
Combining Multiple Heuristics on Discrete
Resources

Marin Bougeret, Pierre-François Dutot, Alfredo Goldman∗, Yanik Ngoko and Denis Trystram
LIG, Grenoble University, France

Abstract—In this work we study the portfolio problem
which is to find a good combination of multiple heuristics to
solve given instances on parallel resources in minimum time.
The resources are assumed to be discrete, it is not possible
to allocate a resource to more than one heuristic. Our goal
is to minimize the average completion time of the set of
instances, given a set of heuristics on homogeneous discrete
resources. This problem has been studied in the continuous
case in [18]. We first show that the problem is hard and that
there is no constant ratio polynomial approximation in the
general case. Then, we design several approximation schemes
for a restricted version of the problem where each heuristic
must be used at least once. These results are obtained by
using oracle with several guesses, leading to various tradeoff
between the size of required information and the approximation
ratio. Some additional results based on experiments are
finally reported using a benchmark of instances on SAT solvers.

I. I NTRODUCTION

A. Description of the context and motivation

We are interested in this work in solving hard computa-
tional problems like the satisfiability problem SAT. It is well-
established that a single algorithm can not solve efficiently
all the instances of such problems. In most cases, they are
characterized by the great variability of their execution time
depending on the considered instances. Thus, a good effective
solution is to consider several heuristics and combine them
in such a way to improve the mean execution time when
solving a large set of instances. We are interested in this paper
in designing adequate combination schemes. The suggested
solution is based on the portfolio problem, introduced in the
field of finance many years ago [13]. This problem can be
informally recalled as follows: given a set of opportunities,
an amount of possible investments on the set of opportunities
and the payoff obtained when investing an amount on each
opportunity, what is the best amount of investment to make on
each opportunity in order to maximize the sum of the payoffs?
We consider the simultaneous use of heuristics of a portfolio
of instances on parallel resources. Using the vocabulary of
Computer Science, we assume that there exists a benchmark
composed of a finite set of instances and some heuristics
which solve these instances. The expected execution times of
heuristics on all the instances is known. The objective is to
determine the best resource allocation for the heuristics such

1∗This work was done when Alfredo Goldman was visiting LIG on
sabbatical leave from Sao Paulo University.

as to minimize the mean execution time of the set of instances.
The execution time of an instance given a resource allocation
is taken here as the shortest execution time of a heuristic when
executing simultaneously all the heuristics on this instance
following the resource allocation.

This formulation of the problem as a portfolio is motivated
by the fact that we may not know which is the best suited
heuristic to solve an instance before actually solving it. The
interest of this sharing model is that in practice if the bench-
mark of instances is representative over all possible instances,
we will have a better mean execution time than using only
one heuristic.

B. Related works

There exist many studies focusing on the construction of
automated heuristic selection process in various area. Fora
given problem, they usually proceed first by identifying the
set of features which characterize its instances. A matching is
then built between types of instances and heuristics in order
to determine an efficient heuristic for any instance.

In [16] for example, the authors introduce a generic frame-
work for heuristic selection in a parallel context and apply
it to some classical problems like sorting, remote method
invocation or parallel reductions. In [22], the authors suggest
a model for the heuristic selection in the case of the resolution
of partial differential equations. The Self Adapting Large-
scale Solver Architecture (SALSA) project uses statistical
techniques for solver selection [8]. In [6] the authors study the
construction of a selection process for linear system resolution.
The construction of automated selection process requires the
identification of a representative set of features. This canbe
very difficult depending on problems [8].

There are other alternative works based on heuristic portfo-
lio that can be used in these cases. A portfolio of heuristicsis a
collection of different algorithms (or algorithms with different
parameters) running in an interleaved scheme. There are many
other works interested by heuristic portfolio. In [10], [11],
the authors show the interest to use heuristic portfolio on
randomized heuristics. Concurrent use of heuristics for solving
an instance have also been suggested in [7], [20] with the
concept of asynchronous team. In [19], the authors study how
to interleave the execution of different heuristics in order to
reduce the execution time of a set of instances. We have mainly
been interested in the resource sharing approach, as introduced
in [18] and [15].

The oracle based approach used in part V is inspired from
many works. Indeed, the concept of adding some quantifiable
information to study what improvements can be derived exists
in other fields than optimization problems. Let us briefly
describe them.

In the distributed context [5], a problem is calledinforma-
tion sensitiveif a few bits of information enable to decrease
drastically the execution time. The information sensitiveness
is used to classify problems by focusing on lower bounds on
the size of advice necessary to reach a fixed performance, or
giving explicitly oracle information and studying the improve-
ment (as in [5] and [4]).

In the on-line context, this quantifiable oracle information
could be recognized in the notion of “look-ahead”. The look-
ahead could be defined as a slice of the future which is
revealed to the on-line algorithm. Thus, it is possible to prove
lower and upper bounds depending on the size of this slice
[2], [3].

In the context of optimization, some polynomial time
approximation schemes have been designed thanks to the
guessing technique [1]. This technique can be decomposed
in two steps: proving an approximation ratio while assuming
that a little part of the optimal solution is known, and finally
enumerating the possibilities for this part of the optimal
solution.

C. Contributions

In this paper we introduce a new problem (Discrete Re-
source Sharing Scheduling Problem, dRSSP) which is an
extension of the continuous version presented in [18] (also
based on heuristic portfolio [10], [11]). Our approach is
motivated by the fact that an optimal non integer allocationas
considered in [18] may not be feasible on an integer number
of resources. We provide complexity and inapproximability
results for this problem. Then, we study a restricted version
of the dRSSP using an oracle based approach. We do not
only apply the guessing technique, but we aim at developing
a methodological approach by looking for several guesses
and studying the different tradeoffs obtained. Finally, werun
experiments (using instances extracted from actual execution
time of heuristics solving the SAT problem) to evaluate these
tradeoffs.

D. Organization of the paper

The rest of the paper is organized as follows. In Section II,
we present the resource sharing problem as defined in [18].
In Section III, we introduce a discrete version of the resource
sharing problem and we also study its complexity. In Sec-
tion IV we prove the inapproximability of the problem, and
define consequently a restricted version. We design in Section
V several approximation schemes (based on oracle guesses)
for this restricted problem. Finally, some experimental results
of these approximation schemes are presented in Section VI.
We conclude in Section VII.

II. RESOURCESHARING SCHEDULING PROBLEM

A. Definition of the problem

We describe below the Resource Sharing Scheduling Prob-
lem introduced in [18]. As we have already indicated, the
problem is characterized by a set of exhaustive, or represen-
tative, instances. Given many heuristics that can be used to
solve these instances, a fraction of the whole resources hasto
be allocated to each of these heuristics in order to minimize
the execution time of the set of instances. This problem can
formally be described as follows:

Resource Sharing Scheduling Problem (RSSP)
Instance: A finite set of instancesI = {I1, . . . , In}, a finite

set of heuristicsH = {h1, . . . , hk}, a cost matrixC(hi, Ij) ∈
R+ for eachIj ∈ I, hi ∈ H, a real valueT ∈ R+.

Question: Is there a vector S = (S1, . . . , Sk)
with Si ∈ [0, 1] and

∑k
i=1 Si ≤ 1 such that

∑n
j=1 min

1≤i≤k

{

C(hi,Ij)
Si

s.t Si > 0
}

≤ T ?

In this problem,C(hi, Ij) indicates the execution cost of
heuristichi on the instanceIj with all the available resources.
In practice, this cost can be considered as the execution time.
The vector S = (S1, . . . , Sk) with Si ∈ [0, 1] defines a
possible share indicating that each heuristichi, 1 ≤ i ≤ k
will be executed with a proportionSi of the entire resources.
In this problem if a proportionSi of the resources are given
to a heuristichi, it would execute an instance inIj with a
cost equal toC(hi,Ij)

Si
. The resource sharing problem has been

proved to be NP-complete in [18].

B. A related problem

Sayag et al. [18] have also studied another related problem,
namely the time switching problem. This problem considers a
finite set of instances and assume a finite set of interruptible
heuristics. To solve instances, the execution of the different
heuristics are interleaved in a fixed pattern of time intervals.
As in RSSP an execution ends as soon as one heuristic solves
the current instance.

As previously, the goal in the task switching problem is to
find a schedule which minimizes the mean time execution on
the set of instances. This approach is interesting in a single
resource problem and has also been studied by Streeter et
al. [19].

In [18], it has been proved that to each resource sharing
schedule corresponds a time switching with a lower execution
time. Even if the time switching approach produces schedules
with a better execution time, it assumes that heuristics are
interruptible. However, all the interrupted states have tobe
stored leading to a prohibitive memory cost on multiple
resources.

Notice also that in several cases, giving more resources to a
heuristic does not have a positive impact on its execution. This
is especially true when using hard to parallelize heuristics, as
those involving a large number of irregular memory accesses
and communications [21], [12]. That is why we focus on the
discrete version of RSSP.

III. D ISCRETERESOURCESHARING SCHEDULING

PROBLEM

A. Definition of the problem

We consider now a finite number of discrete resources.
Moreover, we initially do not assume a linear execution cost.
The solution cost of an instance should be explicitly given for
each heuristic and given number of resources. Formally, the
problem can be stated as follows:

discrete Resource Sharing Scheduling Problem (dRSSP)
Instance: A finite set of instancesI = {I1, . . . , In}, a

finite set of heuristicsH = {h1, . . . , hk}, a set ofm identical
resources, a costC(hi, Ij , p) ∈ R+ for eachIj ∈ I, hi ∈ H
andp ∈ {1, . . . ,m}, a real valueT ∈ R+.

Question: Is there a vectorS = (S1, . . . , Sk) with
Si ∈ {0, . . . ,m} and 0 <

∑k
i=1 Si ≤ m such that

∑n
j=1 min

1≤i≤k
{C(hi, Ij , Si)|Si > 0} ≤ T ?

The idea in this problem is to find an efficient partition of
resources to deploy the set of heuristics on the homogeneous
resources. The cost function (min

1≤i≤k
{C(hi, Ij , Si)) introduced

by Sayag et al. [18] and used here, considers that for each
instance, all the different heuristics are executed with the
defined share and then stop their execution when at least one
heuristic finds a solution.

We study from now on the dRSSP with thelinear cost
assumption, which indicates that the execution cost is pro-
portional to the number of resources used (C(hi, Ij , p) =
C(hi,Ij ,m)m

p).
To emphasize the difference between dRSSP and RSSP we

use the same example presented in [18]. Suppose that we have
2 instances (I1, I2), 2 heuristics (h1, h2), 2 resources and the

following execution cost matrixC =

(

2 10
10 1

)

.

To deduce the optimal solution with RSSP, a fractionx
of one heuristic has to be allocated such as to minimize:
min

(

2
x , 10

1−x

)

+min
(

10
x , 1

1−x

)

. The minimum is obtained for

x = 2−
√

2. Thus, the optimal solution with RSSP consists to
give 2(2−

√
2) resources toh1 and2(

√
2−1) resources toh2.

This solution leads to a schedule with a total execution time
equal to5.8284. The optimal solution with dRSSP consists to
give one resource toh1 and one toh2. This solution gives a
schedule with the total execution time equal to6.

B. Complexity

Theorem 3.1:The dRSSP with linear cost assumption is
NP-Complete

Proof: First, it is easy to check that the problem is in NP,
suppose that a vectorS = (S1, . . . , Sk) is a candidate solution
to a dRSSP instance withm resources andk heuristics. One
can verify in timeO(nk) that S satisfies the requirement of
the portfolio problem.

We will proceed by a reduction from the (well known)
vertex cover problem to prove that the dRSSP problem is NP-
complete.

Being given a graphG = (V,E), V = {v1, . . . , vk}, k =
|V |, |E| = n in which we are looking for a vertex cover

V c ⊆ V of size m, we construct a dRSSP problem instance
whereI = {I1, . . . , In}, such that to eachIj ∈ I corresponds
an edge(vj1 , vj2) with (vj1 , vj2) ∈ E, H = {h1, . . . , hk}
wherehi corresponds to the vertices,

C(hi, Ij) =

{

α > 0 if vi = vj1 or vi = vj2

β whereβ = nmα + 1 otherwise.
,

andT = nmα.
Figure 1 presents an example of this reduction for a partic-

ular graph. Let us consider an instance of the Vertex Cover
problem for which the corresponding dRSSP problem has a
solutionS.

h1

h2

h3

I1 I2 I3

h4

C I4 I5 I6

h5

1

m

Execution cost matrix

7

7

7 7

7 7

7

7

7

7

7 7

7

7

1

m

7

1

m

1

m7

1

m
1

m

1

m 7

1

m

7

1

m

1

m

1

m

1

m

I1

I2 (v1, v3)

(v2, v3)

(v1, v2)

I3

I4 (v3, v4)

I5 (v1, v5)

I6 (v5, v3)

v2

v1

v4

v3
v5

Graph

Fig. 1. Example of derivation for a particular graph in which we are looking
for a vertex cover of sizem. In this example,α = 1

m

The setV c = {vi s.t Si 6= 0} is of size at mostm since we
havem resources. This set is also a vertex cover since if there
was (vj1 , vj2) ∈ E with vj1 /∈ V c, vj2 /∈ V c then the cost of
the associated problem would have been at leastnmα + 1.

On the other hand, if there exists a vertex coverV c of size at
mostm then the vectorS = (S1, . . . , Sk) where∀i, 1 ≤ i ≤

k Si =

{

1 if vi ∈ V c

0 otherwise,
is a solution to the above dRSSP

problem. Each instanceIj can be treated using a heuristic
corresponding to the considered vertex cover, and executed
with one resource, leads to total costmα. Thus the cost of
the dRSSP instance is at most equal tonmα.

In the previous reduction, the corresponding dRSSP always
has more heuristics than resources. An interesting question is
to determine whether if dRSSP problem is still NP complete
when there are more resources than heuristics.

Proposition 3.2:The dRSSP problem remains NP complete
even when there are more resources than heuristics.

Proof: We will adapt the previous reduction in this case.
The idea here is to introduce a virtual instance and a virtual
heuristic such that we can reach the target bound only if we
solve the virtual instance with a large number of resources
with the virtual heuristic.

Being given a graphG = (V,E), V = {v1, . . . , vk}, k =
|V |, |E| = n in which we are looking for a vertex coverV c ⊆
V of sizem, we construct a dRSSP instance with(k + 1)m
resources,I = {I1, . . . , In, In+1}, such that to eachIj ∈
I, j ≤ n corresponds an edge(vj1 , vj2) with (vj1 , vj2) ∈ E,
In+1 is a virtual instance added,H = {h1, . . . , hk, hk+1}
where thehi, i ≤ k corresponds to the vertices andhk+1 is a

virtual heuristic,

C(hi, Ij) =

α > 0 if (i ≤ k, j ≤ n and

(vi = vj1 or vi = vj2))

kγ if (i = k + 1 and j = n + 1)

T + 1 otherwise.

HereT = γ(k+1)+nm(k+1)α andγ = nmα(km−1)+1.
We solve this problem by assuming that(k+1)m resources are
available and if there is a vectorS satisfying the requirements
of dRSSP, we take the setV c = {vi s.t Si 6= 0} as a solution
for the vertex cover problem. Otherwise, we answer that the
given vertex cover problem does not have a solution. Notice
that with this reduction, the number of heuristics(k + 1) is
smaller than the number of resources(k + 1)m. The γ value
has been taken such that if there are less thankm resources
(for examplekm − 1) which where assigned tohk+1, then
it will not be possible to have a portfolio of cost lower than
T since the execution cost ofIn+1 on hk+1 would be larger
thanT . Then it leads that any solution to this problem gives
a solution to dRSSP on instancesI1, . . . , In with heuristics
h1, . . . , hk on at mostm resources and this corresponds to a
solution for the vertex cover problem.

IV. A PPROXIMABILITY

In this section, we will show that the dRSSP can not be
approximated within a consant factor. Therefore, we define a
restricted version of the dRSSP for which we provide a first
approximation algorithm.

Proposition 4.1:The dRSSP problem can not be approxi-
mated within a constant factor in polynomial time.

Proof: The gap reduction is directly deduced from the
NP completeness proof. The only difference is that we choose
β = xαnm, for x in R

+ (and x > 1). Then if there is a
vertex cover of sizem, the optimal cost of the corresponding
dRSSP isa1 ≤ nmα, otherwise the optimal cost isa2 ≥ β,
and a2

a1
= x, which can be arbitrarily large.

Since the case where the number of allocated resource
can be zero has no polynomial approximation algorithm, we
consider from now on a restriction of the linear version of
dRSSP in which each heuristic must use at least one processor,
which requiresm ≥ k. This additional “allocating constraint”
can be interpreted as a justification of the chosen portfolio
of heuristics. Indeed, if in a solution we don’t allocate any
processor to a heuristic, it means that this heuristic shouldn’t
appear in the given portfolio. In other words, this constraint
means that the portfolio is well chosen. We could also notice
that if a heuristic is completely dominated by another (which
means that for all the instances, the first one is slower than
the second one), it would have no sense to allocate even one
processor to the dominated heuristic. Thus, no heuristic is
dominated by another in the given portfolio.

To solve this restricted version of the linear version of
dRSSP, let us now analyze a greedy algorithm which will serve
as a basis for more sophisticated approximations presentedin
the next section. We consider the algorithmmean-allocation

(MA) , which consists in allocating⌊m
k ⌋ processors to each

heuristic.
Let us now define some new notations, given a fixed valid

solution S (not necessarily produced by MA), and a fixed
optimal solutionS∗.

Definition 4.2: Let σ(j) = i0/
C(hi0

,Ij)

Si0
= min

1≤i≤k

C(hi,Ij)
Si

be the index of the used heuristic for instancej ∈ {1, .., n}
in S (ties are broken arbitrarily).
We define in the same wayσ∗(j) as the index of the used
heuristic for the instancej in S∗.

Definition 4.3: Let T (Ij) =
C(hσ(j),Ij)

Sσ(j)
be the processing

time of instancej in S.
We define in the same wayT ∗(Ij) as the processing time of
instancej in S∗.

Proposition 4.4:MA is ak approximation for the restricted
dRRSP.

Proof: Let us first remark thatMA allocates at least one
processor to every heuristic, which respects our new constraint.
Let (a, b) ∈ N

2 such thatm = ak + b, b < k. Notice that
a ≥ 1, given that we must allocate at least one processor to
every heuristic.

We have, ∀j ∈ {1, .., n}, T (Ij) ≤ C(hσ∗(j),Ij)

Sσ∗(j)
=

S∗

σ∗(j)

Sσ∗(j)
T ∗(Ij) ≤ m−(k−1)

Sσ∗(j)
T ∗(Ij) = ak+b−(k−1)

a T ∗(Ij) ≤
kT ∗(Ij), which leads to the proposition.

We will now study how this algorithm can be improved
thanks to the use of an oracle.

V. ORACLE BASED APPROACH

A. Introduction

In this section, we study the restricted version of dRSSP
in a non-standard perspective by assuming the existence of
a reliable oracle that can provide some extra information for
each instance. We will not only apply the guessing technique,
but have a methodological approach by looking for many
possible guesses, and studying the different tradeoffs obtained.
We show that by choosing “correctly” the asked information,
it is possible to derive very good approximation ratio while
simply using theMA algorithm. More specifically (for any
g ∈ {1, . . . , k} and an execution time inO(kn)), we pro-
vide a (k − g) approximation with an information of size
glog(m)2 , and a k−1

g approximation with an information
of size glog(k) + glog(m). This kind of results leads to
two interesting developments. First, it gives more insightinto
the considered problem because the type of information used
emphasizes where the difficulty comes from. Secondly, this
kind of approximation with advice is a first step towards the
design of classical approximation algorithms by replacingthe
oracle with another algorithm (which for example enumerates
all the possibilities). In both cases, this methodology reduces
the original problem to the study of this oracle information.

2As the encoding of the instance is fixed, all the information sizes are given
exactly, without using theO notation.

B. Choosing an arbitrary subset of heuristics

As a first step, we choose arbitrarilyg heuristics (denoted
by {h1, . . . , hg} without loss of generality and called “the
guessed heuristics”) among thek available heuristics. In the
first guessG1, the oracle provides the number of processors
allocated to theseg heuristics in an optimal solution.

Definition 5.1 (Guess 1):Let G1 = (S∗
1 , . . . , S∗

g), for a
fixed subset ofg heuristics and a fixed optimal solutionS∗.

Notice that this guess can be encoded using|G1| = glog(m)
bits. We will study two algorithms, both based onMA, which
make use ofG1. We first introduce some notations: letk′ =
k− g be the number of remaining heuristics,s = Σg

i=1S
∗
i the

number of processors used in the guess, andm′ = m − s the
number of remaining processors. We also define(a′, b′) ∈ N

2

such thatm′ = a′k′ + b′, b′ < k′.
Let us consider a first algorithmMAG which, given any

guessG = (X1, . . . ,Xg),Xi ≥ 1, allocatesXi processors to
heuristichi, i ∈ {1, . . . , g}, and appliesMA on thek′ others
heuristics with them′ remaining processors. This algorithm
used withG = G1 leads to the following ratio.

Proposition 5.2:MAG1 is a (k− g) approximation for the
restricted dRSSP.

Proof: First, remark thatMAG1 produces a valid solution
because we know thata′ ≥ 1 (there is at least one processor
per heuristic in the optimal solution considered). Then, for any
instancej treated by a guessed heuristic in the optimal solution
considered (σ∗(j) ∈ {1, . . . , g}), MAG1 is even better than
the optimal. For the other instances, the analysis is the same
as for the algorithmMA, and leads to the desired ratio.

In the previous analysis, the approximation ratio for the
instances treated by the guessed heuristics is unnecessarily
good. Therefore, we will consider another algorithm,mean-
allocation-reassign(MA_RG), which redistribute a fraction
of the processors allocated on guessed heuristics to the others.
The goal will be of course to balance the tradeoff between the
ratio for the guessed heuristics and the ratio for the others.
a reasonable requirement for this algorithm to work is to
consider that the number of processors allocated to the guessed
heuristic is sufficiently large. Thereby, we needs > k+c (with
c ≥ 1) to applyMA_RG. We will discuss after the proof the
implication of this assumption on the problem.

Let us define now more precisely the algorithm: given any
guessG = (X1, . . . ,Xg),Xi ≥ 1, MA_RG allocatesXi −
⌊Xi

α ⌋ processors to heuristichi, i ∈ {1, . . . , g}, and applyMA
on thek′ others heuristics with them′ +Σg

i=1⌊Xi

α ⌋ remaining
processors. This algorithm used withG = G1 leads to the
following ratio, which is naturally decreasing according to the
numbers of processors allocated in the guess.

Proposition 5.3:For any guessG1 such thats > k + c,
there exists anα∗ such thatMA_RG1 is a

max(
k + c

c
, (k − g)(1 −

k−g−1
k−g s − g − 1

m − k
))

approximation for the restricted dRSSP.
Proof:

Let α ∈ R
+. We need α > 1 to allocate at least

one processor to the guessed heuristics. The ratio of any
instancej such thatσ∗(j) ∈ {1, . . . , g} is α

α−1 . Now we will
bound the approximation ratio for the others heuristics. Let

x0 = ⌊ b′+Σg
i=1⌊

S∗

i
α

⌋

k′
⌋ be the number of processors added to

each non guessed heuristichj , j ∈ {g + 1, . . . , k}. We have

x0 ≥ b′+Σg
i=1⌊

S∗

i
α

⌋

k′
− 1 ≥ b′+Σg

i=1(
S∗

i
α

−1)

k′
− 1 = αb′+s−αk

αk′
. So

we add at leastx = α(b′−k)+s
αk′

processors per heuristic. The
ratio for any instancej such thatσ∗(j) ∈ {g + 1, . . . , k} is
bounded bym′−(k′−1)

a′+x . We have to ensure thatα ≤ s
k−b′ to

havex ≥ 0. The two constraints are not conflicting because,
according to the hypothesis, we know thatsk−b′ ≥ s

k > 1.
To summarize, we are looking forα∗ which minimizes

max(α
α−1 , m′−(k′−1)

a′+x).

α∗

α∗ − 1
=

m′ − (k′ − 1)

a′ + α∗(b′−k)+s
α∗k′

=
α∗k′(m′ − (k′ − 1))

α∗(m′ − b′) + α∗(b′ − k) + s

=⇒ α∗ =
k′(m′ − (k′ − 1)) + s

k′(m′ − (k′ − 1)) + k − m′

We notice thatα∗ > 1 is true asm ≥ s > k. If α∗ ≤ s
k−b′ ,

we chooseα = α∗, and we get the desired ratioα
α−1 =

k′(m′−(k′−1))+s
m−k = (k − g)

(m−(k−g−1
k−g

s+k−g−1))

m−k .
In the other case (α∗ > s

k−b), we chooseα = s
k−b (which

also insureα > 1), and the ratio is α
α−1 ≤ s

s−k ≤ k+c
c .

Let us conclude this proof with a remark. To apply
MA_RG1 , remind that we needs > k + c (c can be chosen
in N

∗). To use this algorithm in a practical way, we would
like to choose an arbitrary subset ofg heuristics, and to try
all the possible allocations for these heuristics. However, we
don’t know if the chosen heuristics satisfys > k + c in
the optimal fixed solutionS∗. Even worse, there could be
instances where no such subset exists inS∗ if g is not large
enough (for example ifS∗

i = m
k ,∀i ∈ {1, .., k}). Under certain

assumptions (m > k(k + c)), one solution could be to modify
the guessG1 as follows:G′

1 = (S∗
1 , ..., S∗

g), for an arbitrary
subset ofg − 1 heuristics, andS∗

1 ≥ S∗
i ,∀i ∈ {2, .., k}. Thus,

as we know thats ≥ S∗
1 > m

k , we could assert thats > k + c.
In the last solution, (where the only extra assumption we

finally need is m > k(k + c)), we notice that we need
particular properties for the chosen heuristics (S∗

1 ≥ S∗
i). Even

if asking such properties increases the length of the guess
(|G′

1| = log(k) + glog(m) bits), it may lead to better approx-
imation ratios. Thus, in the next part, instead of choosing an
arbitrary subset ofg (or g − 1) heuristics, we will look for
what could be the “best” properties to ask for.

C. Choosing a convenient subset of heuristics

In this part we come back to the restricted dRSSP (which is
the dRSSP where the only extra constraint is to allocate at least
one processor to each heuristic), and we define a new guess,
which is larger thanG1, but leads to a better approximation

ratio. Let us start with another analysis of theMA algorithm
which underlines an interesting property. For any heuristic
hi, i ∈ {1, .., k}, let T ∗(hi) = Σj/σ∗(j)=iT

∗(Ij) be the
“useful” computation time of heuristici in the solutionS∗. We
bound the value returned byMA by grouping the instances
according to the heuristic on which they are computed inS∗:

TMA =

k
∑

i=1

∑

j/σ∗(j)=i

T (Ij)

≤
k

∑

i=1

S∗
i

Si

∑

j/σ∗(j)=i

T ∗(Ij)

=

k
∑

i=1

S∗
i

Si
T ∗(hi)

≤ Maxi(T
∗(hi))

m

⌊m
k ⌋

≤ Maxi(T
∗(hi))(2k − 1)

The approximation ratio of theMA algorithm is (2k −
1)Maxi(T

∗(hi))
Opt . From this form of the ratio, we can infer that

the difficulty in this problem comes from the input whereOpt
is close toMaxi(T

∗(hi)), i.e. when a very small number
of heuristics is responsible for the major part of the total
computing. Hence, we define the second guess as follows.

Definition 5.4 (Guess 2):Let G2 = (S∗
1 , ..., S∗

g), be the
number of processors allocated to theg most efficient heuris-
tics (which meansT ∗(h1) ≥ .. ≥ T ∗(hg) ≥ T ∗(hi),∀i ∈
{g + 1, .., k}) in a fixed optimal solutionS∗.

Notice that this guess can be encoded using|G2| =
glog(k)+glog(m) bits to indicate which subset ofg heuristics
must be chosen, and the allocation of the heuristics.Thanksto
this larger guess, we derive the following better ratio.

Proposition 5.5:MAG2 is a k−1
g approximation for the

restricted dRSSP.
Proof: We proceed as in the new analysis ofMA:

Talgo =

g
∑

i=1

∑

j/σ∗(j)=i

T (Ij) +

k
∑

i=g+1

∑

j/σ∗(j)=i

T (Ij)

≤
g

∑

i=1

∑

j/σ∗(j)=i

T ∗(Ij) +

k
∑

i=g+1

∑

j/σ∗(j)=i

S∗
i

Si
T ∗(Ij)

=

g
∑

i=1

T ∗(hi) +

k
∑

i=g+1

S∗
i

Si
T ∗(hi)

=

k
∑

i=1

T ∗(hi) +

k
∑

i=g+1

(
S∗

i

Si
− 1)T ∗(hi)

Using the same notations (m′ = a′k′ + b′, a′ ≥ 1, b′ < k′),
we getTalgo ≤ Opt + T ∗(hg)(

m′

a′
− k′) = Opt + T ∗(hg)

b′

a′
.

Finally, the ratio forMAG2 is r ≤ 1 +
T∗(hg)

Opt
b′

a′
≤ 1 +

T∗(hg)
g∗T∗(hg)

b′

a′
≤ k−1

g .

D. Summary

In this section, we investigated the restricted dRSSP using
a methodology based on oracle guesses. We looked for what
could be the more "efficient" guess to ask to the oracle, and
obtained three particular tradeoff between the length of the
guess and the derived ratio. These results give insight on what
is difficult in this problem (finding which are the most used
heuristics, and of course their allocation), and can be usedto
derive classical approximation schemes. The details of these
schemes are indicated in figure 2.

algorithm approximation ratio complexity
MAG1 (k − g) O(mg ∗ kn)

MAG1

R max

{

k+c
c

(k − g)(1 − x)
O((k − g)mg ∗ kn)

MAG2 k−1
g O((km)g ∗ kn)

Fig. 2. Complexity of the oracle based approximation schemes,

MA
G1
R

requiresm > k(k + c) andx =
k−g−1

k−g
s−g−1

m−k

In the next section we present experimental results of our
different approaches.

VI. EXPERIMENTAL RESULTS

We applied our algorithms on the satisfiability problem
(SAT). The SAT problem [9] consists in determining whether
a formula of a logical proposition given as a conjunction of
clauses is satisfied for at least one interpretation. Since this
hard problem is very well known, there exists many heuristics
that have been proposed to provide solutions for it.

For our experiments, we used a SAT database (SatEx3)
which gives for a set of23 heuristics (SAT solvers) and a
benchmark of1303 instances for SAT the CPU execution time
(on a single machine) of each heuristics on the1303 instances
of the benchmark.

A. Benchmark

The 1303 instances of the SatEx database are issued from
many domains where the SAT problem are encountered.
Some of them are: Logistic planning, Formal verification of
microprocessors, Scheduling. These instances are also issued
from many challenging benchmarks for SAT which are used
in one of the most popular annual SAT competition4.

B. Heuristics

The SatEx database contains23 heuristics issued from three
main SAT solvers family [23]. These are:

• The DLL family with the heuristics:asat, csat, eqsatz,
nsat, sat−grasp, posit, relsat, sato, sato−3.2.1, satz,
satz − 213, satz − 215, zchaff

• The DP family with :calcres, dr, zres,
• The randomized DLL family with :ntab, ntab − back,

ntab − back2, relsat − 200

Other heuristics areheerhugo, modoc, modoc − 2.0

3http://www.lri.fr/˜simon/satex/satex.php3
4http://www.satcompetition.org

C. Experiments plan

To validate our algorithms, we did experiments with the
set of heuristics and instances given by the SatEx database.
In order to have several experimental cases (with cost matrix
extracted from real execution time of heuristics solving the
SAT problem), we both consider the entire set of heuristics and
two randomly chosen subsets of heuristics. Given a heuristic hi

and an instanceIj of the database, let us denote bycpu(hi, Ij)
the execution time of the heuristichi on the instanceIj . We
did three series of experiments:

• In the first series of experiments (Experiments 1) we
considered all the23 heuristics of the SatEx database
and we assumed that we have100 resources. For each
heuristichi, we took its execution time on100 resources
as equal tocpu(hi, Ij).

• In the second series (Experiments 2), we randomly se-
lected a set of9 heuristics among the complete set of23
ones in the SatEx database and we assumed that we have
100 resources. For each heuristichi among the selected
one, we took its execution time on100 resources as equal
to cpu(hi, Ij).

• In the third series (Experiments 3) , we randomly selected
a set of6 heuristics and we assumed that we have50
resources. For each selected heuristichi , we took its
execution time on50 resources as equal tocpu(hi, Ij).
The number of selected heuristics and the number of re-
sources have been chosen such as to observe the behavior
of our different approximation algorithms in comparison
to the exact algorithm.

In all these experiments, we assumed the linear cost as-
sumption.

D. Results

We present in Figure 3 the discrete resource sharing cost
(sum of execution time over the set of instances) forMA,
MAG1 and MAG2 in Experiments 1. Given a numberg of
heuristics to guess forMAG1 , we did 20 experiments where
we randomly selected (following a uniform distribution law)
a subset ofg heuristics between the23 available. The values
presented in Figure 3 forMAG1 are the mean cost obtained
from the20 experiments and the standard deviation . In Fig-
ure 3 theMAG2 algorithm gives the discrete resource sharing
with the smallest cost for any value ofg. One can notice that
as suggested by our theoretical studies the discrete resource
sharing cost ofMAG1 andMAG2 decreases when the number
of guessed heuristics is increased. One can also notice herethat
when guessing heuristics, the obtained resource sharing cost
is better than those of theMA algorithm.

In Figure 4, we present the discrete resource sharing cost
for, MAG1 , MAG1

R , MAG2 in Experiments 2. The subset of
selected heuristics for this case is composed of:satz, nsat,
sato− 3.2.1, satz− 215, eqsatz, modoc− 2.0, sato, modoc,
posit. Given a numberg of heuristics to guess forMAG1 and
MAG1

R , we did 20 experiments where we randomly selected
a subset ofg heuristics between those considered. As in

 100000

 1e+06

 1e+07

1 2 3

To
ta

l c
os

t f
or

 s
ol

vi
ng

 th
e

13
03

 in
st

an
ce

s

Guess number

MA
MAG1
MAG2

Fig. 3. Discrete Resource Sharing Cost with23 heuristics and100 resources

Experiments 1, one can notice here that theMAG2 algorithm
gives the discrete resource sharing with the smallest cost for
any value ofg. One can also notice here that theMAG1

R returns
a better value than theMAG1 algorithm.

 320000

 340000

 360000

 380000

 400000

 420000

 440000

1 2 3

To
ta

l c
os

t f
or

 s
ol

vi
ng

 th
e

13
03

 in
st

an
ce

s

Guess number

MAG1
MAGR
MAG2

Fig. 4. Discrete Resource Sharing Cost with9 heuristics and100 resources

In Figure 5, we present the discrete resource sharing cost
for, MAG1 , MAG1

R , MAG2 and the exact algorithm in Ex-
periments 3. The subset of heuristics selected for this caseis
composed of:csat, ntab− back2, modoc, dr, ntab, zchaff .
Given a numberg of heuristics to guess forMAG1 and
MAG1

R , we did 20 experiments where we randomly selected
a subset ofg heuristics between those considered. In this
Figure when guessing two heuristics, theMAG2 algorithm
provides a discrete resource sharing cost equal to those of the
exact algorithm. This cost does not change forMAG2 when
guessing more heuristics. One can also notice here that the
MAG1

R returns a better value than theMAG1 algorithm.
In Figure 6, we present the execution time necessary to

compute our discrete resource sharing in Experiments 3. The
exact solution is computed by brute force,MAG1 , MAG1

R

and MAG2 are executed with all the possible guesses of
size g. Therefore all the execution times are exponential in
g (the complexity of these algorithms is given in Figure 2,
Section V).

 250000

 300000

 350000

 400000

 450000

 500000

1 2 3 4

To
ta

l c
os

t f
or

 s
ol

vi
ng

 th
e

13
03

 in
st

an
ce

s

Guess number

MAG1
MAGR
MAG2
Exact

Fig. 5. Discrete Resource Sharing Cost with6 heuristics and50 resources

These experiments were done on a AMD Opteron246 cpu
with 2 cores and2 GB of memory. ForMAG1 and MAG1

R ,
we considered their mean execution times over the set of20
experiments. This figure shows that the execution time grows
when guessing more heuristics. We notice that forg = 4,
the execution time of our approximation schemes is close to
those of the exact algorithm. However remind that in this case
we guess four of the six available heuristics (which is almost
equivalent to the brute force algorithm), which is useless here
since for g = 2, MAG1

R is here an1.1 approximation and
MAG2 provides the exact solution.

 0.01

 0.1

 1

 10

 100

 1000

1 2 3 4

M
ea

n
ex

ec
ut

io
n

tim
e

(in
 s

ec
on

ds
)

Guess number

MAG1
MAGR
MAG2
Exact

Fig. 6. Execution time with6 heuristics and50 resources

VII. C ONCLUSION

In this document we introduced the discrete resource sharing
scheduling problem. This problem, even restricted to linear
costs, was shown to be NP-complete and does not have a
constant approximation. However we provided approximation
algorithms for the restricted version where each heuristicmust
be executed, based on oracles with well chosen guesses.

Following the theoretical analysis, some experiments have
been conducted to study in detail the trade-off between the
execution time and the size of the required information.

There are many perspectives to continue this work, namely
the study of other cost functions; the proposal of new heuristics

for the case of heterogeneous resources; and the study of a
mixed problem with both resource sharing and time switching.

REFERENCES

[1] H. Shachnai and T. Tamir – Polynomial Time Approximation Schemes - A
Survey. – In Handbook of Approximation Algorithms and Metaheuristics
(Ed. Teofilo F. Gonzalez), Chapman Hall/CRC Computer and Information
Science Series, 2007.

[2] Susanne Albers – On the Influence of Lookahead in Competitive Paging
Algorithms. – ALGORITHMICA, vol. 18, 283-305, 1997.

[3] Feifeng Zheng, Yinfeng Xu and E. Zhang – Oracle size : a newmeasure
of difficulty for communication tasks. – Proceedings of the 25th ACM
Symposium on Principles Of Distributed Computing (PODC),2006.

[4] Pierre Fraigniaud, David Ilcinkas and Andrzej Pelc – Howmuch can
lookahead help in online single machine scheduling. – Information
Processing Letters (IPL), vol. 106, 2008.

[5] Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas and Andrzej Pelc –
Distributed Computing with Advice: Information Sensitivityof Graph
Coloring. – Proceedings of the 34th International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2007.

[6] S. Bhowmick et al. – Application of machine learning in selecting sparse
linear. – To appear in: The International Journal of High Performance
Computing Applications, 2006.

[7] V. Cicirello. – Boosting stochastic problem solvers through online self-
analysis of performance. – PHD Thesis Carnegie Mellon University, 2003

[8] J. Dongarra et al. – Self-adapting numerical software (SANS) effort. –
IBM Journal of Research and Development, vol. 50; 2-3, 223-238, 2006.

[9] M. Garey and D. Johnson. – Computers and Intractability: AGuide to
the Theory of NP-Completeness – W.H. Freeman and Company, 1979.

[10] C. Gomes and B. Selman. – Algorithm portfolios. – Artificial Intelli-
gence Journal, 43-62, 2001.

[11] B. Huberman, R. Lukose and T. Hogg. – An economics approachto
hard computational problems. – Science, 275: 51-54, 1997.

[12] M. Martín, D. Singh, J. Touriño and F. Rivera. – Exploiting Locality in
the run-Time parallelization of irregular loops. – Proceedings of the 31th
International Conference on Parallel Processing, 17-22, 2002.

[13] Harry Markowitz. The early history of portfolio theory: 1600-1960,
Financial Analysts Journal, 55 (4), 5-16, 1999.

[14] W. Nasri, L.A. Steffenel, D. Trystram – Adaptive approaches for efficient
parallel algorithms On cluster-based Systems. – CCGRID 2007,505-512.

[15] M. Petrik and S. Zilberstein – Learning static parallelportfolios of
algorithms. – 9th International Symposium on Artificial Intelligence and
Mathematics, 2006.

[16] A. Ping et al. – STAPL: An adaptive, generic parallel C++library.
– International Workshop on Languages and Compilers for Parallel
Computing, 193-208, 2001.

[17] Yousef Saad – Iterative Methods for Sparse Linear
Systems. –PWS Publishing Company, 1995. Available at:
http://www-users.cs.umn.edu/˜saad/ books.html

[18] T. Sayag, S. Fine and Y. Mansour. – Combining multiple heuristics. –
Proceedings of the23rd International Symposium on Theoretical Aspects
of Computer Science, 242-253, 2006.

[19] M. Streeter, D. Golovin and S. Smith. – Combining multiple heuristics
online. – Proceedings of the22rd Conference on Artificial Intelligence,
1197-1203, 2007.

[20] S. Talukdar et al. – Asynchronous teams: Cooperation schemes for
autonomous agents. – Journal of Heuristics, Vol. 4(1), 1998

[21] H. Yu and L. Rauchwerger. – Adaptive reduction parallelization. –
Proceedings of the14th ACM conference on supercomputing, 66-77,
2000.

[22] S. Weerawarana et al. – PYTHIA: A knowledge-based system to select
scientific algorithms. – ACM Transactions on Mathematical Software,
vol. 22-4, 447-468, 1996.

[23] L. Simon. – SatEx: A knowledge-based system to select scientific
algorithms. – ACM Transactions on Mathematical Software, vol. 22-4,
447-468, 1996.

