
A Study of Mobile Agents Liveness Properties

on MobiGrid?

Rodrigo M. Barbosa, Alfredo Goldman, and Fabio Kon

Department of Computer Science
Institute of Mathematics and Statistics

University of São Paulo
{rodbar, gold, kon}@ime.usp.br

Abstract. MobiGrid is a framework for mobile agents support within
a grid environment project. The mobile agents may be used to encap-
sulate long-processing applications (tasks). In MobiGrid, to provide a
fast method of releasing the local machine and to prevent the tasks from
dying suddenly, it is possible to have two or more independent copies of
these tasks running independently; this concept is defined as liveness. In
this paper, our goal is to simulate a network of personal workstations and
the tasks that will be executed on them. In this way, we can study the
effects of different liveness degrees on the completion time of the tasks.

1 Motivation

The InteGrade project [1] is building a middleware infrastructure to enable the
use of idle processing time of machines already owned by public or private in-
stitutions. One of InteGrade’s goals is to use this idle time to solve many kinds
of parallelizable, computationally intensive problems, including strongly coupled
applications.

The MobiGrid project [2] consists in the implementation of a mobile agents
infrastructure for InteGrade. The main idea of our framework is to allow an
efficient utilization of computational resources by providing a programming en-
vironment for long running applications, which we call tasks. Among the appli-
cations that could be executed using mobile agents, there are loosely coupled
parallel applications like SETI@home [3], besides sequential applications that
demand long processing time.

The mobile agents migration capability meets two major InteGrade goals: (1)
the system must be transparent in terms of performance to the machine user,
i.e. the local machine user must have the highest priority compared to InteGrade
applications and (2) the idle resources must be used in the best possible way.
One of the main goals of InteGrade is to make the system transparent to the
local user in a way that the machine is totally available for him when he needs
it. There are a few options for dealing with a mobile task when the resource is

? Project supported by The State of São Paulo Research Foundation. Process number:
02/11165-6



no longer available: migration, termination or suspension. The migration option
itself could cause the local user to face a performance loss, since migration may be
a costly process: for instance, a task carrying a big amount of data. When there
is only one copy of each task, by using the termination option, we would need
remote checkpointing - this could be a costly solution and was not implemented.
Finally, as we work in a highly dynamic environment where the resources might
be busy for a long time, we do not allow suspension.

Therefore, MobiGrid has implemented another strategy which is an alterna-
tive to migration: the possibility of having multiple copies of each task. We think
that this solution is simpler and lighter, besides working as a recovery strategy.
In the case where there is the necessity to free the machine resources for the
local user, if this machine is executing a task, the local MobiGrid environment
could be quickly killed, since we have two or more copies of this task running
independently on different machines. We call this property liveness and it is a
very important concept in our work. When the MobiGrid infrastructure notices
the death of a task, one of the remaining copies is cloned and then migrated
to another machine. In this process, the InteGrade architecture provides infor-
mation about the network and the other machines, allowing the mobile agent
to choose a machine with available computational resources. To do that, usage
patterns of other machine resources can also be used.

The objective of this paper is to present a comparison of two strategies that
have been used in MobiGrid to free the machine for the local user: migration and
cloning with liveness. To do that, we have carried out experiments comparing
cloning and migration. Based on these experiments, we propose a mathematical
model, whose objective is to simulate a network of homogeneous machines and
tasks executing on them. The main goal of this simulation is to study the liveness

and its impact on the system. Our model is a simplification of the reality, but
we believe that it reflects the expected behavior in practice.

This paper is organized as follows: Section 1 explained the motivation of our
work; Section 2 introduces the MobiGrid infrastructure and explains the liveness

concept; Section 3 describes the mathematical model that we used to perform
the simulations; Section 4 presents simulation results; Section 5 concludes this
paper.

2 MobiGrid Overview

MobiGrid [2] is a Java framework for mobile agents support on grids based on
Aglets [4]. Using Aglets for grid computing is not a new idea. Aversa et al. [5]
have already used this environment in a case study, implementing a dynamically
load-balanced distributed version of an algorithm for the (0 - 1) knapsack problem

- a combinatorial optimization problem.
Figure 1 depicts an overview of our framework. Each of the clients hosts

a manager, which communicates with InteGrade. Note that, in this figure, the
liveness degree - i.e. the number of twins of a submitted task - is 2. Client Node 1’s
manager manages Task 1 and its clone. Client Node 2’s manager manages Task



client

manager

Client Node 2

daemon

(clone)

Server Node 2

server

Task 1

daemon

(clone)

Server Node 3

Task 2

server

daemon

server

Task 1

Task 2

Server Node 1

client

manager

Client Node 1

InteGrade

Fig. 1. General architecture of the framework

2 and its clone. Observe also that the daemons communicate with InteGrade to
inform when a local machine is idle, turning on its server.

3 Mathematical Model

As said before, our goal is to simulate a network of homogeneous machines
and tasks executing on them in order to study the effects of different liveness

degrees. Thus, we need a model for this simulation. A model is not supposed to
be a perfect map of reality, otherwise, its implementation could be unfeasible.
Based on that, we need some simplification assumptions for it.

Our experiments led us to two key simplification assumptions in our model:
(1) the cost of a cloning a task is zero and (2) the migration of a clone task

does not interfere with the execution time of the cloned task executing on the
same server. The assumption (1) is derived from the fact that the cloning cost
is insignificant compared to the migration cost (about 200 times faster in our
experiments). Thus, if the number of cloning operations is not high in the local
server, the cloning cost is negligible. This fact can be easily explained since
the migration process depends on slow I/O operations and the cloning process
depends on fast operations on RAM. Moreover, as the cloning in our model is
always associated with a migration, in a normal situation, the cloning time can
be added to the migration time. Assumption (2) is endorsed by the fact that the
migration of a cloned task hosted in a server does not slows downs significantly
(up to 10%) the execution of the cloned task. So, if the number of migrating
tasks in the local server is not very high, we may not consider the interference.

As stated above, these assumptions are true if the number of clone operations
and migrations occurring in the local server is not very high. Thus, to limit these
numbers, we imposed two restrictions: (1) the model allows only one task per



machine; this is reasonable for our model as the tasks that will be used on our
system are mainly long processing tasks, which work independently based on
their own data; if more that one task is executed on a machine, these tasks will
slow down; (2) if the task of a machine was cloned and this clone is migrating
from that machine, during this migration time, this cloned task cannot be cloned
again. At this point, a important question may arise: if a migrating task does
not interfere significantly with the execution time of other tasks executing on
the same machine, why would it interfere with the programs of the local user,
causing a performance loss? The answer is in the JVM. Even if the JVM is
not executing heavy processing, it uses significant memory resources that can
affect the local user, violating the InteGrade goal of transparency in terms of
performance.

4 Experiments with the Simulation

We carried out a simulation - implemented in plain Java - with realistic parame-
ters. In this simulation, the concept of task group is very important: a task group

describes the twin tasks, grouping them together. Given tasks whose execution
time is 60 min and the migration time is 5 min; 10 tasks of this kind are sub-
mitted to a small grid with 100 machines. Each machine has a probability p of
dying each minute. Also, a dead machine has the same probability p of being
turned on again. The search for dead tasks occurs every minute. We simulated
liveness degrees l ∈ {2, 3, 4} with different probabilities p. For each instance of
(l, p), we made 1000 experiments. For each experiment we analyzed: (1) the aver-
age number of finished task groups, i.e. the number of tasks groups that finished
execution among the 10 task groups and (2) the average execution time of the
last task group that finished execution among the 10 task groups.

In Figure 2, we present Graph 1 showing the average number of task groups

that have finished execution for a given probability p with liveness degrees of
2, 3 and 4. Graph 2 depicts the average execution time of the last task group

that finished execution for a given probability p with liveness degrees of 2, 3
and 4. Graph 1 led us to two important conclusions: (1) l = 4 was the most
reliable liveness degree in our experiments and (2) for high values of p, none of
the analyzed values of l was reliable. Conclusion (1) is easy to explain, since the
higher the number of twins, the less the probability of all the twins being killed.
Conclusion (2) is explained by the fact that, even though many machines are
turned on with higher values of p, many machines are killed also. With a high
probability of machines being killed, we have a small probability for a given
migration succeed. In fact, for a succeeded migration, neither the source nor
the destination machine can be killed during the migration time y. Thus, the
probability of a migration being succeeded is (1 − p)2y.

By analyzing Graph 2, we can see that higher values of l led to higher exe-
cution times. We believe that this behavior happens because higher values of l

imply more tasks groups that finish execution, since we have a higher number of
twins. The migration processes used to keep the twins alive increase the execu-



Fig. 2. Graph 1 shows the average number of task groups that finished execution.
Graph 2 shows the average execution time of the last task group that finished execution.
Probability ×10−2

tion time, which is reflected in the average. We can also see that the overhead
(i.e. the time that exceeds the execution time of 60 min) may be significant. For
instance, take p = 6 × 10−2 and l = 4: the overhead is about 36%.

5 Conclusion

We can see in the experiments that, for the given parameters, although higher
liveness degrees were more reliable, they were not reliable enough for high prob-
abilities. Also, we can see that, for high probabilities, the overhead may be sig-
nificant, as there is an important influence of the migration process. We believe
that a better reliability for high values of p could be reached by using higher
values of l and having more machines available. With the given number of ma-

chines, higher values of l would have no effect, because they would cause more
migrating tasks concurring for few machines.

References

1. Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger, and Ger-
mano Capistrano Bezerra. InteGrade: Object-Oriented Grid Middleware Leveraging
Idle Computing Power of Desktop Machines. Concurrency and Computation: Prac-
tice and Experience, 16:449–459, March 2004.

2. Rodrigo M. Barbosa and Alfredo Goldman. Mobigrid - Framework for Mobile Agents
on Computer Grid Environments. In Mobility Aware Technologies and Applications
(MATA 2004), pages 147–157. Springer-Verlag, 2005.

3. SETI@home. Site of the SETI@home project, 2004. http://setiathome.ssl.

berkeley.edu/. Last visit on February, 2004.
4. Mitsuro Oshima and Guenter Karjoth. Aglets Specification 1.0. Technical report,

IBM, may 1997. http://www.research.ibm.com/trl/aglets/spec10.htm.
5. Rocco Aversa, Beniamino Di Martino, Nicola Mazzocca, and Salvatore Venticinque.

Mobile Agents for Distributed and Dynamically Balanced Optimization Applica-
tions. In Proceedings of the 9th International Conference on High-Performance
Computing and Networking, pages 161–172. Springer-Verlag, 2001.


