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Abstract— Modern computing environments are characterized
by a high degree of dynamism that, along with the heterogeneity
of computational devices and communication infrastructure,
demand the development of a new range of applications that must
be able to self-adapt dynamically and transparently according to
changes in its execution environment. On a computational Grid,
for instance, it is common to notice a high variation on resource
availability, node instability, variations on load distribution, and
heterogeneity of computational devices and network technology.

The Adapta framework is a reflective middleware that provides
the means to develop self-adaptive component-based distributed
applications, separating the business code from the one respon-
sible for adaptation. Adapta also provides a runtime execution
environment that monitors computational resources and notifies
application components about the occurrence of important events
that should trigger reconfiguration actions. Adapta provides
a XML based reconfiguration language that defines how the
application must adapt in response to environmental changes.
Statements of the reconfiguration language can also be applied at
runtime, which allows to dynamically change the reconfiguration
mechanism itself. This paper describes Adapta architecture,
implementation, and evaluation through a concrete case study,
where a Grid infrastructure is augmented for incorporating au-
tonomic mechanisms towards a self-healing and self-optimization
infrastructure.

I. INTRODUCTION

Modern distributed applications are getting harder to de-
velop, maintain, and configure as environmental dynamism
and computational devices heterogeneity increase. For ex-
ample, consider a pervasive computing environment. The
dynamism is exhibited on variations of resources and services
availability, intermittent connectivity, huge device heterogene-
ity and communication technologies, and issues concerning
user mobility. Another example is an opportunistic Grid that
uses the idle time of distributed resources to perform complex
computations. In this environment, it is common to notice a
high variation on resource availability, node instability, varia-
tions on load distribution, and heterogeneity of computational
devices and network technology. The dynamic nature of the
Grid infrastructure, its high scalability, and great heterogeneity
has turn impracticable its configuration, maintenance, and
recovery in case of failures solely by human beings.

This new era of computation demands that application
developers address not only the business logic of the system,
but also how to make it flexible in order to run on most

platforms and adaptable to changes on its executing envi-
ronment. To cope with those requirements, developers must
advance from the static computational paradigm towards a
dynamic one. Applications must be able to apply modifications
on its own structure and functionality automatically, without
code recompiling and human intervention. Configuration and
management must be performed on the fly, transparently to
end users and not disrupting the service being offered.

Middleware architectures can provide a comprehensive so-
lution guideline and tools to the problem of building effective
self-adaptive systems, easing the application developer work.
They may introduce runtime environments for context aware-
ness and automatic application reconfiguration. Context aware-
ness, which comprises resource availability and contextual
knowledge, plays an important role to dynamic reconfigura-
tion, triggering new adaptations according to the state gathered
from the underlying executing environment. Middlewares must
primarily address three key questions concerning the design of
self-adaptive systems:

• When to adapt? How can the system detect that it’s
time to adapt so that its performance will improve and
changes in the environment will not harm system correct
functioning?

• What to adapt? Which parts, elements, components of
the system are subject to being adapted or replaced?

• How to adapt? Which adaptive mechanism would be
more beneficial to be applied given a certain system and
environmental state?

The Adapta framework is a refactoring of the work pre-
sented on [2], introducing a well structured reconfigura-
tion language for each aspect of the reconfiguration process
(monitoring, environment change detection, and application
reconfiguration) and additional support for application re-
configuration, such as: altering application parameters and
switching from different application algorithms with a well
defined transfer state mechanism. Support for reconfiguring
entire application components is also being provided. Adapta
is currently being used to introduce adaptive features into a
Grid infrastructure, primarily addressing self-healing and self-
optimization mechanisms.

This paper describes the current work on the Adapta



framework, focusing on its concepts and architecture. It also
presents Adapta implementation highlights and how it is being
used to add autonomic features to a Grid middleware. The
paper is organized as follows: Section II describes the Adapta
concepts and architecture, showing its main components and
their interactions. Section III shows implementation highlights
of each component. Section IV describes the use of Adapta
framework towards a self-reconfigurable Grid middleware and
its evaluation. Section V compares our approach with related
work, while Section VI presents our conclusions and future
work.

II. ARCHITECTURE OVERVIEW

Adapta is a framework for developing self-adaptive dis-
tributed applications separating the business concerns from
adaptation concerns. The application adaptable elements and
reconfiguration actions are described using a XML-based
language whose code is interpreted and executed during appli-
cation startup. That code can be modified and re-interpreted
on runtime, which allows introduction and removal of new
reconfiguration actions on the fly without stopping the running
application.

Reconfiguration actions are based on updating application
parameters and replacing algorithms with a well defined
state transfer mechanism. However, the set of actions is not
restricted solely to those two. Experienced developers are
welcome to extend Adapta reconfiguration mechanisms to
introduce other actions, such as component migration, or repli-
cation. Adapta also provides a synchronization mechanism
among distributed components that can be used during the
reconfiguration process. Reconfiguration actions are combined
into strategies that are executed whenever relevant changes on
the underlying executing environment are detected.

Adapta provides the application adaptation engine and also
a runtime system that regularly monitors resource availability
and notifies subscribed components whenever significant en-
vironmental changes are detected. Figure 1 illustrates Adapta
main components and their interactions. Each Adapta com-
ponent is itself reconfigurable, since the object model can
be modified on runtime applying changes to its functional
behavior.

The Monitoring Service (MS) periodically collects infor-
mation from hardware and software resources. Monitoring
is based on Resources and Properties. Resources represent
actual hardware and software resources, such as: CPU, mem-
ory, network interface, and applications; and Properties are
monitorable attributes of resources, such as: CPU load usage,
amount of main memory available, network bandwidth and
latency, amount of application threads. Properties are asso-
ciated with a set of operation ranges, which are defined by
the framework user. For example, one could use the following
operation ranges for monitoring the CPU load usage: [0%,
40%), [40%, 75%), and [75%, 100%]. The MS notifies the
Local Event Service (LES) located at the same host whenever
there is a change on the operation range of a Property.

The Local Event Service (LES) notifies events to subscribed
components whenever a determined resource availability con-
dition occurs. Event evaluation is based on a boolean expres-
sion provided by the user as part of its definition. To trigger
an event notification, the corresponding boolean expression
must stay true during an amount of time specified by the user,
known as the duration time. It avoids generating notifications
when temporary situations occur, such as a resource usage
peak (e.g. a CPU use peak, triggered by starting a heavy
program). The MS and the LES should run on every node
that can execute a self-adaptive application component.

The Event Processing System (EPS) is a distributed event
service that detects composite events from different event
sources (distributed nodes). EPS is required for distributed
applications where the decision to reconfigure the application
should consider the combination of events detected on distinct
components. For example, consider an application where com-
ponent migration takes into account the CPU usage of every
node across the network.

Finally, the Dynamic Reconfiguration Service (DyReS) is
the adaptation engine that applies reconfiguration actions to
the application in response to environmental changes. The
framework architecture is based on computational reflection,
where DyReS comprises the application meta-level while the
base level consists of the application business objects.

III. IMPLEMENTATION HIGHLIGHTS

Adapta offers a high degree of flexibility to the applica-
tion developer and administrator. Each framework component
can be altered at runtime using AdaptaML, a XML-based
reconfiguration language that describes the component object
model. AdaptaML encompass each aspect of the reconfigura-
tion process: monitoring, local and distributed event detection,
and dynamic reconfiguration, including the set of adaptable
elements and strategies that can be applied to the adaptive
application. Framework users can modify and load the Adap-
taML code of every component on runtime by invoking the
loadObjectModel() method, assembled at the component
interface. The object model is then interpreted and built on
runtime, without service disruption and code recompiling,
using the Adaptive-Object Model (AOM) pattern [12]. Thus,
Adapta is itself reconfigurable. Adapta is built above CORBA
middleware and uses Event Channels for event delivery (refer
to [10]). We next describe implementation highlights of each
Adapta component.

A. Monitoring Service

The Monitoring Service (MS) queries the computational
environment using Monitor objects. Each Monitor is respon-
sible for a single Property. Monitors can be dynamically
instantiated to introduce new monitoring requirements not
known at design-time or replaced on the fly to cope with the
diversity of computational platforms.

The Monitor object has two attributes: (a) the frequency,
which defines the periodicity in seconds to collect the property
value; and (b) the set of property operation ranges which



Fig. 1. Adapta Framework

indicates significant changes on property monitoring. The
attribute values are also described through AdaptaML and can
also be altered at runtime.

B. Local Event Service

The Local Event Service (LES) manages local events that
describe changes on computational resources state gathered
from a single host, e.g. CPU, memory, hard disk, and network
interface. Local events are described using boolean expressions
defined by the framework user.

Event detection is taken carefully to minimize the amount
of messages sent to nodes. Evaluators check the validity of
a local event against the current environmental context upon
a significant resource change notification. The event boolean
expression must stay true during the specified duration time in
order to trigger an event notification. The duration time feature
avoids unnecessary notifications, e.g. a CPU use peak due to
the start of a heavy a program.

C. Event Processing System

Adapta distributed event detection component is based on
a modified version of the Event Processing System (EPS,
[7]). EPS evaluates distributed events defined by boolean
expressions that comprises two or more local events. In
this way, EPS consumes local events from registered LES,
and produces distributed events to subscribed components.
Typical distributed issues, such as those involving message
ordering, loss, or duplication are addressed by EPS using three
processing parameters:

• Detection window, which indicates the amount of
time that a received event is valid, based on its timestamp;

• Scheduling time, which indicates the amount of
time to wait for processing an event, helping to maintain
the correct event ordering;

• Concurrence time, which indicates the amount of
time that two events should be considered concurrent and
treated simultaneously.

D. Dynamic Reconfiguration Service

The Dynamic Reconfiguration Service (DyReS) receives
event notifications and starts the application reconfiguration
process. DyReS separates the adaptation code from the code
that governs the business rules using the reflection architectural

pattern [3], which helps to keep application code manageable,
facilitating debugging and maintenance.

DyReS consists on a dynamic table containing events and
strategies and a reference to its associated Adapta Component
Configurator (ACC), responsible for applying the reconfigura-
tion actions. Each strategy encompasses one or more actions
that are passed as parameters to the ACC.

The ACC, which extends the Component Configurator ar-
chitecture [5], introduces three adaptive mechanisms: update
of application parameters, replacement of interchangeable al-
gorithms, and synchronization among distributed components.
The set of reconfiguration actions is not restricted, and expe-
rienced users can extend the ACC to introduce more adaptive
mechanisms.

1) Parameter Updating: Application parameters consist of
one or more attributes, e.g. video resolution consists of height
and width attributes. The parameter updating mechanism uses
a callback method approach. The application developer intro-
duces, during design, callback methods to be invoked on every
class that has an updatable parameter. The ACC obtains the
callback reference and dynamically invokes it using the new
values informed by the reconfiguration action.

2) Algorithm Replacement: Families of interchangeable
algorithms are a set of objects with the same interface that can
be dynamically replaced at runtime. For example, MD5 and
SHA-1 comprise a family of hash algorithms. Each family has
a proxy that introduces an indirection layer above replaceable
objects, keeping dynamic replacement transparent to clients.

The proxy also manages state transfer during the sub-
stitution process. The state consists on a set of variables,
common to the whole object family that represents the current
computation of the active algorithm. Since variables are class
fields, the proxy can inspect the object implementing the active
algorithm, store its state, and load it inside another object.

Adapta uses a lazy approach for object replacement, in-
stead of an eager one [9]. The lazy approach allows the
already running algorithm to complete its execution before
being replaced, while the eager one immediately suspends the
algorithm execution, performs the replacement, and resumes
it from the point where it was suspended. An lazy approach
advantage is that it always reaches a valid state, which is not
guaranteed by the eager approach, since not every random



execution point (a transient state) is a valid state into the new
object.

3) Synchronizing Reconfiguration Actions: In a distributed
application, reconfiguration taken on a single component can
affect other components or the entire application. For instance,
consider a video server that can dynamically replace its en-
coding algorithm to adjust to current network conditions. The
video server must notify its clients to substitute their decoding
algorithm in order to maintain consistency during algorithm
replacement. Therefore, synchronizing among components is
a vital stage.

For synchronization purposes, each ACC manages the
component dependencies by maintaining references to other
components it depends on (called hooks), as well as references
to dependent components (called clients).

Reconfiguration strategies that require synchronization has
to specify whose components they intended to synchronize
with and what notification should flow through the depen-
dency chain. A timeout attribute is used to avoid that
the synchronization process extends itself indefinitely, due
to a component crash or network traffic conditions. If the
synchronization period exceeds the timeout, the component
that sent the notification will perform its own reconfiguration.

IV. CASE STUDY: TOWARDS A SELF-RECONFIGURABLE
GRID MIDDLEWARE

InteGrade [4] is a Grid middleware architecture that enables
parallel applications to execute in a distributed environment,
benefiting from the power of the hardware already available
in organizations. InteGrade follows an opportunistic approach,
taking advantage of the computing power of idle workstations.

The dynamic nature of the Grid infrastructure, its high scal-
ability, and great heterogeneity has turn impracticable its con-
figuration, maintenance, and recovery in case of failures solely
by human beings. We are currently augmenting InteGrade with
the Adapta framework, incorporating autonomic mechanisms
towards a self-healing and self-optimization infrastructure.

A. Integrade Self-healing Mechanism

InteGrade application fault-tolerance layer encompass four
different failure-handling techniques: retrying, replication,
checkpointing, and replication with checkpointing. Replication
consists on submit the same application with the same set of
input parameters a number of times for execution. Each replica
represents an active instance of the application, running on a
resource different than the other replicas. Thus, as long as
not all replicas fail, the application will succeed to execute.
When one of the replicas finishes, the Grid middleware must
discard (or ignore) the others and return the results to the
requesting user. Previously on InteGrade the user manually
decided the amount of replicas to be generated as part of the
application submission process. We developed an InteGrade
version that automatically decides the amount of replicas to
be generated for a given application submition based on the
currently execution environment MTBF (Mean Time between
failures) and the application mean execution time.

We measured the benefits of varying the amount of replicas
with a set of simulations. Figures 2 and 3 show the values
obtained for the application estimated execution time con-
sidering the amount of generated replicas and the execution
environment MTBF. The simulations considered an application
execution time in the absence of failures of 18 and 36 hours
for figures 2 and 3, respectively.

Fig. 2. Mean Execution Time of 18 hours

Fig. 3. Mean Execution Time of 36 hours

By analyzing the simulation results, we can conclude that:
a) as the failure rate increases (lower MTBF values), a
higher amount of replicas is necessary to keep the application
execution time inside an acceptable range (a tolerance value);
b) if we fix the MTBF value, it’s not profitable, after a certain
point, to increase the amount of replicas, since the gain would
be minimum while more Grid resources would be used. For
example, on figure 2 when the MTBF is 4 or 8, using 2,
4, or 9 replicas would make no significant difference to the
application execution time. On figure 3 the same thing can
be seen when the MTBF is 8; c) some times great gains can
be achieved by slightly variating the number of replicas. For
instance, on figure 2 we can see an enormous advantage by
using 2 replicas instead of 1 when the MTBF is between 0.5
and 2. Also on figure 3 the same benefit is obtained when the
MTBF is between 2 and 4.

The simulation results clearly indicate the benefits of al-
tering the amount of application replicas as the MTBF and
application execution time varies. On the other side, the dy-
namic nature of the Grid execution environment makes it very



difficult (if not impossible) for a Grid user or administrator
to manually decide and set the best amount of replicas to be
generated for each application submission.

We used the Adapta framework to add to InteGrade the
capability of dynamically adjust the number of replicas to be
generated. We started by developing a monitor that periodi-
cally measures the current Grid MTBF based on a database
generated by InteGrade Execution Manager component. This
database contains information about each application execu-
tion, such as: the global submission and conclusion timestamps
and detailed information about the execution of each process
that comprises the application execution, including data con-
cerning eventual failures that may have occurred. Figure 4
illustrates AdaptaML monitoring statements. The monitored
resource is called Failure, which contains a property named
MTBF. The MTBF is regularly collected on intervals of 30
minutes (frequency tag, line 4). The monitor tag, on line 5,
points to the class that implements the MTBF monitor, and
the path where the binaries are located. Finally, Lines 7-12
shows the MTBF operating ranges.

Fig. 4. Monitoring language

AdaptaML local event definition is illustrated on figure 5.
Whenever there’s a change on MTBF operating ranges, a
MTBFChanged event is notified to subscribed components.
Its expression is always evaluated to true and its duration
time is zero, since it’s unnecessary to re-evaluate the event.
The MTBF computed value is notified along with the event,
as an attribute (line 3).

Fig. 5. Local events language

InteGrade Global Resource Manager (GRM) is responsible
for application scheduling. It was augmented with a reflective
layer using DyReS (Section III-D). The GRM reconfigura-
tion statements are presented on figure 6. The updatable
parameter is the MTBF, which is implemented by the class
autogrid.Grm. This parameter has one attribute, the class
field that stores the mtbf value (Lines 2-4). The GRM compo-
nent is described on Line 6. No hooks or clients are declared
because distributed synchronization of reconfiguration actions

(Section III-D.3) is not necessary. The reconfiguration strategy
is described on Lines 8-10. It consists on an parameter update
action, initiated by the MTBFChanged event, that invokes the
callback setMTBF with the MTBF computed value received
along with the event. Finally, an algorithm was added to GRM
that, given an application submission, computes the number
of replicas to be generated based on the current Grid MTBF
and the application expected execution time (calculated from
previous executions).

Fig. 6. Reconfiguration language

B. Integrade Self-optimization Mechanism
Opportunistic Grid environments are highly dynamic due to

several reasons, such as: resources can fail or become unavail-
able instantly, executions can be interrupted by higher priority
internal jobs, new resources can be added on the fly. Grid
environments also experience a variable rate of application
submissions. In this situation, the scheduling activity should
also be made dynamic by altering algorithms and parameters
used to take scheduling decisions accordingly to the current
and/or future resource status [1]. Adaptive scheduling can op-
timize the overall Grid performance and minimize application
response time.

We are currently altering InteGrade scheduling mechanism,
allowing it to dynamically switch between three distinct al-
gorithms: the MCT (Minimum Completion Time), max-min
and min-min. MCT is a on-line scheduling algorithm, while
max-min and min-min are batch ones. On-line scheduling
algorithms are appropriate to environments where the appli-
cation income rate is high; therefore, decisions should be
taken quickly. Batch algorithms, however, enqueue application
submissions and decide, based on environmental conditions,
which schedule is better. Min-min and max-min take decisions
based on a set of applications and a set of resources. While
min-min schedules the fastest application (with minimum
execution time) to the resource that can finish it quicker,
the max-min approach schedules the longest application to
the resource that can finish it quicker. Min-min is profitable
when mean response time should be taken into consideration
and resource availability is low. On the other hand, max-min
maximizes concurrency, and is better suited when resource
availability is high. Adapta framework provides the means
for dynamic replacement of scheduling algorithms with the
necessary state transfer among them.

V. RELATED WORK

QuO [11] helps the development of distributed applications
adaptable to changing quality of service (QoS). QuO primary



goal was to support QoS-based adaptation while our work
followed a more general approach. QuO runtime kernel is
the main component responsible for monitoring the executing
environment, controlling QoS changes and providing support
for adaptation. QuO relies on indirection layers (provided
by Delegate objects) to evaluate system conditions and trig-
ger adaptive behaviors and callbacks. In contrast, Adapta
avoids the overhead during methods invocations by perform-
ing environment monitoring and event detection concurrently
to the application execution. QuO, as Adapta, supports the
addition of new adaptation mechanisms. Since our work
was strongly influenced by computational reflection, we also
provide mechanisms to represent explicitly the application
structure, describing the inter-component dependencies, which
is not supported in QuO. This meta-object representation
is used to propagate reconfiguration actions responsible for
adapting the application to a new environmental state.

Accord [6] assists users to develop autonomic applications.
Accord manages behavioral and compositional (organization,
interaction, and coordination between components) aspects of
an application using high-level rules, injected on runtime, and
enforced by an agent infrastructure. Instead, Adapta relies
on a synchronization protocol to assure the correct execution
of adaptation actions. In Accord, each autonomic element
is augmented with an Element Manager that monitors its
execution and context, and fires adaptation rules. On the
other hand, Adapta decouples monitoring concerns from event
management, services common to every component executing
on the same host. This approach makes those services easier
to manage, debug and maintain.

CASA [8] enables the development and operation of auto-
nomic applications. In CASA, dynamic adaptation is carried
according to a contract, stored externally to the application
and written using a XML-based application. The contract is
very similar to AdaptaML, both describe how the application
should be reconfigured according to changes in the executing
environment. CASA includes a set of four adaptation mecha-
nisms: change in lower-level services, weave and unweave of
aspects, change of application attributes and recomposition of
application components. Adapta’s set of actions is smaller, but
its adaptation engine is extensible, allowing advanced users to
develop new adaptation mechanisms and introduce them into
the framework.

VI. CONCLUSIONS AND FUTURE WORK

As dynamism and heterogeneity increase in today’s modern
computing systems, application development must shift to a
self-adaptive paradigm, instead of a static-based one. Self-
adaptive applications can reconfigure themselves transparently
according to changes on the executing environment, without
service interruption and code recompiling.

This paper presented Adapta, a framework that enables the
development of distributed self-adaptive applications. Adapta
is also a runtime system, monitoring resource availability and
notifying interested components when changes are detected
on resource usage. Adapta set of adaptation mechanisms is

not restricted and can be easily extended by experienced users
through a flexible architecture. Each Adapta component can
be dynamically altered using AdaptaML, a XML-based re-
configuration language used to describe the component object
model that can be modified and loaded at runtime. Finally,
Adapta is based on computational reflection, promoting a
clear separation of concerns between the adaptable part of
the application from its core (business rules), simplifying the
application implementation, debugging, and maintenance.

Adapta framework was evaluated through a concrete case
study. The Integrade Grid middleware was modified in order
to incorporate autonomic mechanisms towards a self-healing
and self-optimization infrastructure. The new application fault
tolerance mechanism automatically decides the amount of
replicas to be generated for a given application submission
based on the currently execution environment MTBF and the
application mean execution time. The benefits of our approach
were measured through a set of experiments.

We are currently altering InteGrade scheduling mechanism,
allowing it to dynamically switch between distinct algorithms.
We argue that adaptive scheduling can optimize the overall
Grid performance and minimize application response time. We
are also extending Adapta with inter-component reconfigura-
tion mechanisms, such as component replacement, addition,
removal, migration, and replication.
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