
A Middleware for Experimentation on Dynamic Adaptation ∗

Renato Maia
†

Department of Informatics
PUC-Rio, Brazil

maia@inf.puc-rio.br

Renato Cerqueira
Department of Informatics

PUC-Rio, Brazil
rcerq@inf.puc-rio.br

Fabio Kon
Depart. of Computer Science
University of São Paulo, Brazil

kon@ime.usp.br

ABSTRACT
This paper presents OiL, an adaptive middleware that aims
at supporting experimentation with different models and
techniques for dynamic adaptation of distributed systems.
OiL is a CORBA implementation written completely in Lua,
an interpreted language with several reflective and data-
description facilities. In addition to the support for dy-
namic adaptation, OiL was designed to be deployed on a
wide range of platforms, from server machines to PDAs and
mobile phones, enabling experimentation in different appli-
cations scenarios. In this paper, we report the results al-
ready achieved in this project and discuss future directions.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming, Distributed Programming

Keywords
Reflective Middleware, Adaptive Middleware, Dynamic Adap-
tation, Programming Abstractions, CORBA

1. INTRODUCTION
The ability to adapt computer systems without interrupt-

ing the provided services is an ever-growing necessity in
many different areas of Computer Science. Indeed, almost
every computer system provides means to be changed on the
fly, considering that both data and instructions are usually
stored in memory that can be modified. However, modifica-
tions at that level can become extremely complex and error
prone in many practical situations. Therefore, current re-
search on dynamic adaptation is more concerned with mech-
anisms that provide means to introduce these changes in a
simple, organized and safe way.

∗This work is supported by Tecgraf/PUC-Rio and CNPq, Brazil,
process #55.0094/2005-9.
†
Sponsored by a CNPq doctoral fellowship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM’05 November 28–December 2, 2005 Grenoble, France
Copyright 2005 ACM 1-59593-270-4/05/11 ...$5.00.

Although many approaches have been proposed to deal
with dynamic adaptation, it is unclear how to compare these
approaches and in which situations one approach is better
than another. Such comparison requires a better under-
standing of dynamic adaptation and its underpinnings, what
demands more experience with dynamic adaptable systems
and the mechanisms necessary to support them.

We have been involved for some years in investigating ab-
stractions and programming tools to develop dynamically
adaptable component-based applications. Initially, we de-
veloped the LuaOrb system, which uses a scripting language
as a unifying compositional language, wherein one can write
code at runtime that freely uses and mixes components from
different component systems, such as CORBA, COM, and
Java [2]. LuaOrb uses the scripting language Lua [6], which
is a very dynamic language with several reflective and data-
description facilities.

Based on LuaOrb, we have already investigated some higher-
level mechanisms to support dynamic adaptation, such as a
dynamic extension of CORBA servers [10], smart proxies
and an extensible distributed monitoring mechanism [12],
and a dynamic adaptable container for the CORBA Com-
ponent Model (CCM) [9]. We have also evaluated [9] the
use of the role and protocol abstractions [14] to adapt CCM-
based applications. To evaluate these tools and mechanisms,
we developed some experiments in different application ar-
eas, such as Collaborative Computer Aided Design [3], Dis-
tributed Visualization [4], and Ubiquitous Computing [15].

A lesson learned from all these experiments was that the
current middleware technology already provides several mech-
anisms to support dynamic adaptation at the application
level, but more suitable abstractions and programming tools
are fundamental to help using and understanding these mech-
anisms, and therefore enabling the development of dynamic
adaptable applications [1]. However, in these experiments
we could not exploit adaptations at the middleware level,
since LuaOrb is implemented using CORBA’s DII (Dynamic
Invocation Interface) of an off-the-shelf C++ ORB, which
typically does not provide means to dynamically adapt the
middleware. In many cases, this was a strong limitation to
the exploration of alternative adaptation strategies.

In this paper, we present OiL (ORB in Lua), an adap-
tive CORBA implementation completely developed using
Lua that replaces the underlying middleware implementa-
tion used in our research. OiL aims at achieving, at the
middleware level, the same degree of flexibility provided by
LuaOrb to implement adaptation mechanisms at the appli-
cation level. In addition to the support for dynamic adap-

tation, due to the small footprint of Lua, we were able to
design OiL to fit a wide range of platforms, from server ma-
chines to PDAs and mobile phones, enabling experiments in
different application scenarios.

This paper is organized as follows: Section 2 describes the
main characteristics of OiL. Section 3 presents an example of
how to implement a higher-level adaptation abstraction over
OiL. Then Section 4 presents some results already achieved
with OiL and Section 5 discusses related work. Finally, Sec-
tion 6 presents some final remarks.

2. OIL OVERVIEW
OiL stands for ORB in Lua and is an implementation

of CORBA (Common Object Request Broker Architecture)
that shares many of the characteristics of the Lua language,
such as simplicity, flexibility and portability. Unlike other
CORBA implementations, OiL does not provide ORB sup-
port by means of generated glue code such as stubs and
skeletons. Instead, similarly to the approach used by Lu-
aOrb, all support is created at runtime, including method
invocation and dispatching. Roughly, we can divide the im-
plementation of the OiL ORB into four main modules, re-
sponsible for CORBA protocol support, interface definition
description, method invocation, and method dispatch.

Basically, all communication performed by the ORB is
done through messages written into sockets according to the
GIOP (General Inter-ORB Protocol) and containing Lua
values encoded into the CDR (Common Data Representa-
tion) defined by CORBA [13]. This communication is almost
completely implemented in Lua (only socket and bit manip-
ulation support is provided by C libraries) and therefore can
be easily adjusted at runtime to certain criteria.

However, in order to build up the GIOP message cor-
rectly, it is necessary to know precisely the operations and
attributes available in each object interface. This informa-
tion is available as data structures that describe IDL defini-
tions and can be modified or replaced dynamically.

Conveniently, OiL provides a compiler that translates IDL
specifications into Lua data structures and registers them at
the OiL internal interface repository by means of the oper-
ation oil.loadidl, as illustrated in the following examples.

All method invocation is done by object proxies, which
work like dynamic stubs that perform method invocations
according to a given interface definition. Each object proxy
is an instance of a class associated with a particular inter-
face. Every time an interface definition is changed, its as-
sociated proxy class is changed as well. As a consequence,
every object proxy of that class is adapted to reflect the new
interface. The code on Listing 1 shows a script that initially
accesses a remote object using a particular interface defini-
tion. Later, when the application provides a new definition
for the same interface, the ORB is adapted to match the
new definition.

Listing 1: Client code adaptation.
1 o i l . l o a d i d l [[
2 i n t e r f a c e He l l o {
3 vo i d h e l l o () ;
4 } ;
5]]
6 proxy = o i l . newproxy (readIOR (” i o r . t x t ”) , ” He l l o ”)
7 proxy : h e l l o ()
8

9 . . .

10 o i l . l o a d i d l [[
11 i n t e r f a c e He l l o {
12 s t r i n g h e l l o (i n s t r i n g name) ;
13 } ;
14]]
15 p r i n t (p roxy : h e l l o (”World”))

Similarly, method dispatch is done according to an inter-
face definition provided at object creation. Whenever a new
request is addressed to a particular object, the associated
interface definition is used to retrieve the operation signa-
ture, which is then used to figure out the actual kind of data
marshaled in the message. This way, whenever an interface
definition is changed, every subsequent request received by
an object with that interface will be matched against the
new definition. The code on Listing 2 initially creates an
object with a given interface. However, after this interface
is changed, every new request is matched to the new defini-
tion. Therefore, the object implementation can be changed
to properly fit into the new interface.

Listing 2: Server code adaptation.
1 imp l = { } −− ob j e c t i s an empty t a b l e
2 f u n c t i o n imp l : h e l l o ()
3 p r i n t (” He l l o World ! ”)
4 end
5 o i l . l o a d i d l [[
6 i n t e r f a c e He l l o { vo i d h e l l o () ; } ;
7]]
8 ob j e c t = o i l . newob jec t (impl , ” He l l o ”) ;
9 wr i te IOR (ob j e c t , ” i o r . t x t ”)

10

11 . . .
12

13 o i l . l o a d i d l [[
14 i n t e r f a c e He l l o {
15 s t r i n g h e l l o (i n s t r i n g name) ;
16 } ;
17]]
18 f u n c t i o n imp l : h e l l o (name)
19 r e t u r n ” He l l o ” . . name . . ” ! ”
20 end

However, besides being able to adapt the middleware to
certain criteria, such as a new interface definition, it is cru-
cial to introduce these changes at adequate moments to
avoid inconsistencies. This becomes especially cumbersome
in concurrent systems, where adaptation may interfere with
many different tasks that are performed at the same time.

2.1 Cooperative Concurrency
Lua provides native support for concurrency by means of

co-routines that are used to create independent execution
threads that switch execution at explicitly defined points.
This kind of multiprogramming is called cooperative concur-
rency. Differently from preemptive models, thread synchro-
nization is much simpler in cooperative models. However,
fairness conditions are almost entirely handled by the pro-
grammer.

In order to enhance portability and simplicity, the OiL
concurrency model is based on Lua co-routines. Therefore,
every concurrent task performed by OiL, including method
dispatching, is done by a co-routine that explicitly switches
execution at well-known points, thus avoiding potential race
conditions. Cooperative concurrency has many advantages,
such as easier programming and debugging, since thread
synchronization is often trivial and execution is much more
deterministic. Additionally, cooperative concurrency can be
more efficient than preemptive models. This is mainly be-
cause the developer is able to program execution switching

properly, avoiding undesirable execution switches that lead
to inefficient situations (which normally occur in preemptive
models when automatic scheduling policies are used).

Particularly, cooperative concurrency copes well with dy-
namic adaptation. This is due mainly to the virtual absence
of race conditions, since the programmer defines the execu-
tion switching points. Therefore, the programmer can de-
fine the points where adaptations can take place, avoiding
potential inconsistencies. The use of a cooperative concur-
rency model in the implementation of OiL enables us to
easily create simple mechanisms for experimenting with dy-
namic adaptation, because adaptation operations are always
atomic as long as they do not switch execution. For exam-
ple, we can define an operation that changes an object class
implementation and its respective interface with no need for
synchronization mechanisms.

On the other hand, cooperative models of concurrency
may not cope very well with some requirements. For exam-
ple, execution switching between independently developed
objects (or components) may be difficult to be achieved
fairly. It is possible to introduce switching policies in coop-
erative models to ensure fairness constrains, but this kind of
analysis is not included in our current research. Even though
we are aware of current limitations of cooperative models,
we believe that its use simplifies enormously the complex-
ity of dynamically adaptable systems and therefore is an
interesting alternative for experimentation on this subject.
Anyway, preemptive concurrency models are equivalent to
their cooperative counterparts. Therefore we are very confi-
dent that the same results valid for experimentations on our
simplified cooperative platforms can be adapted to other
platforms that use preemptive models with proper synchro-
nization mechanisms.

2.2 Object Models
Although Lua is not an object-oriented language it can

be extended to provide object-oriented features such as be-
havior sharing through prototype-based or class-based ap-
proaches. This lack of built-in support for OOP (object-
oriented programming) enables the use of custom-made OOP
models that address specific requirements, like dynamic adap-
tation features for example. Additionally, Lua provides ele-
mentary support for a sort of OOP by means of some syntac-
tic sugar and conventions. This elementary support can be
used as an integration point between different custom-made
models.

Almost all the adaptation support provided by OiL is im-
plemented over a set of dynamically adaptable object-class
models called LOOP (Lua Object-Oriented Programming)
that is implemented using the extension mechanisms pro-
vided by Lua. LOOP models define object classes like a
kind of virtual table of operations (i.e. VTable) that con-
tains all operations available for objects of that class. This
table of operations is shared by all objects of a particular
class. On the other hand, object state data is stored at each
object-instance structure, which is implemented by a Lua
table (i.e. an associative array).

This kind of separation between state and operation data
allows us to create adaptation mechanisms that change the
implementation of systems without any object (or compo-
nent) replacement or state transfer. For example, let us
consider the code on Listing 3 that shows part of the imple-
mentation of the Dining Philosophers problem.

Listing 3: Dining Philosophers on LOOP.
1 Fork = oo . c l a s s { i n u s e = f a l s e }
2

3 f u n c t i o n Fork : ge t ()
4 l o c a l ok = not s e l f . i n u s e
5 i f ok then s e l f . i n u s e = t rue end
6 r e t u r n ok
7 end
8

9 f u n c t i o n Fork : r e l e a s e ()
10 a s s e r t (s e l f . i nu se ,
11 ” attempt to r e l e a s e an unused f o r k ”)
12 s e l f . i n u s e = f a l s e
13 end
14

15 Ph i l o s o ph e r = oo . c l a s s { −− d e f a u l t a t t r i b u t e s
16 name = ”unamed” ,
17 hunger = 0 ,
18 h a s l e f t = f a l s e ,
19 h a s r i g h t = f a l s e ,
20 }
21

22 f u n c t i o n Ph i l o s o ph e r : update ()
23 i f
24 s e l f . h a s l e f t and
25 s e l f . h a s r i g h t
26 then
27 i f s e l f : i s h u n g r y ()
28 then s e l f : eat some ()
29 e l s e s e l f : r e l e a s e f o r k s ()
30 end
31 e l s e
32 s e l f : g e t more hung ry ()
33 i f s e l f : i s h u n g r y () then
34 i f not s e l f . h a s l e f t then
35 i f s e l f : t r y g e t f o r k (” l e f t ”) then
36 r e t u r n
37 end
38 end
39 i f not s e l f . h a s r i g h t then
40 i f s e l f : t r y g e t f o r k (” r i g h t ”) then
41 r e t u r n
42 end
43 end
44 end
45 end
46 end
47

48 . . .

Suppose now that, after the deployment of an applica-
tion made up of three philosophers and three fork instances,
the system reaches a deadlock because at a given time each
philosopher has a fork. We can update the system’s im-
plementation in order to avoid deadlocks if the application
provides an entry point for the execution of adaptation code,
for example by using an object that implements an operation
that compiles and executes a chunk of Lua code received as
a parameter.

As an example, we have applied the change illustrated at
the code on Listing 4 to add proper deadlock prevention.

Listing 4: Adaptation to avoid deadlocks.
1 adapto r = o i l . newproxy (readIOR (” adapto r . i o r ”))
2

3 adapto r : e x e cu t e [[
4 −− adds new op e r a t i o n to c l a s s Ph i l o s o ph e r
5 f u n c t i o n Ph i l o s o ph e r : a v o i d d e ad l o c k ()
6 i f (
7 (s e l f . h a s l e f t and not s e l f . h a s r i g h t)
8 or
9 (not s e l f . h a s l e f t and s e l f . h a s r i g h t)

10) and (math . random (3) == 1)
11 then
12 s e l f : r e l e a s e f o r k s ()
13 end
14 end
15

16 −− change e x i s t i n g o p e r a t i o n update
17 f u n c t i o n Ph i l o s o ph e r : update ()
18 i f s e l f . h a s l e f t and s e l f . h a s r i g h t then
19 i f s e l f : i s h u n g r y ()
20 then s e l f : eat some ()
21 e l s e s e l f : r e l e a s e f o r k s ()
22 end
23 e l s e
24 s e l f : g e t more hung ry ()
25 i f s e l f : i s h u n g r y () then
26 i f not s e l f . h a s l e f t then
27 i f s e l f : t r y g e t f o r k (” l e f t ”) then
28 r e t u r n
29 end
30 end
31 i f not s e l f . h a s r i g h t then
32 i f s e l f : t r y g e t f o r k (” r i g h t ”) then
33 r e t u r n
34 end
35 end
36 s e l f : a v o i d d e ad l o c k ()
37 end
38 end
39 end
40]]

Actually, the whole implementation of OiL is based on
LOOP classes. However, the implementation of dynamic
proxies may be the best example to illustrate the use of
LOOP’s dynamic adaptation features in OiL. A new class
of proxy objects is created for each interface handled by
OiL and this class is then used to create proxies of objects
of that particular interface. These proxies are objects that
contain state data that describe each object’s interface and
reference such as host, port or object id. However, the whole
method invocation is implemented by a set of operations
stored at the proxy class that are created according to each
object’s interface. Whenever the interface is changed (e.g. a
new operation is added), the list of operations available for
these proxies is changed accordingly. In fact, proxy classes
are implemented as a cache of stub operations created on-
demand that actually implement method invocation. This
way, when an interface is changed, this cache is emptied to
allow the recreation of stub functions for new operations.

3. ADAPTATION ABSTRACTIONS
In order to safely introduce changes into a running pro-

gram, aside from being able to change the program’s imple-
mentation and middleware support, one needs to organize
these changes properly. This should be done by means of
proper programming abstractions specifically devised for dy-
namic adaptation. LOOP classes already provide an adap-
tation abstraction through the notion of dynamic classes,
which can the used to change the implementation of a whole
set of related objects, as seen previously. However, in some
situations other aspects must be addressed as well, for in-
stance in the case of an adaptation that requires changes in
system data besides its implementation. As an example, let
us suppose the implementation of a component that collects
the e-mails of authors when a conference paper is submitted
and notifies previously registered authors, as illustrated by
the code on Listing 5.

Listing 5: Mail collector näıve implementation
1 o i l . l o a d i d l [[
2 s t r u c t Author {
3 s t r i n g name ;
4 s t r i n g ema i l ;
5 } ;
6 t y p ed e f sequence<Author> AuthorSeq ;

7 s t r u c t Paper {
8 s t r i n g t i t l e ;
9 AuthorSeq au tho r s ;

10 } ;
11 i n t e r f a c e C o l l e c t o r {
12 vo i d submit (i n Paper paper) ;
13 } ;]]
14 C o l l e c t o r = oo . c l a s s {}
15

16 . . .
17

18 f u n c t i o n C o l l e c t o r : submit (paper)
19 f o r , ema i l i n i p a i r s (s e l f . ema i l s) do
20 s e nd t o (emai l , ”New paper : ” . . paper . t i t l e)
21 end
22 f o r , au tho r i n i p a i r s (paper . au tho r s) do
23 t a b l e . i n s e r t (s e l f . ema i l s , au tho r . ema i l)
24 end
25 end

After some time running the conference website we would
notice that some authors receive duplicated notifications due
to the submission of papers with common authors. Now we
want to correct this problem and use this information to
obtain the name of the author with more papers submitted
to the conference as a result of the operation submit. To do
so, we must change the component’s implementation and
interface, as well as adapt its state to remove duplicated e-
mails. Supposing that we have many components running
for different conferences in the same website, this adaptation
may be more complicated.

Although LOOP classes can add new attributes with de-
fault values to object instances, it is not possible to change
object attributes through the class. However, if the new
implementation is defined as a new class (which can be a
subclass of the original one), then objects can be adapted on-
demand by means of a triggering operation call that switches
the object class to the new one. This way, when the class of
an object is changed, its data can be modified accordingly.

On the other hand, the introduction of these changes can
be very error-prone. Therefore, we have defined an abstrac-
tion that is used to properly introduce a combined change
in a component’s interface, implementation and data. This
abstraction consists of a description that contains the new
implementation of component operations, its new interface
definition, a procedure to adapt the instance state and a
list of the operations that should trigger the adaptation.
Suppose that for each object class we have an object that
implements the interface illustrated on Listing 6, which re-
ceives a complete definition of an adaptation that defines
the change in state, implementation and interface of that
particular object class.

Listing 6: IDL for combined adaptor component
1 i n t e r f a c e ComponentAdaptor {
2 vo i d app l y change (
3 i n S t r i ngSequence t r i g g e r s ,
4 i n s t r i n g s t a t e a d a p t a t i o n c o d e ,
5 i n s t r i n g imp l a dap t a t i o n cod e ,
6 i n s t r i n g n ew i n t e r f a c e d e f
7) r a i s e s (Comp i l eE r ro r) ;
8 } ;

Whenever a new change is applied, the current class is
modified so that each one of the specified triggering oper-
ations is replaced by an operation that executes the state
adaptation code over the object instance and then changes
the class of the object to a new one that is a derived class
of the original one and contains the changes defined by the
implementation adaptation code.

Such approach enables us to adapt object implementa-
tions on-demand whenever a particular set of triggering op-
erations is invoked. For the example presented above, we
can define an adaptation like the one showed on Listing 7,
which specifies the changes on the state of each object (lines
8-13) and eventually removes duplicated e-mails. This adap-
tation also specifies changes on the implementation of op-
eration submit so that it avoids duplications and returns
the name of the author with more submitted papers (lines
18-33). Consequently, this adaptation also defines the inter-
face that matches the new implementation as shown (lines
38-40).

Listing 7: Adaptation for the Collector component
1 Adaptor = o i l . newproxy (readIOR (” adapto r . i o r ”))
2 Adaptor : app l y change (
3 −− t r i g g e r i n g o p e r a t i o n s
4 {” submit ”} ,
5

6 −− ob j e c t s t a t e adap t a t i o n
7 [[
8 l o c a l ema i l s e t = {}
9 f o r , ema i l i n i p a i r s (s e l f . ema i l s) do

10 l o c a l count = ema i l s e t [ema i l] or 0
11 ema i l s e t [ema i l] = count + 1
12 end
13 s e l f . ema i l s = ema i l s e t
14]] ,
15

16 −− c l a s s imp l ementa t i on adap t a t i o n
17 [[
18 f u n c t i o n C o l l e c t o r : submit (paper)
19 f o r ema i l i n p a i r s (s e l f . ema i l s) do
20 s e nd t o (emai l , ”New paper : ” . . paper . t i t l e)
21 end
22 l o c a l r e s u l t
23 l o c a l maxcount = 0
24 f o r , au tho r i n i p a i r s (paper . au tho r s) do
25 l o c a l count = s e l f . ema i l s [au tho r . ema i l] or 0
26 i f count >= maxcount then
27 maxcount = count
28 r e s u l t = autho r . name
29 end
30 s e l f . ema i l s [au tho r . ema i l] = count + 1
31 end
32 r e t u r n r e s u l t
33 end
34]] ,
35

36 −− new ob j e c t i n t e r f a c e d e f i n i t i o n
37 [[
38 i n t e r f a c e C o l l e c t o r {
39 s t r i n g submit (i n Paper paper) ;
40 } ;
41]]
42)

Many other adaptation abstractions have been proposed
to address different situations [11]. Examples include the use
of interceptors to add functionality rather than replacing it,
or the description of architecture changes to adapt compo-
nent connections rather than internal state. We intend to
use the infrastructure provided by OiL to experiment with
such abstractions in order to evaluate its applicability and
feasibility [9].

4. FIRST RESULTS
Although OiL development is still in its early stages, we

have already produced some initial results by using it in
some applications. Currently, most applications using OiL
do it as an alternative to other larger CORBA implemen-
tations. That is the case of the InteGrade system for grid

Orbacus OiL
No parameters 57.5906 70.5835
String inout parameter 58.3726 71.3613
User exception 83.4109 78.1850

Table 1: Time to perform 100,000 calls (in seconds).

management [5]. InteGrade provides lightweight node man-
agement by using OiL to implement CORBA support in the
software running on the nodes of the grid.

Similarly, OiL is being used by the Tecgraf computer graph-
ics laboratory at PUC-Rio in an application developed for
the Brazilian Oil Company that controls the execution of
applications on heterogeneous clusters. Lua is extremely
portable, because it is entirely implemented in standard C.
As a result, OiL turns out to be an equally portable imple-
mentation of CORBA. Additional socket support is provided
by fairly portable code that lies mostly in BSD sockets. Due
to the large number of different platforms composing the
clusters, the portability provided by OiL has simplified the
deployment of the code running in clusters.

Aside from its usage on real projects, OiL has also been
used in some experimental projects. One example that il-
lustrates well the use of OiL to analyze the applicability
of middleware implementation techniques is a work[16] that
evaluates three different techniques to traverse firewalls. In
another experiment we were able to run OiL over resource-
limited devices, such as mobile phones, using a port of the
Lua language for the BREW platform.

Initial performance evaluations also show promising re-
sults even with our current implementation with no opti-
mizations. For measuring performance we used a CORBA
object, with an implementation in Lua and another in C++,
which only receives requests but does no processing. We
compared OiL’s performance with Orbacus for C++ com-
piled with optimizations and using statically linked libraries.
The tests were performed by a client implemented in C++
with Orbacus that measured the time taken to perform 100K
operation calls over a server. Table 1 shows the average time
taken to perform the 100K calls of three different operations:
one with no parameters; another with an inout parameter
of type string; and a last one that raises a user exception.

These results show that the current implementation of
OiL adds a small overhead of only 20% over the performance
of a static C++ implementation. Most of this overhead is
due to the marshalling process that is done at every call
and is mostly implemented in Lua interpreted code. On the
other hand, this performance proximity is mostly justified
by the network delay inherent to distributed applications.
However, the performance of OiL with more complex types
such as structures or sequences should be worse than these
initial results.

5. RELATED WORK
DynamicTAO and Open ORB are among the first imple-

mentations of reflective middleware [7]. Both of them pro-
vide support for introspection and the dynamic replacement
of both ORB and application components. Since dynamic-
TAO is implemented in C++, it has to provide all support
for introspection and dynamic reconfiguration from scratch.
Open ORB, on the other hand, was prototyped in Python,
a dynamic language that naturally includes this kind of sup-

port. Unlike Open ORB’s Python prototype, OiL features a
lightweight implementation with a performance that is close
to the ones of C++ ORBs. A later prototype of Open ORB,
written in C++ and based on the COM model, traded flex-
ibility for performance, achieving high throughputs.

Another work similar to ours is OpenCORBA, a reflec-
tive ORB implemented in a Smalltalk-like reflective lan-
guage based on the concept of meta-classes [8]. Similarly
to our approach, in OpenCORBA the behavior of CORBA
services is modified by replacing the meta-class object of the
class defining that service.

6. FINAL REMARKS
In this paper we presented OiL, an ORB implemented in

the scripting language Lua, and discussed how its features
can be used to implement dynamic adaptation mechanisms.
Despite its dynamic and interpreted nature, the current im-
plementation of OiL presents a small performance penalty
compared to CORBA implementations in C++. OiL can be
downloaded from http://oil.luaforge.net/.

We intend to use OiL as a platform for experimentation
on dynamic adaptation because our claim is that the use of a
scripting language simplifies the development of such mech-
anisms due to its dynamic nature. However, OiL’s adap-
tation features are very low-level and lack mechanisms for
adapting the application properly. Although LOOP models
already provide some support for changing application im-
plementation, we are particularly interested in investigating
more elaborated abstractions that impose different program-
ming paradigms to facilitate the implementation of dynamic
adaptations.

Traditionally, scripting languages are underestimated due
to their poor performance when compared to compiled lan-
guages. However, when it comes to the realms of distributed
applications the overhead introduced by the use of such lan-
guages becomes less evident. Additionally, scripting lan-
guages are generally dynamic and usually provide introspec-
tion mechanisms to check runtime conditions, which is par-
ticularly useful for distributed applications where errors at
runtime are common due to deployment failures.

Finally, we intend to run experiments using our platform
that implement and evaluate techniques and abstractions for
dynamic adaptations currently proposed by the community.
In addition to evaluating the performance impact introduced
by the different dynamic adaptation approaches, we are par-
ticularly interested in measuring the degree of flexibility, us-
ability and feasibility of these approaches. However, the
measurement of these subjective aspects is a long-term re-
search goal of our group, since there is no generally accepted
set of metrics to evaluate these aspects.

7. REFERENCES
[1] T. Batista, R. Cerqueira, and N. Rodriguez. Enabling

reflection and reconfiguration in CORBA. In
Proceedings of ARM’03, pages 125–129, Rio de
Janeiro, Brazil, June 2003.

[2] R. Cerqueira, C. Cassino, and R. Ierusalimschy.
Dynamic component gluing across different
componentware systems. In Proceedings of DOA’99,
pages 362–373, Edinburg, Scotland, September 1999.
IEEE Press.

[3] B. Feijó, P. Rodacki, J. Bento, S. Scheer, and
R. Cerqueira. Reactive design agents in solid

modelling. In J. Gero and F. Sudweeks, editors,
Artificial Intelligence in Design’98, pages 557–577.
Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1998.

[4] A. Ferreira, R. Cerqueira, W. Celes, and M. Gattass.
Multiple display viewing architecture for virtual
environments over heterogeneous networks. In
Proceedings of SIBGRAPI’99, pages 83–92, Campinas,
Brazil, 1999. SBC, IEEE Computer Society.

[5] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and
G. C. Bezerra. Integrade: Object-oriented grid
middleware leveraging idle computing power of
desktop machines. Concurrency and Computation:
Practice and Experience, 16:449–459, March 2004.

[6] R. Ierusalimschy. Programming in Lua. Lua.org, 2003.

[7] F. Kon, F. Costa, R. Campbell, and G. Blair. The
case for reflective middleware. Communications of the
ACM, 45(6):33–38, June 2002.

[8] T. Ledoux. Opencorba: A reflective open broker. In
Proceedings of Reflection’99, number 1616 in Lecture
Notes in Computer Science, pages 197–214, St. Malo,
France, July 1999. Springer-Verlag Heidelberg.

[9] R. Maia, R. Cerqueira, and N. Rodriguez. An
infrastructure for development of dynamically
adaptable distributed components. In R. Meersman
and Z. Tari, editors, Proceedings of DOA’04, volume
3292 of Lecture Notes in Computer Science, pages
1285–1302, Agya Napa, Cyprus, October 2004. OTM
2004, Springer-Verlag Heidelberg.

[10] M. Martins, N. Rodriguez, and R. Ierusalimschy.
Dynamic extension of CORBA servers. In Proceedings
of Euro-Par’99, Lecture Notes in Computer Science,
pages 1369–1376, Toulouse, France, September 1999.
Springer-Verlag.

[11] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng. A
taxonomy of compositional adaptation. Technical
Report MSU-CSE-04-17, Software Engineering and
Network Systems Laboratory, Michigan State
University, East Lansing, Michigan, July 2004.

[12] A. L. Moura, C. Ururahy, R. Cerqueira, and
N. Rodriguez. Dynamic support for distributed
auto-adaptive applications. In R. Wagner, editor,
Proceedings of ICDCS’02, pages 451–458, Viena,
Austria, July 2002. IEEE Press.

[13] Object Management Group, Needham, EUA.
Common Object Request Broker Architecture: Core
Specification - Version 3.0, December 2002. document:
formal/2002-12-06.

[14] F. Peschanski, J.-P. Briot, and A. Yonezawa.
Fine-grained dynamic adaptation of distributed
components. In M. Endler and D. Schmidt, editors,
Proceedings of Middleware 2003, volume 2672 of
Lecture Notes in Computer Science, pages 123–142,
Rio de Janeiro, Brazil, June 2003. Springer-Verlag.

[15] M. Román, C. K. Hess, R. Cerqueira, A. Ranganat,
R. H. Campbell, and K. Nahrstedt. A middleware
infrastructure for active spaces. IEEE Pervasive
Computing, 1(4):74–83, 2002.

[16] A. Theophilo, M. Endler, and R. Cerqueira.
Evaluation of three approaches for CORBA
firewall/NAT traversal. In Proceedings of DOA’05.
Springer-Verlag Heidelberg, 2005. (to appear).

