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Abstract. Grid computing allows the usage of distributed resources possibly
belonging to different institutions in a transparent way. This paper presents In-
teGrade, an object-oriented Grid tool that focuses on leveraging the idle com-
puting power of shared desktop machines. Moreover, it currently allows the
execution of sequential, parametric, and BSP parallel applications.

1. Introduction

In recent years we witnessed a large increase in the computing power of desk-
top machines. However, these computational resources typically remain idle for
most of the time, which incurrs in the waste of resources. Grid computing
[Foster and Kesselman, 2003][Foster et al., 2001] allows one to leverage and integrate
distributed computing resources belonging to different institutions in order to increase
the amount of available computing power.

InteGrade project [Goldchleger et al., 2004a] is a multi-university effort to build a
novel Grid Computing middleware infrastructure that leverages the idle computing power
of personal workstations. InteGrade features an object-oriented architecture based on the
CORBA [Group, 2002] industry standard for distributed objects. InteGrade also strives to
ensure that users who share the idle portions of their resources in the Grid shall not per-
ceive any loss in the quality of service provided by their applications. Finally, InteGrade
also supports the reliable execution of parallel applications that requires communication
among the application processes.

InteGrade currently supports three different classes of applications: sequential,
parametric (Parameter Sweep Applications) and BSP [Valiant, 1990]. Sequential applica-
tions are composed of a binary that executes on a single machine. Parametric applications
are also composed of a single binary, but multiple copies of the same binary are executed
on different nodes with different input parameters or data sets. There are numerous areas
where parametric aplication are used, such as Biology, Astrophysics, Physics, Bioinfor-
matics, Economics, etc. An example of parametric applications would be a molecular
biologist looking for compounds in large chemical data sets that best dock with a particu-
lar protein [R. Buyya et al., 2003]. Finally, the BSP applications are developed according
to the Bulk Synchronous Parallel computing model, which divides the computation in
supersteps, each of them composed of computation, communication, and finished with a
mandatory synchronization barrier. There is a considerable amount of BSP applications
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available1, several implementations have been developed and can be used by InteGrade
users.

This paper is organized as follows. In Section 2 we detail the InteGrade architec-
ture and Section 3 explains the InteGrade application execution protocol. In Section 4 we
present the implementation status of InteGrade. Section 5 presents some of the InteGrade
tools. Finally, we present our conclusions in Section 6.

2. InteGrade Architecture

The basic architectural unit of an InteGrade Grid is the cluster, a collection of machines
typically connected by a local network. Clusters can be organized in a hierarchical inter-
cluster architecture, potentially encompassing millions of machines.

Figure 1. InteGrade Architecture.

Figure 1 depicts the most important components in an InteGrade cluster. The
Cluster Manager node represents one or more nodes that are responsible for managing
the cluster and interacting with managers in other clusters. A Grid User Node is one
belonging to a user who submits applications to the Grid. A Resource Provider Node,
typically a PC or a workstation in a shared laboratory, exports the idle portion of its
computing resources, making them available to Grid users. A Dedicated Node is reserved
for usage by the Grid. This kind of node is shown to emphasize that, if desired, InteGrade
can also encompass dedicated resources. Note that these categories may overlap: for
example, a node can be both a Grid User Node and a Resource Provider Node.

Local Resource Manager (LRM) and Global Resource Manager (GRM) coop-
eratively handle intracluster resource management. LRM is executed in each resource
provider node, collecting information about the node status, such as memory, CPU, disk,
and network utilization. LRMs send this information periodically to GRM, which uses
it for scheduling executions within the cluster. This process is called the Information
Update Protocol.

1A list of papers and technical reports on algorithms in the BSP model is available at http://www.
scs.carleton.ca/˜bsp/papers.html



Similarly to LRM/GRM cooperation, Local Usage Pattern Analyzer (LUPA) and
Global Usage Pattern Analyzer (GUPA) handle intracluster usage pattern collection and
analysis. LUPA executes in each resource provider node and collects data about its usage
patterns. Based on long series of data, it derives usage patterns for that node throughout
the week. This information is made available to GRM through GUPA, which allows better
scheduling decisions due to the possibility of predicting a node’s idle periods.

Node Control Center (NCC) allows resource providers to set the conditions for
resource sharing, such as the amount of shared resources and the periods where they can
be shared.

Application Submission and Control Tool (ASCT) allows InteGrade users to sub-
mit Grid applications for execution, monitoring each execution status and collecting exe-
cution results. Application Repository (AR) provides a centralized storage for application
binaries that will be submitted for execution.

Finally, the support for executing BSP parallel applications
[Goldchleger et al., 2004b] is provided by a library which implements the Oxford
BSPlib API [Hill et al., 1998]. Consequently, the task of converting an existing BSPlib
application to execute over InteGrade consists only in including a different header file,
recompiling and relinking the application with the appropriate InteGrade libraries.

3. Execution Protocol

The Figure 2 depicts the InteGrade Application Execution Protocol [Goldchleger, 2004].
After uploading the application to the Application Repository (not illustred in the pic-
ture), the user requests their execution by using the ASCT (1). The GRM then selects a
candidate node for execution (2), based on resource availability and application require-
ments. the GRM then forwards the request to an LRM (3), which verifies if the required
resources are available at that moment. If they are not available, the GRM selects another
candidate node and this process is repeated until an LRM accepts the execution request.
If the resources are available, then the LRM requests the application to the AR, and the
input files to the ASCT (4 and 5). The application is then launched on the selected node
(6) and an execution notification is sent to the ASCT (7).

4. Implementation

When implementing InteGrade modules, we had to consider the requirement that the
owners of the resource providing machines should not perceive a loss of quality of service
when using their resources. Consequently, the modules executing on shared machines
should have a small memory and CPU usage footprints. In the case of cluster management
and user nodes this is not a strict requirement.



Figure 2. Application Execution Protocol.

The four required modules for the InteGrade execution protocol, namely the
GRM, LRM, ASCT and Application Repository are already implemented. Respecting
the QoS requirements of the shared machines, LRM uses O2 2, a very small memory
footprint CORBA compatible ORB developed by InteGrade collaborators at PUC-Rio.
O2 is written in Lua [Ierusalimschy et al., 1996] and can be accessed via a C API. In this
new middleware platform, we have implemented the intracluster information protocol that
allows LRMs to send node status to GRMs. We also implemented the intra-cluster execu-
tion protocol, which allows applications to be remotely executed in an InteGrade cluster.
LRM is currently implemented in C++ using O2. The GRM, which runs on a server node,
is implemented in Java on top of JacORB 3. The GRM uses the JacORB Trader to store
the information it receives from LRMs.

The current GRM implementation contains a very simple scheduler that receives
an execution request and selects suitable nodes for the execution of the application. The
GRM also holds a list of the currently active LRMs, as well as the available resources
on each LRM. When an LRM receives an execution request from the GRM, it launches
the application process. The LRM also monitors the execution of these processes and
return the application results to the ASCT. It also monitors the machine resources. The
current LRM version uses the Linux /proc pseudo-filesystem in order to obtain the
resource availability. The ASCT is implemented in Java, and provides a user-friendly
graphical interface, the ASCTGui. From this graphical interface the user can upload
application binaries, specify execution parameters and input files, as well as collect the
execution results. The Application Repository currently available is very simple, being
able to store and retrieve application binaries stored in a flat namespace. An updated
version containing a hierarchical directory structure is under development and will be
incorporated soon to InteGrade.

The BSP programming library implementation uses CORBA for inter-task com-

2http://luaforge.net/projects/o-two/
3http://www.jacorb.org



munication. CORBA gives us the advantages of an easier and cleaner communica-
tion environment, shortening development and maintenance time. One could argue that
CORBA´s IIOP is far from being the ideal communication protocol for a parallel pro-
gramming library. However, we remind that InteGrade benefits from otherwise wasted
computing resources, and applications are executed on a highly dynamic environment, so
raw performance is not one of our major objectives at the moment. Additionally, some
experiments [Román et al., 2001] with compact ORBs show a slowdown in communi-
cations of only 15% when comparing CORBA to raw sockets. This means that using
CORBA does not necessarily imply in poor communication performance.

Figure 3. AsctGUI.

5. Executing Applications on InteGrade

The submission of application for executing on InteGrade is performed using AsctGui
tool, show in Figure 3, a graphic application that allows the submission and monitor-
ing of Grid applications. The left panel shows the applications already registered on the
Application Repository, and the right one shows the execution status of the submitted
applications. The execution status is depicted by a color code applied to each of the ap-
plications name: green indicates an application that is still executing, while blue denotes
an application that is still running.

Figure 4 shows the screen from where a BSP application can be configured for
execution. In this example, constraints and preferences parameters are used to determine
the application’s required operating system and desired amount of free memory. The
application MatrixChainMultiplication displayed on this example, calculates the systolic
multiplication of two matrixes [Alves et al., 2003]. It is configured to execute on eight
different nodes and its arguments, -n 300 -m 600, are adjusted correctly.



Figure 4. Configuration of a BSP application execution.

Still in Figure 4, the bsp.dat and results.out files are used for the storage
of the computation. The input file bsp.dat is uploaded to each of the nodes where the
application will be executed. Finally, at the end of the execution, the standard output,
standard error (checked on figure), and the file results.out is uploaded back to the
AsctGui.

AsctGui also allows the visualization of the application output files. The window
in Figure 5 shows a number of folders, each of them representing the output of one of
the application nodes. For example, regarding Node 1 the files stderr, stdout and
stats.txt are available for visualization. stderr and stdout are the standard error
and standard output respectively as defined in ANSI C. stats.txt is a simple output
file generated by the application.

Figure 5. Output files visualization.



Figure 6 shows ClusterView, a tool that allows the visualization of all the nodes in
an InteGrade cluster, including their characteristics, such as CPU speed, amount of mem-
ory, and operating system, as well as the amount of available resources at that moment.
This tool can also display dynamic information in a periodically updating chart, allowing
the usage history visualization.

Figure 6. ClusterView.

6. Conclusion and Future Work
In this paper, we described InteGrade, a tool for executing parallel applications on an
opportunistic computing Grid. The current implementation provides support for the ex-
ecution of sequential, parametric, and BSP parallel applications. InteGrade allows the
effective use of almost all available computing power, since it uses computing resources
that would otherwise remain idle are used to execute Grid applications.

However, some work is required to improve this system. LUPA, GUPA, and NCC
modules are still being implemented. We also need to develop a good distributed schedul-
ing policy. Finally, we are developing a security architecture to protect resource providers
from malicious users and applications.

InteGrade is available as free software and can be obtained from the InteGrade
project main site http://gsd.ime.usp.br/integrade. This site provides all
information about the project, source-code, list of members and publications.
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