster.

To manage stored files, OppStore provides a lease to

each file with a duration specified by the client. These

leases can be renewed by clients at any time. During the

leasing period, CDRMs check fragment availability period-

ically. When the leasing period ends, the file and fragments

are marked as expired. Clients can try to renew a lease af-

ter it has expired, but the system offers no guarantees that it

will be able to recover the file.

When analyzing data availability properties, we need to

consider both temporary unavailabilities and membership

changes. In the case of opportunistic grids, we consider a

machine as unavailable if it is occupied or down. Several

machine usage monitoring experiments [2, 8, 12] indicate

that there are correlations in usage patterns in machine idle

times and uptimes in a single laboratory. For example, dur-

ing the night and weekends, machine idle time is normally

higher than during the day. Also different environments,

such as corporate and university labs, seem to have differ-

ent usage patterns. Temporary unavailabilities can decrease

the number of available machines to half in a period of a few

hours. OppStore relieves the availability problem by plac-

ing most stored fragments in machines with higher avail-

ability and from geographically distant clusters.

Membership changes occur when ADRs or clusters leave

the grid, causing the loss of stored fragments. These frag-

ments should be replaced to ensure file survival. CDRMs

are responsible for monitoring fragments stored in ADRs

from its cluster. When an ADR leaves the system, its clus-

ter CDRM sends a message to the CDRM storing the frag-

ment FFI to mark that fragment as missing. If the number of

available fragments is below a given threshold, that CDRM

starts a fragment recovery procedure. We use a threshold

because fragment replacement is an expensive operation

that requires the reconstruction of the original file. Each

CDRM also monitors its neighboring CDRMs to recover

their cluster fragments in the case of cluster departures.

6. Case Studies

We analyzed the deployment of OppStore in two oppor-

tunistic grid systems, InteGrade [10] and Condor [17].

6.1. InteGrade

InteGrade [10] is a CORBA-based object-oriented mid-

dleware for opportunistic grids. It has a cluster federation

structure, as shown in Figure 3. InteGrade stores grid data

in OppStore, which returns an id for each stored file. Grid

users access OppStore with a graphical interface and grid

applications by using the access broker library.

InteGrade clusters have a machine designated as the

cluster manager, usually a machine that is available most

of the time. We instantiate CDRMs in the cluster man-

ager, together with other InteGrade management modules.

The Global Resource Manager (GRM) is responsible for

scheduling and management of its cluster resources. The

Execution Manager (EM) manages application execution

and checkpointing. It maintains information about applica-

tions executing in the grid, including a mapping of check-

5



Figure 3. InteGrade’s Architecture.

point files to OppStore ids. The Application Repository

(AR) maintains meta-data about grid applications, includ-

ing the mapping of their executable, input, and output files

to OppStore ids. The Global Security Manager (GSM)

is responsible for the security of an InteGrade cluster and

manages user authentication and private keys.

ADRs are located in the same machines that provide re-

sources to the grid, which we call resource providers. The

main module in these machines is the Local Resource Man-

ager (LRM), which is responsible for managing local re-

sources and local processes from grid applications.

6.2. Condor

Condor [17] is an opportunistic grid middleware or-

ganized as a collection of clusters, called Condor pools.

Machines sharing their resources run a resource daemon.

Shared resource are registered in the matchmaker, which

performs the matching between execution requests and re-

source providers. Grid users submit their application exe-

cution requests to a local agent module.

In a Condor grid composed of several condor pools, we

could easily deploy OppStore placing the CDRMs in the

same machines as the matchmakers and the ADRs in the

machines running resource daemons. Consequently, the

same machines that donate idle CPU cycles to the grid

would also, optionally, donate unused storage space.

Finally, Condor allows applications to remotely access

data stored on the machine from which the execution was

submitted. Remote data access requires linking the appli-

cation with a library that intercepts filesystem calls. This

library could be modified to use OppStore, allowing trans-

parent access to the distributed data storage functionality.

7. OppStore Evaluation

We evaluate OppStore using two methodologies: simula-

tions and experiments in a controlled real grid environment.

The objective of the simulations is to determine the avail-

ability of data stored in a a large-scale grid composed of

non-dedicated machines. In the experiments, we measure

the performance of OppStore, including the delay for data

storage and retrieval in a wide-area grid.

We implemented the CDRM and virtual Ids protocols in

Java, using FreePastry, an open-source implementation of

the Pastry protocol, as the peer-to-peer substrate. For the

ADR and access broker, we used C++ and Lua, allowing us

to produce lightweight versions of these components.

7.1. Simulations

We performed simulations using a real OppStore imple-

mentation, replacing the ADRs and the access brokers by

striped down versions written in Java. These ADR and ac-

cess broker implementations simulate the process of data

storage and retrieval, keeping track of “virtual” stored frag-

ments. This enables the simulation of thousands of storage

and retrieval operations in a large-scale computational grid.

We simulated a grid composed of 100 clusters, with the

number of ADRs on each cluster randomly chosen as 10,

20, 50, 100, and 200. We used data from several machine

utilization measurements [2, 8, 12] to define three different

usage patterns, which are randomly assigned to each cluster.

In the first pattern, the mean idletime is 60% during the day

and 80% during the night and weekends. The second pattern

has idletimes of 25% and 40%, and the third 40% and 70%,

respectively. We used different values to measure machine

usage during day and night periods to evaluate the effects of

correlations in machine usage patterns. We simulated a one

month period for two cases: clusters uniformly distributed

across 24 timezones (timezones-24) and in a single time-

zone (timezone-1). This captures the two extreme cases of

grids with machines distributed throughout the globe and

geographically concentrated in a single timezone.

Data availability. We evaluated the rate of successful file

retrieval using the machine usage patterns described above.

We simulated the storage procedure for ten thousand files,

including the routing of the fragments, and then performed

the file retrieval steps, checking the number of fragments

that could be recovered for each file. We stored fragments

coded into 6 and 24 redundant fragments, comparing the

usage of virtual ids with the Pastry algorithm using several

redundancy levels. Finally, we considered that during the

simulation there are no ADR and CDRM departures.

The graphs in Figure 4 show the ratio of successful file

retrievals for files coded into 6 or 24 fragments and for clus-

ters located in a single timezone or scattered throughout the

globe. For each case, we considered several different redun-

dancy levels by requiring a different number of fragments

necessary to reconstruct the files. We simulated the case

where fragments can be recovered only from idle machines.

As we can see, using virtual ids, we obtain significantly

higher retrieval success rates. For instance, when requiring

6



8 12 16
Number of required fragments (out of 24)

0,5

0,6

0,7

0,8

0,9

1

S
u

cc
es

sf
u

l 
re

co
v

er
y

 r
at

io

Pastry

Virtual ids

2 3 4
Number of required fragments (out of 6)

0,5

0,6

0,7

0,8

0,9

1

S
u

cc
es

sf
u

l 
re

co
v

er
y

 r
at

io

Pastry

Virtual ids

8 12 16
Number of required fragments (out of 24)

0,5

0,6

0,7

0,8

0,9

1

S
u

cc
es

fu
l 

re
co

v
er

y
 r

at
io

Pastry

Virtual ids

2 3 4
Number of required fragments (out of 6)

0,5

0,6

0,7

0,8

0,9

1

S
u

cc
es

sf
u

l 
re

co
v

er
y

 r
at

io

Pastry

Virtual ids

Retrieval with timezone-1 usage patterns

Retrieval with timezone-24 usage patterns

Figure 4. Successful file retrievals.

8 out of 24 fragments to reconstruct a file (replication factor

of 3) and using the timezones-24 scenario, only 0.1% of the

requests failed when using virtual ids compared with 1.2%

when using the Pastry algorithm. When requiring 12 out of

24 fragments, the rate of failures in file retrievals increased

to 6.8% and 23.7% respectively. Actually, we can see data

retrieval improvements in all evaluated scenarios. It occurs

because the system stores file fragments preferably in ma-

chines with higher availability.

We can also observe that scattering fragments throughout

the globe improves retrieval rates when using higher redun-

dancy levels. This occurs because we reduce the correlation

of usage patterns among machines from different clusters.

To achieve good successful retrieval rates, we should use

replications factors of at least 2, preferably 3, and break the

file into more fragments. Also, when clusters are located in

different timezones, the retrieval rate improves, since there

is less correlation among machine usage times.

7.2. Experiments

We evaluated the usage of OppStore in an opportunis-

tic grid environment. The experiments consist of storing

and retrieving data in a small wide-area Grid composed of

5 clusters. The objective was to evaluate data storage and re-

trieval latency, including the data coding and decoding time.

We instantiated five grid clusters composed of commod-

ity machines distributed in three Brazilian cities. São Paulo

contained three clusters (sp1, sp2, and sp3) while Goiania

(go) and São Luís (sl) contained a single cluster each. They

are distant 900km and 3000km to São Paulo, respectively.

0.1 1 10 100 500
Data size (in MB)

1

10

100

1000

R
et

ri
ev

al
 t

im
e 

(i
n

 s
ec

o
n

d
s)

Data Retrieval

0.1 1 10 100 500
DataSize (in MB)

1

10

100

1000

S
to

ra
g

e 
ti

m
e 

(i
n

 s
ec

o
n

d
s)

Data Storage

Figure 5. Data storage and retrieval.

The clusters are connected via the public Internet. We in-

stantiated the broker in a 2GHz Athlon64 machine.

Data Storage. We stored files of several sizes. The broker

split the file into 5 fragments, from which 2 were sufficient

for data recovery. Since our experimental system had only

5 clusters, we forced the fragments to be stored on different

clusters. Although forcing cluster selection may seem arti-

ficial, in a grid of hundreds of clusters the fragments would

automatically be routed to different clusters.

The left-hand side graph in Figure 5 shows the delay for

finishing the data coding process (dotted line) and to finish

the storage process (solid line). When the broker finishes

the data coding process, the application can continue its ex-

ecution normally, while the broker performs the uploading

of the fragments to the remote repositories. When storing a

file of 100MB, the broker needs 12 seconds to code the file,

while for 500MB the broker needs 60 seconds.

Completing the data transfer takes longer, requiring

560 seconds to transfer 1.25GB generated when coding a

500MB file. The total storage time is bound by the slowest

connection, the São Paulo-Goiania one in our case, with a

transfer rate of approximately 400kB/sec. But for most ap-

plications, the important delay is in data coding, which is

much shorter and does not depend on network bandwidths.

Data Retrieval. We retrieved the files stored in the data

storage experiment, with the broker downloading the two

needed data fragments and reconstructing the original file.

Retrieval times can vary widely depending on the reposito-

ries selected for fragment downloading. To track these vari-

ations, we performed retrieval experiments downloading the

fragments from the two fastest repositories and from the two

slowest repositories. These two scenarios should represent

the extreme points regarding data retrieval times.

The right-hand graph in Figure 5 shows the time neces-

sary to recover the files using the two fastest servers (dot-

ted line) and the two slowest ones (solid line) relative to

the file size. Retrieving data from the fastest servers (band-

width of a few MB/s) required only 10 seconds to retrieve a

7



100MB file and 58 seconds for the 500MB one. Moreover,

data decoding does not create a time overhead during data

retrieval, since it occurs simultaneously with the fragment

downloads. When using the slowest repositories, the data

retrieval times are much higher, requiring about 500s to re-

trieve the file. But this should rarely occur, since the broker

can always chose the fastest servers to download fragments.

8. Conclusions and Future Work

Using the disk space of shared machines scattered

throughout the globe to perform reliable storage of data is

a difficult task. OppStore addresses the complexities that

arise from these highly dynamic and heterogeneous envi-

ronments. We have shown that using only the idle periods

of the shared machines to retrieve data, in realistic situations

OppStore can provide data availabilities of 99.9% using a

replication factor of 3 and 93.2% with a replication factor

of 2. We achieved these good data retrieval properties by

using the load-balancing properties of virtual ids.

Our middleware showed good performance when re-

trieving data from remote repositories. Since there are frag-

ments located in several repositories, the broker can choose

the fastest ones. When using data caching, access to data

can be even faster. Data storage is slower, since the time

required to store all the fragments from a file is bounded by

the slowest connection. But the slower storage process can

be improved by storing data incrementally as it is produced

by an application executing in the grid or by calling asyn-

chronous methods that perform storage in the background.

OppStore provides a viable low cost solution to the prob-

lem of data storage in opportunistic grids. It does not re-

quire the acquisition of extra hardware and can be easily de-

ployed on existing opportunistic grid systems. We are now

working into the further development OppStore. We intend

to deploy OppStore for long periods in a real grid environ-

ment and analyze its usage patterns, providing us guidance

to better improve it. For example, we may define efficient

sharing policies to ensure fair use of storage resources.

References

[1] G. Antoniu, M. Bertier, E. Caron, F. Desprez, L. Boug,

M. Jan, S. Monnet, and P. Sens. Future Generation Grids,

chapter GDS: An Architecture Proposal for a Grid Data-

Sharing Service, pages 133–152. Springer Verlag, 2006.
[2] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-

sibility of a serverless distributed file system deployed on

an existing set of desktop pcs. SIGMETRICS Performance

Evaluation Review, 28(1):34–43, 2000.
[3] M. Cai, A. Chervenak, and M. Frank. A peer-to-peer replica

location service based on a distributed hash table. In SC

’04: Proceedings of the 2004 ACM/IEEE conference on Su-

percomputing, page 56. IEEE Computer Society, 2004.

[4] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman,

and R. Schwartzkopf. Performance and scalability of a

replica location service. In HPDC ’04: Proceedings of

the 13th IEEE Int. Symp. on High Performance Distributed

Computing, pages 182–191. IEEE Computer Society, 2004.
[5] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade,

R. Novaes, and M. Mowbray. Labs of the world, unite!!!

Journal of Grid Computing, 2006. Accepted for publication.
[6] R. Y. de Camargo, R. Cerqueira, and F. Kon. Strategies for

checkpoint storage on opportunistic grids. IEEE Distributed

Systems Online, September 2006.
[7] R. Y. de Camargo and F. Kon. Distributed data storage

for opportunistic grids. In ACM/IFIP/USENIX Middleware

Doctoral Symp., Melbourne, Australia, November 2006.
[8] P. Domingues, P. Marques, and L. Silva. Resource usage

of windows computer laboratories. In Int. Conf. on Parallel

Processing Workshops, pages 469–476, 2005.
[9] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.

A survey of rollback-recovery protocols in message-passing

systems. ACM Comp. Surveys, 34(3):375–408, May 2002.
[10] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C.

Bezerra. InteGrade: Object-oriented grid middleware lever-

aging idle computing power of desktop machines. Concur-

rency and Computation, 16:449–459, March 2004.
[11] M. Litzkow, M. Livny, and M. Mutka. Condor - A hunter of

idle workstations. In Proc. of the 8th Int. Conf. of Distributed

Computing Systems (ICDCS), pages 104–111, June 1988.
[12] M. W. Mutka and M. Livny. The available capacity of a pri-

vately owned workstation environment. Performance Eval-

uation, 12(4):269–284, 1991.
[13] M. O. Rabin. Efficient dispersal of information for security,

load balancing, and fault tolerance. Journal of the ACM,

36(2):335–348, 1989.
[14] M. Ripeanu and I. Foster. A decentralized, adaptive replica

location mechanism. In HPDC ’02: Proceedings of the 11 th

IEEE Int. Symp. on High Performance Distributed Comput-

ing, Washington, DC, USA, 2002. IEEE Computer Society.
[15] R. Rodrigues and B. Liskov. High availability in DHTs: Era-

sure coding vs. replication. In IPTPS ’05: Revised Selected

Papers from the Fourth International Workshop on Peer-to-

Peer Systems, pages 226–239. Springer-Verlag, 2005.
[16] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, de-

centralized object location, and routing for large-scale peer-

to-peer systems. In Middleware 2001: IFIP/ACM Interna-

tional Conference on Distributed Systems Platforms, pages

329–350, Heidelberg, Germany, 2001.
[17] D. Thain, T. Tannenbaum, and M. Livny. Condor and the

grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-

puting: Making the Global Infrastructure a Reality. John

Wiley & Sons Inc., December 2002.
[18] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland,

N. Tammineedi, and S. L. Scott. Freeloader: Scavenging

desktop storage resources for scientific data. In SC ’05:

Proceedings of the 2005 ACM/IEEE conference on Super-

computing, page 56. IEEE Computer Society, 2005.
[19] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.

replication: A quantitative comparison. In IPTPS ’01: Re-

vised Papers from the First International Workshop on Peer-

to-Peer Systems, pages 328–338. Springer-Verlag, 2002.

8


