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Abstract—Computer grids have drawn great attention of
academic and enterprise communities, becoming an attractive
alternative for the execution of applications that demand huge
computational power, allowing the integration of computational
resources spread through different administrative domains. How-
ever, grids exhibit high variation of resource availability, node
instability, variations on load distribution, and heterogeneity of
computational devices and network technology. Due to those
characteristics, grid management and configuration is error-
prone and almost impracticable to be performed solely by human
beings.

This paper describes AutoGrid, an autonomic grid middleware
built using Adapta reconfiguration framework and runtime
system. AutoGrid introduces self-managing capabilities to the
Integrade grid middleware, such as: context-awareness, self-
healing, self-optimization and self-configuration. This paper also
presents insights and experiments that show the benefits towards
an autonomic grid infrastructure.

I. INTRODUCTION

A computer grid comprises a hardware and software in-
frastructure that allows integration and sharing of distributed
resources, such as software, data and peripherals, inside
and among institutions. This computational infrastructure has
drawn great attention of academic and enterprise communities,
becoming an attractive alternative for execution of applications
that demand huge computational power, and allowing the
integration of computational resources spread through different
administrative domains.

Computer grids have been used to solve problems in varied
areas of scientific, enterprise, and industrial activities, for
example: computational biology, image processing for medical
diagnosis, weather forecast, high energy physics, marketing
simulations, and oil prospection. Grid computing empowers
the conception of a new generation of applications that allow
combining computations, experiments, observations, and data
got in real time. The phenomena modeled by these applica-
tions require diverse software components whose compositions
and interactions are extremely dynamic. Moreover, the grid
infrastructure is also heterogeneous and dynamic, aggregating
a great amount of computation and communication resources,
databases and, sometimes, sensors and specific peripherals.
The dynamism can be observed in terms of high variation in
resource availability, node instability, and workload variations
in nodes and network links.

The dynamic nature of the grid infrastructure, its high
scalability and great heterogeneity have turned impracticable
its configuration, maintenance and recovery in case of failures
solely by human beings. Several recent research projects [13],
[10] have recognized the necessity of providing a greater
autonomy to grid systems, which is one of the greatest
challenges for the new generation of this kind of middleware.
The term autonomic computing has been used to denote a
system that exhibits functional properties, such as [8]:

• Context-awareness: the system must be aware of its exe-
cution environment and be able to react to environmental
changes;

• Self-Optimization: the system should be able to detect
performance degradation and intelligently perform self-
optimization actions;

• Self-Healing: the system must be aware of potential
problems, and should be able to reconfigure itself in
order to continue to function smoothly and to recover
from failures using diverse and adaptive failure-handling
techniques;

• Self-Configuration: the system must have the ability to
dynamically adjust its resources based on its state and
the state of its execution environment.

The AutoGrid project, currently being developed at the
Federal University of Maranhão, Brazil, main goal is the devel-
opment of a robust and self-managing autonomic grid system.
The AutoGrid project uses the Integrade grid middleware
[7] as the foundation for its implementation, incorporating
autonomic mechanisms to its infrastructure in order to make
its configuration and administration independent from human
intervention. Our research primarily focuses on adding to
Integrade four autonomic properties: context awareness, self-
healing, self-optimization, and self-configuration.

This paper presents the current state of the AutoGrid project,
its architecture and implementation highlights. It is organized
as follows: Section II illustrates other approaches to autonomic
grids. Section III describes the architecture of the AutoGrid
middleware, its main components and interactions. Section
IV exhibits AutoGrid autonomic mechanisms, while Section
V draw our conclusions and discusses AutoGrid future work
directions.



II. RELATED WORK

Project AutoMate [1] investigates models and architectures
to enable the development and execution of self-managing
grid applications. AutoMate is a framework that provides key
solutions to autonomic formulation, composition and runtime
management of applications on the grid; it is not an autonomic
grid middleware like AutoGrid. AutoMate autonomic grid
applications are dynamically and opportunistically composed
from autonomic elements, which comprise components, ser-
vices or applications that consistently configure, manage, adapt
and optimize their own execution. Autonomic elements also
export information about their behavior, resource require-
ments, performance, interactivity and adaptability to system
and application dynamics. Finally, AutoMate extends the cur-
rent grid middleware infrastructure and adds key services on
top of it to support the policy, content and context driven
execution and management of autonomic applications.

OptimalGrid [11] aims to simplify creating and managing
large-scale, connected, parallel grid applications. On the other
hand, AutoGrid focuses on more general applications, such
as: sequential applications that are composed of a binary that
executes on a single machine; parametric applications which
are also composed of a single binary, but multiple copies of it
are executed on different nodes with different input parameters
or data sets; and the BSP applications developed according to
the Bulk Synchronous Parallel computing model [16]. Opti-
malGrid handles, among other things, runtime management,
dynamic level of parallelism, dynamic load balancing and even
system fault tolerance and recovery. OptimalGrid also includes
autonomic grid functionality: 1) self-configuring to calculate
an initial optimal assignment of the number of compute nodes
to solve a problem, and the load distribution among those
nodes; 2) self-optimizing in rebalancing load according to
current network status and computation power, or in replacing
algorithms to achieve high performance; 3) self-healing which
introduces a fault tolerance layer, so node failures do not
represent the loss of the whole computation.

The Grid Application Development Software (GrADS) [2]
goal is to simplify distributed heterogeneous computing, ex-
ploring the scientific and technical problems that must be
solved to make it easier for users to develop, execute, and tune
applications on the Grid. GrADS comprises a performance
monitoring library and tools for constructing applications from
grid-aware components. [3] implements scheduling policies
for dynamically migrating applications on the GrADS infras-
tructure, in response to load system changes and application
characteristics. Currently, AutoGrid does not support applica-
tion migration; however, it can dynamically choose the grid
scheduling algorithm used, and also has self-healing and self-
configuration features. GrADS self-optmization mechanism
main components are: 1) Migrator that migrates applications
on the GrADS grid system, 2) Contract Monitor that monitors
application progress, and 3) Rescheduler that decides when to
migrate.

III. AUTOGRID ARCHITECTURE

AutoGrid is an autonomic grid middleware that augments
Integrade [7] middleware with self-managing capabilities.
Integrade is a multi-university effort to build a novel grid
computing middleware infrastructure to leverage the idle
computing power of personal workstations for the execution
of computationally intensive parallel applications. The basic
architectural unit of an Integrade grid is the cluster, a collection
of machines usually connected by a local network. Clusters
can be organized in a hierarchy, encompassing a large number
of machines. Each cluster contains a Cluster Manager node
that executes Integrade components responsible for managing
the cluster computing resources and for inter-cluster commu-
nication. Other cluster nodes are called Workstations, which
export part of its resources to Grid users. They can be shared
or dedicated machines.

In order to achieve self-manageability, AutoGrid middle-
ware components are implemented using Adapta [17], a
framework for developing self-adaptive applications that de-
couples the code that governs the business rules from the
code responsible for adaptation. The framework architecture
is based on computational reflection, where Adapta comprises
the application meta-level while the base level consists of
the application business objects. Adapta is also a runtime
system regularly monitoring the executing environment and
notifying events to registered components whenever a resource
availability condition is detected.

Adapta introduces a well-defined reconfiguration language
for each aspect of the reconfiguration process (monitoring, en-
vironment change detection, and application reconfiguration).
The reconfiguration language is XML-based and its statements
are stored externally to the application, describing the compo-
nent object model. Application developers and administrators
can alter a component object model by simply modifying its
corresponding reconfiguration statements. Modifications to the
object model are interpreted and built on runtime, using the
Adaptive-Object Model (AOM) pattern [18]. Therefore, each
Adapta component is also flexible and reconfigurable.

A. AutoGrid Main Components

AutoGrid reuses several Integrade components and refactors
others, introducing autonomic features. The main components
of AutoGrid architecture are:

• Application Submission and Control Tool (ASCT): a
graphical user interface that allows users to submit appli-
cations and control their execution;

• Application Repository (AR): stores the code of applica-
tions that can be executed on the grid;

• Local Resource Manager (LRM): a component that runs
in each cluster node responsible for instantiating and
executing applications scheduled to the node;

• Monitoring Service (MS): collects information about the
state of grid node resources, such as memory, CPU, disk,
network usage and applications. Each resource comprise
one or more properties, which are monitorable attributes,



such as, available memory, CPU load usage, network
bandwidth and latency, amount of application threads;

• Local Event Service (LES): receives notifications from
colocated MSs and notifies registered components when
a specific resource availability condition is detected;

• Event Processing System (EPS): a distributed event ser-
vice that detects composite events from different event
sources (grid nodes);

• Dynamic Reconfiguration System (DyReS): the adapta-
tion engine that applies reconfiguration actions to the
application in respond to environmental changes. It also
coordinates dependent components during the reconfigu-
ration process;

• Global Resource Manager (GRM): manages the cluster
resources by receiving notifications of resource usage
from the MSs (through an information update protocol),
and runs the scheduler that allocates tasks to nodes
based on resources availability. It is augmented with self-
managing capabilities using DyReS adaptation engine;

• Execution Manager (EM): maintains information about
each application submission, such as its state, executing
node, input and output parameters, submission and con-
clusion timestamps. It also coordinates the application
recovery process, in case of failures.

• Stable Storage: a distributed data repository that stores
the state of applications (checkpoints).

IV. AUTOGRID AUTONOMIC FEATURES

AutoGrid comprises four autonomic features: (a) context-
awareness, comprising the monitoring of grid resources and
the detection of environmental changes; (b) self-configuration,
that is based on computational reflection and comprises the
self-representation of the grid software structure and the sup-
port for reconfiguration actions; (c) self-healing, comprising
a flexible mechanism for application fault-tolerance; and (d)
self-optimization, through an adaptive replacement of the
scheduling algorithm.

A. AutoGrid Context-awareness Mechanism

Figure 1 illustrates the interactions among AutoGrid com-
ponents during the whole reconfiguration process. To achieve
autonomic behavior, it is necessary that the grid middleware
senses its own executing environment, which includes individ-
ual node parameters, such as, CPU availability, memory used,
disk space, and global grid parameters, such as application
income rate and the mean time between failures. For that
matter, the Monitoring Service (MS) regularly inspects the
underlying hardware and the executing environment on every
grid node (1) using monitor objects, which are individually
assigned to a single property. Monitors can be dynamically
instantiated to introduce new monitoring requirements not
known at design-time or replaced on the fly to cope with
the diversity of computational platforms. Each property also
has a set of operating ranges, for example, one could use the

following operation ranges for monitoring the CPU load usage:
[0%, 40%), [40%, 75%), and [75%, 100%]. The MS notifies
a collocated Local Event Service (LES) whenever there is a
change on the operating range of a property (2).

Fig. 1. The reconfiguration process

Upon a significant resource change notification, the LES
evaluates if a determined resource availability condition oc-
curred (3). Event evaluation is taken carefully to minimize
the amount of messages sent to nodes and it is based on a
boolean expression provided by the grid developer as part
of the event definition. To trigger an event notification, the
corresponding boolean expression must stay true during an
amount of time specified by the user, known as the duration
time. The duration time avoids generating notifications when
temporary situations occur, such as a resource usage peak
(e.g. a CPU use peak, triggered by starting a heavy program).
Once an event is detected, LES notifies the Event Processing
System (EPS) (4) and all subscribed components embodied by
a DyReS instance (5). Event notifications include the host that
generated the event, a timestamp, and property values specified
at event definition.

EPS is a distributed event service that detects composite
events (6) from different event sources (distributed nodes).
EPS is required whenever the decision to reconfigure grid
components should consider the combination of events de-
tected on distinct grid nodes. For example, dynamic load
balancing algorithms based on application migration should
take into account the CPU usage of every grid node and also
the network status. Upon detecting a distributed event, the
EPS notifies subscribed components embodied by a DyReS
instance (7). In order to avoid typical distributed systems
issues, such as message loss, duplication, or ordering EPS uses
three processing parameters:

• Detection window, which indicates the amount of time
that a received event is valid, based on its timestamp;



• Scheduling time, which indicates the amount of time to
wait for processing an event, helping to maintain the
correct event ordering;

• Concurrence time, which indicates the amount of time
that two events should be considered concurrent and
treated simultaneously.

The context-awareness mechanism finishes its cycle once
local or composite events are notified to all subscribed DyReS
instances. Next step is self-configuration.

B. AutoGrid Self-configuration Mechanism

Each adaptive component in the AutoGrid architecture is
augmented with a DyReS instance that corresponds to its
meta-level. The DyReS is responsible for receiving event
notifications (from LES or EPS), and initiating reconfiguration
on behalf of its component. Currently, DyReS can perform
two reconfiguration actions: dynamic change of application
parameters and dynamic replacement of application algorithms
with a well-defined state transfer protocol. However, DyReS
instances can be extended by expert users to introduce new
actions, such as component addition, removal, or replacement.

The grid middleware may require that a reconfiguration
taken on a single component be synchronized amongst de-
pendent components. For synchronization purposes, DyReS
instances manage component dependencies by maintaining
references to other DyReS instances, based on [12]. DyRes
comprises hooks, that represent the components it depends
upon, as well as clients, that references dependent components.
For example, on figure 1, DyReS A is a hook to DyReS B,
which means DyReS B is DyReS A client. Synchronization
notifications flow through this dependency chain formed by
hooks and clients, arriving as event notifications at a compo-
nent (8). DyReS B instance (that receives the synchronization
notification) must perform the reconfiguration on behalf of
its component (9). When reconfiguration finishes (10), DyReS
B responds to its hook that it finished reconfiguration (11).
Finally, DyReS A reconfigures its own component (12) and
(13).

The synchronization protocol shown uses a timeout attribute
to avoid that the synchronization process extends itself indefi-
nitely, due to a component crash or network traffic conditions.

1) Change of Application Parameters: The parameter up-
dating mechanism uses a callback method approach. The
grid middleware developer introduces, during design, callback
methods to be invoked on every class that has an updat-
able parameter. AutoGrid obtains the callback reference and
dynamically invokes it using the new values informed on
the reconfiguration action. Parameter updating is required to
dynamically change the MTBF value used by the replication
mechanism and alter the interval between checkpoints, as shall
be seen on the self-healing feature section.

2) Replacement of Application Algorithms: The algorithm
replacement procedure requires a proxy that introduces an
indirection layer above replaceable objects, keeping adaptation
transparent to clients. The proxy also manages state transfer

during the substitution process. The state consists on a set
of variables, that represents the current computation of the
active algorithm. Since variables are class fields, the proxy
can inspect the object implementing the active algorithm,
store its state, and load it inside another object. Algorithm
replacement is necessary to dynamically substitute the current
grid scheduling algorithm for one that is better suited to
the executing envinronment, as can be seen on the self-
optimization feature section.

Adapta uses a lazy approach for object replacement, in-
stead of an eager one [15]. The lazy approach allows the
already running algorithm to complete its execution before
being replaced, while the eager one immediately suspends the
algorithm execution, performs the replacement, and resumes
it from the point where it was suspended. The lazy approach
advantage is that it always reaches a valid state, which is not
guaranteed by the eager approach, since not every random
execution point (a transient state) is a valid state into the new
object.

C. AutoGrid Self-healing Mechanism

Computational grids are highly prone to failures due to
several facts, such as its dynamic nature or grid autonomy.
In order to ensure the continuity of applications executions,
diverse failure handling techniques strategies cam be applied,
which includes:

• Retrying, which restarts an application from scratch;

• Replication, which submits the same application for exe-
cution a number of times, generating various application
replicas. When one of the replicas finishes, the grid
middleware must discard (or ignore) the others and return
the results to the requesting user;

• Checkpointing, which periodically saves the state of the
computation in a stable storage during the failure free
execution time. Upon a failure, the application restarts
from the last saved point (a checkpoint). The adoption
of this technique introduces an overhead to the normal
application execution time. More details about AutoGrid
checkpointing mechanism can be found on [5], [4].

Hwang et all [9] presented the tradeoff among failure
handling techniques implemented on a grid (retrying, check-
pointing, replication, and replication with checkpointing), con-
sidering several different execution environments scenarios,
which involve various failure handling parameters, such as the
failure-free execution time or the mean time between failures
(MTBF). AutoGrid self-healing mechanism could automati-
cally select the most appropriate failure-handling mechanism
based on the parameters presented; and it also could adjust
the time interval between consecutive checkpoints, according
to the amount of computation.

Currently, AutoGrid version can dynamically decide the
amount of replicas to be generated for a given application
submition based on the execution environment MTBF and
the application mean execution time. The Global Resource



Manager (GRM) is the component in the AutoGrid archi-
tecture that manages fault-tolerance. GRM was augmented
with DyReS to dynamically modify the MTBF value and
recalculate the amount of replicas. The algorithm used for
that purpose attempts to approximate as much as possible the
application execution time to its mean execution time using as
less replicas as possible.

We measured the benefits of varying the amount of replicas
with a set of simulations. Figures 2 and 3 show the values
obtained for the application estimated execution time con-
sidering the amount of generated replicas and the execution
environment MTBF. The simulations considered an application
execution time in the absence of failures of 18 and 36 hours
for figures 2 and 3, respectively. By analyzing the simulation
results, we can conclude that: a) as the failure rate increases
(lower MTBF values), a higher amount of replicas is necessary
to keep the application execution time inside an acceptable
range (a tolerance value); b) if we fix the MTBF value, its
not profitable, after a certain point, to increase the amount of
replicas, since the gain would be minimum while more Grid
resources would be used. For example, on figure 2 when the
MTBF is 4 or 8, using 2, 4, or 9 replicas would make no
significant difference to the application execution time. On
figure 3 the same thing can be seen when the MTBF is 8; c)
some times great gains can be achieved by slightly variating
the number of replicas. For instance, on figure 2 we can see
an enormous advantage by using 2 replicas instead of 1 when
the MTBF is between 0.5 and 2. Also on figure 3 the same
benefit is obtained when the MTBF is between 2 and 4.

Fig. 2. Mean Execution Time of 18 hours

The simulation results clearly indicate the benefits of al-
tering the amount of application replicas as the MTBF and
application execution time varies. On the other side, the
dynamic nature of the Grid execution environment makes it
very difficult (if not impossible) for a Grid user or administra-
tor to manually decide and set the best amount of replicas
to be generated for each application submition. AutoGrid
contains a monitor that periodically measures the current
Grid MTBF based on a database generated by the Execution
Manager component. This database contains information about
each application execution, such as: the global submission

Fig. 3. Mean Execution Time of 36 hours

and conclusion timestamps and detailed information about
the execution of each process that comprises the application
execution, including data concerning eventual failures that may
have occurred.

D. AutoGrid Self-optimization Mechanism

The computational grid comprise a highly dynamic envi-
ronment. Dynamism is more noticeable on opportunistic grids,
that leverages idle computing power of personal workstations
for executing computationally-intensive parallel applications.
Because grid nodes are not dedicated, it is common that ap-
plications assigned to resources perform poorly than expected.
Load balancing techniques, adaptive scheduling and dynamic
re-scheduling are important topics to be investigated.

Maheswaran et all [14] quantifies the relative performance
of scheduling heuristics. It discusses that the choice of a
particular scheduling algorithm is a function of factors, such
as the arrival rate of the tasks, the optimization heuristic used
(e.g., optimizing makespan versus optimizing average sharing
penalty). It uses simulations to prove that there is always an
algorithm that is more appropriate for a given environmental
situation.

Dong et all [6] refers to an adaptive solution to the schedul-
ing problem as the one in which the algorithms and parameters
used to make scheduling decisions change dynamically ac-
cording to the previous, current and/or future resource status.
It also points that adaptive scheduling can optimize overall
Grid performance and minimize application response time.

Based on those studies, dynamically replacing grid schedul-
ing algorithms is profitable, and AutoGrid provides the means
for that. For example, one could use the MCT (minimum
completion time), an on-line heuristic, instead of min-min,
which is a batch heuristic, when the arrival rate of the tasks
is above a certain threshold. Another important attribute that
affects selection of the appropriate grid scheduling algorithm
is resource utilization; for example, one could use the max-
min heuristic to maximize concurrency if resource usage is
low. During algorithm replacement, AutoGrid manages state
transfer, which takes into account the queue of applications
stored by the algorithm.



The Global Resource Manager (GRM) comprise AutoGrid
scheduler. GRM consists of a set of scheduling algorithms and
knowledge of the appropriate moment to trigger the dynamic
switch. Investigations are being made to measure the exact
moment of replacement, according to the application arrival
rate, resource usage, network status and other environmental
properties.

V. CONCLUSIONS AND FUTURE WORK

Computational grids have become an attractive alternative
for executing parallel and distributed applications that demand
high computational power, and also for integrating com-
putational resources spread through different administrative
domains. However, the dynamic nature of the grid infras-
tructure, its high scalability and great heterogeneity has turn
impracticable its configuration, maintenance and recovery in
case of failures solely by humans beings.

This paper presented AutoGrid, a self-managing autonomic
grid system that uses Integrade grid middleware as its foun-
dation. AutoGrid is capable of (re)configuring itself according
to context data regularly observed from the executing envi-
ronment. AutoGrid also features self-healing, in its ability to
recover from application failures without human intervention,
and self-optimization, by minimizing application response
time while optimizing overall Grid performance.

AutoGrid design emphasizes openness and flexibility.
Therefore, its monitoring infrastructure allows to introduce,
remove and replace context monitors according to the de-
ployment environment. Moreover, the adaptation engine itself
is extensible which permits that advanced users design new
adaptive mechanisms to achieve different and more robust
autonomic features.

AutoGrid autonomic features (context-awareness, self-
configuration, self-healing and self-optimization) are being
evaluated using experiments and simulations that clearly in-
dicate that adaptive approaches bring considerable benefits to
the grid infrastructure.

We are currently introducing into AutoGrid a set of grid
scheduling algorithms which are selected on runtime according
to the execution environment; also, we are measuring the
benefits of adaptive scheduling to overall grid performance.
We are investigating other self-optimization mechanisms, such
as dynamic load balancing and re-scheduling of applications.
AutoGrid context-awareness feature is being augmented with
interfaces that export context-data to grid applications. Finally,
we are extending AutoGrid adaptation engine with a compo-
nent migration mechanism.
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