
MCA-127

A Mechanism for Replicated Data Consistency in Mobile Computing
Environments

José Maria Monteiro

University of Fortaleza
Dept. of Computer Science
60811-341 Fortaleza - Brazil

monteiro@unifor.br

Angelo Brayner
University of Fortaleza

Dept. of Computer Science
60811-341 Fortaleza - Brazil

brayner@unifor.br

Sérgio Lifschitz

PUC-Rio
Dept. of Computer Science

22453-900 - Rio de Janeiro - Brazil

sergio@inf.puc-rio.br

Markus Endler

PUC-Rio
Dept. of Computer Science

22453-900 - Rio de Janeiro - Brazil

endler@inf.puc-rio.br

ABSTRACT
The recent advances in portable computer together with the
developments in wireless communication technology are al-
lowing users of portable equipment to maintain the network
connection while they move about freely, having access to
shared resources, services and information. This paradigm
is called mobile computing. Mobile computing allows for
the development of new and sophisticated database appli-
cations. Such applications require the reading of current
and consistent data. In order to improve the data availabil-
ity, increases performance and maximize throughput, data
replication is used. However, due to inherent limitations
in mobile and other loosely-coupled environments, the con-
currency control and replica control mechanisms must be
revisited. This paper proposes a new protocol that guaran-
tees the consistency of replicated data in a mobile comput-
ing environment, while provide high data availability and
ensure an eventual replica convergence towards a strongly
consistent state. Our protocol introduces a significant im-
provement over other solutions by using a consolidated cor-
rectness criterion, the serializability, and relaxing the isola-
tion property, beyond, reduces the number of messages ex-
changed between the hosts and ensure that the transaction
operations are executed only one time.

Keywords
Concurrency Control, Data Replication, Mobile Computing

1. INTRODUCTION
The integration of portable computer technology with wireless-
communication technology has created a new paradigm in
computer science called mobile computing. In a mobile com-
puting environment, network nodes are no longer fixed, that
means, they do not have a fixed physical location. In such
an environment, mobile users with a portable computer (de-
noted mobile client or host) may access shared information
and resources regardless of where they are located or if they
are moving across different physical locations and geograph-
ical regions.

Mobile computing technology has made possible the de-
velopment of new and sophisticated database applications.
Electronic commerce applications, such as auctions, road
traffic management systems and shared document editing
[10], are examples of database applications, which require
the support of mobile computing technology. Such applica-
tions need to access current and consistent data, even though
they concurrently access shared data.

Data replication has been widely used as a strategy to im-
prove the data availability, obtain performance increases and
maximize the throughput. The ley idea behind the concept
of data replication consists in storing multiple copies of the
data items in different servers, distributed in a communica-
tion network. Thus, applications can access data items of
any replicated server, and are also able to continue their ex-
ecution, even if some servers fail. However, in a computional
environment with data replication all copies of a given data
item must represent the same snapshot of the real world.
In other words, coherence among replicated data items in
several servers should be guaranteed. Data replication has
been also used in mobile computing environments. This
is because data replication may guarantee data availability

despite mobile computing environments restrictions such as
low bandwidth, frequent disconnection of the mobile devices,
data mobility and large numbers of clients [11].

A replicated database is a distributed database over a wire-
less network, in which multiples copies of the data items
are stored in different servers. Applications accessing data
stored in replicated databases need to access consistent copies
of replicated data items. Therefore, replicated DBMSs should
ensure data consistency. In replicated databases data consis-
tency is guaranteed by applying the following two correct-
ness criterion. First, the replicated DBMS should ensure
that the concurrent execution of a set of transactions over a
replicated database should be equivalent to a serial execu-
tion of the same set of transactions over the same database
without replication (one-copy database). This correctness
criterion is called one-copy serializability (1SR). Second, the
replicated DBMS needs to assure that the state of the di-
verse copies of a given data item will eventually converge
to a unique consistent final state, in spite of the operations
executed in the different copies. This correctness criterion
is called of eventual consistency. In traditional replicated
DBMSs the afore mentioned correctness criterion are guar-
anteed by a replica control protocol, which can be classi-
fied in three groups: Primary-Copy Methods (also called
of pessimistic replication), Quorum-Consensus Methods and
Available-Copies Methods (also known as optmistic replica-
tion) [3]. However, those classes are not efficient to repli-
cated database in mobile computing environments [11]. In
order to ensure replicated data consistency in mobile com-
puting environments, several approaches relax one-copy se-
rializability. However, most of these approaches require in-
tensive message exchange [2, 5, 9], or, that transaction op-
erations (stored in log), be re-executed several times. For
example, in [13] the servers may need to undo previously
executed “tentative write” effects and re-execute them in
another order. Thus, a write operation can be executed
many times in the same server. Moreover, some proposals
allow that the degree of consistency be adapted to several
connection levels. In [13] this is obtained by selecting the
session guarantees. However, such guarantees don’t have
clear semantics from the point of view of data consistency,
since, no relation between these guarantees and the standard
ANSI/ISO SQL 92 isolation levels [1] is established and the
phenomena that are avoided in each session guarantee aren’t
specified.

This paper proposes a new mechanism that guarantees the
replicated data consistency in mobile computing environ-
ments based on one-copy serializability and eventual con-
sistency (the convergence of several replicas to a unique
consistent final state). This protocol explores temporal in-
formation about the moment where a replicated database
object was read or updated. The solution we propose has
the main contribution of introducing a significant improve-
ment over other solutions by using a consolidated correct-
ness criterion, the serializability, and relaxing the isolation
property to different copies of a given data item. In other
words, our approach ensures global serializability, but differ-
ent transactions may write different copies of a given data
item concurrently. Furthermore, the transaction operations
are executed only once, the servers don’t need to store a
log with all executed operations, and the number of mes-

sages exchanged between the servers are reduced. In this
way, our protocol tries to ensure a savings in the commu-
nication channels costs, in the portable computers limited
power capacity and in their scarce memory resources.

The rest of the paper is organized as follows: In section 2
the related works will be described and discussed. Section
3 describes the transactional model that we will use in this
paper. In section 4 we describe the proposed protocol for
consistency control. Section 5 discusses and analyzes the
proposed mechanism. Section 6 concludes this paper and
outlines future studies.

2. RELATED WORK
The problem of replicated data consistency in mobile com-
puting environments has been addressed in many different
studies, whose main objective is to make high data avail-
ability possible. For our purposes it is useful to position
existing mechanisms on two axes: centralized versus decen-
tralized, and pessimistic versus optmistic. Centralized sys-
tems are characterized as having distinguished entities that
play some critical role. In decentralized solutions there isn’t
distinguishe between entities. Pessimistic systems do not al-
low data to be updated in multiple disconnected partitions
at the same time, ensuring that update conflicts do not oc-
cur. Optimistic systems, on the other hand, allow data to be
updated across partitions, and attempt to resolve conflicts
when disparate versions are later reconnected. We briefly
highlights systems in the four categories described by the
axes.

Gifford’s original weight voting algorithm [6] is an example
of a pessimistic, centralized technique. These systems typ-
ically provide low data availability. Bayou project [13] is a
exemplo of “update anywhere” optimistic, centralized sys-
tems. This system allow data to be updated by disconnected
clients and conflicts are resolved in a pair-wise fashion during
reconnections. In Bayou, updates propagate epidemically
and conflicts are resolved by bundling writes with fragments
code called conflict resolvers that represent the application’s
interest and are hard to write. These reconciliation-based
protocols are only viable in non-transactional domains such
as file systems. Moreover, in the Bayou, each server stores
a log containing all the writes that it knows and an opera-
tion can be executed several times, which can generate over-
head. Buyou don’t has support to transactional semantics,
it uses a weak consistency approach based on session guaran-
tees. However, such guarantees don’t have clear semantics
from the point of view of database consistency. Golding
[7] proposed an optimistic, decentralized approach in which
each server, individually, consolidate an update when it is
certain that this update has already been received by all
replicated servers. The main limitation of this approach is
that the non-availability of any one replicated server makes
the commitment process impracticable. The voting based
approaches allow the use of a great variety of quorums to
decide for the commit of an update. In particular, Deno
[5, 8], a optmistic, decentralized approach, uses an epidemic
voting protocol in order to support the data replication in a
transactional framework for weakly-connect environments.
Deno’s base protocol provides a weaker consistency model
in which writes are not guarantee to serialize with reads.
However, Deno requires that one voting round (stage) be

completely executed for each update. This can be accept-
able when the applications are interested in knowing the
commitment process course for each tentative update of a
data item, before executing another operation on this same
data item. However, in the scenarios considered for this
study, users and applications will frequently be interested in
access data items which have been updated for non commit-
ted transactions. In such situations, the wait for the commit
operation, imposed by the Deno voting protocol becomes as
unacceptably high as in the primary-commit protocol. In [9]
the authors propose a pessimistic, decentralized approach,
that is a variant of David Gifford’s [6] classic weighted-voting
scheme for replicated data. The main limitation of this ap-
proach is the low data availability, since this protocol don’t
use the update anywhere semantics offered by optimistic
concurrency mechanisms.

3. TRANSACTION MODEL
A database consists of a collection of objects representing en-
tities of the real world. The set of values of all objects stored
in a database at a particular moment in time is called the
database state. The real world imposes some restrictions
on its entities. Additionally, databases must capture such
restrictions, called consistency constraints. If the values of
objects of a particular database state satisfy all the consis-
tency constraints, the database state is said to be consistent.
The values of these objects can be read or written by the
transactions. A transaction is an abstraction which repre-
sents a finite sequence of reads and writes operations on
database objects. We use the notation ri(x) and wi(x) to
represent a read and write operation by a transaction Ti on
object x. OP (Ti) denotes the set of all operations executed
by Ti . We will assume that the execution of a transaction
preserves the database consistency, if this transaction runs
entirely and in isolation from other transactions.

The concurrent execution of a set of transactions is carried
out by the interleaving of the database operations of the
various transactions. Some interleavings may produce in-
consistent database states. Hence, it is necessary to define
when an execution of concurrent transactions is correctly
interleaved. Henceforward we will call correctly interleaved
execution: correct execution. A global schedule or history
indicates the order in which the operations in a set of trans-
actions is executed in relation to the others. Two operations
of different transactions conflict (or they are in conflict) if
and only if they access the same object of the database and
at least one of them is a write operation. The notation
p <S q indicates that operation p was executed before oper-
ation q in global schedule S.

Let S be a global schedule on a set T = {T1, T2, ..., Tn} of
transactions. The serialization graph for S, represented by
GS(S), is defined as the directed graph SG(S) = (N, E)
in which each node in N corresponds to a transaction in
T . The set E contains the edges in the form T i → Tj, if
and only if T i, T j ∈ N and there are two operations p ∈
OP (Ti), q ∈ OP (Tj), where p conflicts with q and p <S q.
A global schedule S is conflict serializable if and only if the
serialization graph for S (SG(S)) is acyclic. A schedule S is
correct if it is serial or conflict serializable [4].

A replicated mobile database is a database distributed over a

wireless network, in which multiple copies of the data items
are stored in different servers. The replication unit is called
an object. A copy is a copy of an object, stored in a given
server. A server can store multiple objects copies, however,
sometimes we use the term copy to mean a server (host).
The servers that can update their copies are called mas-
ter servers (master sites), to differentiate from those whose
copies (replicated data) are read-only. If the number of mas-
ter servers is equal to the number of replicated servers, one
has a multi-master schema. The proposed mechanism uses
the multi-master scheme, that is, read-any/write-any. The
servers allow access (read and write) to the replicated data
even when they are disconnected.

4. A MOBILE DATA REPLICATION MECH-
ANISM

4.1 Basic Concepts
The proposed mechanism was designed for mobile comput-
ing environments composed of a set of replicated database
servers and by weakly-connected portable devices. In such
environment, a client and a server can coexist in one host
(fixed or mobile). The communication channels are unstable
and a server is frequently not available or reachable.

Applications do not need to be limited to access only one
server, but rather they can interact with any server, that
is, they can execute read and write operations on any server
with which they can establish a communication link. Thus, a
multi-master approach (read-any/write-any scheme) is used.

Copies stored in different servers can present distinct con-
tents. That is, DB(Re1, t), which is the state of the database
in the replicated server Re1 at instant of time t, is not nec-
essarily equal to DB(Re2, t) for any two servers Re1 and
Re2. To reach an eventual consistency in which the servers
converge to an identical copy an adaptation in the primary-
commit scheme [13] is used. Thus, a server chosen as pri-
mary has the responsibility to synchronize and commit the
updates, that is, to make them permanent. The commit-
ted writes generate new versions of data items that must be
propagated to the other servers.

The protocol does not include the notion of disconnected op-
eration (where the client accesses local data, and when the
connection is re-established, executes a synchronization pro-
cedure) , since several connectivity levels are possible. It is
necessary that the communication between each server and
the primary server, or service provider, be only occasion-
ally established. Thus, the system deals with intermittent
network connectivity. For example, a server can be discon-
nected from the rest of the system and still be used by the
clients.

4.2 Ensuring Mobile Replicated Data Consis-
tency

The proposed approach for ensuring data consistency in mo-
bile replicated databases is based on a similar strategy used
by the conventional serialization graph testing protocol [4]:
the dynamic monitoring and management of a conflict graph
should always be acyclic. In contrast to classic serialization
graph testing, this protocol exploits temporal information

w.r.t. the moment in which a mobile transaction operation
(read or write) is executed on a given database item.

In our approach, we have decided to distribute concurrency
control functions among mobile clients, servers and the pri-
mary server (consistence service provider). Thus, we assume
that the primary server, the other servers (copies) and the
clients execute specific functionalities, in order to manage
the transaction. In the following, we describe such function-
alities.

After the commit of a transaction Ti, the primary server
propagates the new values of data items updated by Ti, to-
gether with the corresponding timestamps (versions), tor all
copies with which it has communication. These timestamps
are defined as following:

• Each data item x in DB(Rei), where 0 < i ≤ N , where
N is the number of replicated servers, is associated
with a timestamp C(x);

• Each operation Pi(x) (read or write) of a transac-
tion Ti is associated with a timestamp represented by
C(Pi(x));

• A timestamp consists of an ordered pair (z, y). The
first part (z) is called version, while the second part
(y) is called subversion;

• Initially C(x) = (0, 0) ∀x ∈ BD, in all copy Rej , where
0 < j ≤ N ;

• The version of C(x), that is, z, is incremented in each
commit of a any transaction Ti that executes a write
operation on x (new version of x);

• To each commit of a transaction Ti that produces a
new version of x, with C(x) = (v, 0), where v > 0, this
new version, together with its new timestamp, is sent
by the primary server for all the replicated servers Rej

(with which it has communication);

• Different strategies can be used for sending the new
values of the data items and the new versions, of the
primary server (main copy) for the others replicated
servers, making possible a means of adaptability, where
the context information, such as: signal quality, power
level and available memory, can be considered. These
strategies will be discussed later;

• The sub-version of C(x), that is, y, is incremented
to each write operation of any active (uncommitted)
transaction Ti, that it wrote on x, in any replicated
server Rej;

To each read operation ri(x) ∈ Ti (that can be executed in
any replicated server Rej), the used replicated server (Rej)
keeps the read data item identifier (id), together with the
corresponding timestamp, C(ri(x)), which corresponds to
the current value of the read data item timestamp, that is,
C(x)Rej

, and associates these values to the executed opera-
tion ri(x).

To each write operation wi(x) ∈ Ti (that can be executed in
any replicated server Rej), the used replicated server (Rej)

increases the subversion (y) value of the read data item (x)
timestamp value, in its local copy (Rej). Then, the server
(Rej), keeps the value and the identifier of the updated data
item, together with the corresponding timestamp, C(wi(x)),
which corresponds to the current value of the timestamp of
the read item, x, in its local copy, that is, C(x)Rej

, and
associates these values to the effected operation (wi(x)).

Periodically, each replicated server (Rej) must send a pack-
age (message) to the primary server containing the read and
write operations executed in its local copy (up to the current
instance), together with its respective timestamps, as well as
its proper identifier (Rej). The operations already informed
do not need to be sent again. This information is received
by a scheduler in the primary server, and is used to syn-
chronize the operations of several transactions, generating
a correct interleaving, that is, that preserves (according to
some correcness criterion) the replicated data consistency.

When a client receives a commit or abort order for a mobile
transaction Ti, it must submit this order to any replicated
server (Rej), which will re-send this order to the primary
server. In the case of a commit operation it must also send
the number of operations of the transaction (Ti). Addition-
ally client Ci can send the message that contains the commit
request of a transaction Ti directly to the primary server.
The client must await the reply to execute the commit or
abort operation. If the timeout runs out and the client does
not receive the reply for his commit request, some alterna-
tives can be chosen: abort the transaction Ti or define Ti as a
tentative transaction, that is, a concluded transaction whose
writes can not be committed. Additionally, if the transac-
tion Ti is a read-only transaction, the client can decide to
conclude the transaction, being aware that the transaction
may have read inconsistent values. With this purpose, con-
text information can be used as a means of adaptability.
For example, if the power level is low and the signal quality
is not good, disconnection is imminent. In this case, the
client can opt to end his transaction as a try, that is hav-
ing the knowledge of that its writes can not be committed.
In other words, they can be undone, and that its reads may
have accessed inconsistent values (temporary). On the other
hand, the client can wait a little more and the connection
with server Rej , or with the primary server, will probably
be re-established.

The proposed approach to ensure the replicated data con-
sistency is based on the comparison of the timestamps as-
sociated with each read or write operation belongs to sev-
eral transactions that are executed on different replicated
servers. The comparison between the two timestamps C(qj(x))
and C(pi(x)) is carried out in the following manner: It as-
sumes, without loss of generality, that C(qj(x)) = a.b and
C(pi(x)) = c.d. If a > c then C(qj(x)) > C(pi(x)). Now, if
a = c, the subversion value must be verified. Thus, if a = c

and b > d, then, C(qj(x)) > C(pi(x))). In the case where
a = c and b = d, C(qj(x)) = C(pi(x)).

4.3 Replica Control Protocol
A scheduler implementing the proposed protocol runs as fol-
lows. When a scheduler starts its execution an empty graph,
called the temporal serialization graph (TSG), is created.
Based on the timestamps described on the previous para-

graph, the (TSG) is constructed as described below:

Step 1. For each operation pi(x) ∈ OP (Ti) received by the
scheduler, it checks if exists an operation qj(x) ∈ OP (Tj)
that conflicts with pi(x) and that has already been sched-
uled. In case qj(x) exists, an edge will be inserted between
Ti and Tj , as follows:

If C(qj(x)) < C(pi(x))

Then the scheduler inserts an edge on the form

Tj→Ti

Else

If C(qj(x)) > C(pi(x))

Then the scheduler inserts an edge on the form

Ti→Tj

Else //C(qj(x)) = C(pi(x))

If pi(x) and qj(x) was execute on the same copy

If pi(x) is a write operation and qj(x) is a read

An edge on the form Ti→Tj will be

inserted on the graph

If pi(x) is a read operation and qj (x) is a write

An edge on the form Tj→Ti will be

inserted on the graph

If pi(x) and qj(x) was execute in different copies

If pi(x) is a write operation and qj(x) is a read

An edge on the form Tj→Ti will be

inserted on the graph

If pi(x) is a read operation and qj (x) is a write

An edge on the form Ti→Tj will be

inserted on the graph

If pi(x) and qj(x) are write operations

Then the scheduler inserts an edge on the form

Tj→Ti on the graph

Step 2. The scheduler verifies if the new edge introduces a
cycle in the temporal serialization graph. In the affirmative
case, the scheduler rejects the operation pi(x), undoes the
effect of the operations of Ti, removes the inserted edge and
informs the client Ci about the abort of the transaction Ti.
On the other hand, pi(x) is accepted and scheduled.

Step 3. When the scheduler receives a commit request, of
a transaction Ti, together with the number of operations
of Ti, it verifies if all the operations of the transaction Ti

have already been received and scheduled and if this still
is an active transaction. In this case the commit opera-
tion will be executed and the transaction committed. If
the scheduler has not received all the operations from Ti,
it must delay the reply. Transaction Ti may have already
been previously aborted and that the abort information has
not yet arrived in the client application. In this case the
abort is re-dispatched to the client. After the commit of
Ti, the scheduler increments the version (timestamp) of all
data items updated by Ti, as following: ∀x update for Ti do
C(x) = (z, y) receive (z +1, 0). After this, the new values of
the data items updated by Ti, together with the new times-
tamps, must be propagated for all the replicated servers with
which the primary server has communication. If some repli-
cated server Rej is outside of the communication area, its
identifier must be stored in log, in order for the scheduler to
later try to re-dispatche this information.

Step 4. When the scheduler receives an abort request of
a transaction Ti, it undoes the effect of the Ti operations,
removes the edges associated with this transaction and sends

the abort confirmation to client Ci.

4.4 Running Example
To illustrate the applicability and use of our proposal, we
will use an electronic commerce application where several
products are on sale in an electronic auction as an exam-
ple. Consider that to improve data availability, get per-
formance profits and maximize the throughput, the main
database, DBPC , was replicated in two others hosts (R1

and R2). Thus, there exists two replicated servers, each of
which having a (total ou partial) database copy of DBPC .
This configuration is shown in figure 1.

DBMS

DBPC

PC

CEL = 1
C(CEL) = 0.0
PALM = 2
C(PALM) = 0.0

DBMS

DBR1

R1

CEL = 1
C(CEL) = 0.0
PALM = 2
C(PALM) = 0.0

DBMS

DBR2

R2

CEL = 1
C(CEL) = 0.0
PALM = 2
C(PALM) = 0.0

Figure 1: Replicated Environment.

Now, consider the following set of transactions, which read/write
(do bidding) values of the products for sale and a schedule
S1 (figure 2), defined over the set T = {T1, T2, T3}.

T1 : r1(CEL) r1(PALM) w1(CEL, CEL + 5) C1;

T2 : r2(CEL) w2(CEL, CEL + 7) C2;

T3 : r3(PALM) r3(CEL) w3(CEL, CEL + 10) C3;

r1(CEL)R1

C1 C2 C3

S1= r1(PALM)R1w1(CEL, CEL+5)R1r2(CEL)R1w2(CEL, CEL+7)R2

r3(PALM)R1r3(CEL)R1w3(CEL, CEL+10)R2

Figure 2: Schedule S1.

We will assume that in the execution scenario presented
in figure 2 the operations had been temporally executed in
the presented order. The traditional serialization graph for
schedule S1 is illustrated in figure 4 (a). Observe that this
graph doesn’t have a cycle. Therefore, schedule S1 could be
considered conflict serializable (correct). However, if we ob-
serve the final value of the item “CEL”, in copy DBR1

this
item has a value of 6, while in the copy DBR2

and in the
primary copy, this item has a value of 16. However, both
values are inconsistent since this value would not be gener-
ated by any serial execution of the transactions T1, T2 and
T3 over DBPC . Therefore it becomes necessary to revisit
the replica control protocol.

Observe that this inconsistency results from the fact that the
value read by the operation r3(CEL)R1

does not correspond
to the value written for w2(CEL, CEL + 7)R2

. Therefore,

the value read for the operation r3(CEL)R1
is previous to

the value generated by the operation w2(CEL, CEL+7)R2
.

The temporally correct schedule (S′

1) is shown in figure 3,
while the correct temporal serialization graph for the sched-
ule S′

1 is presented in figure 4 (b). Thus, a non conflict
serializable (incorrect) schedule was considered correct. Of
course, this phenomenon must be avoided because it would
generate inconsistencies in the database. By the proposed
protocol, the correct temporal serialization would be gen-
erated, a cycle would be identified and the transaction T3

aborted. In this case the final value of the item “CEL” in the
copy DBR1

would be 6, while in the copy DBR2
and in the

primary copy this item would have a value of 16. The value
16 would then be propagated by the primary copy for the
other copies. However, this is an consistent value. Therefore
it would be generated by both the serial executions of the
transactions T1 and T2.

S1'=r1(CEL)R1

C1 C2 C3

r1(PALM)R1w1(CEL, CEL+5)R1r2(CEL)R1

w2(CEL, CEL+7)R2

r3(PALM)R1

r3(CEL)R1 w3(CEL, CEL+10)R2

Figure 3: Schedule S′

1.

Its important to note that if the packages with the informa-
tion about the reads and writes operations executed for the
transactions in the several servers (copies) to arrive at the
primary server in a different order from the order where the
operations had been executed, the proposed protocol contin-
ues generating the correct serialization graph and identifying
the cycle.

Let’s observe a second example. Consider the same previ-
ous configuration. Consider also the following set of trans-
actions, which read and update the values of the products
for sale:

T1 : r1(CEL) r1(PALM) w1(CEL, CEL + 5) C1;

T2 : r2(PALM) r2(CEL) w2(CEL, CEL + 7) C2;

Now, observes schedule S2 presented in figure 5

We will assume that in the execution scenario presented in
figure 5 the operations that had been temporally executed
in the presented order. The traditional serialization graph
for schedule S2 is showed in figure 7 (a). Observe that this
graph doesn’t present a cycle. Therefore, the schedule S2

could be considered conflict serializable (correct). However,
if we observe the final value of the item “CEL”, we will
see that in copy DBR1

this item has a value of 6, while

T1 T2T1 T2T2
T1 T2T1 T2

(a) (b)

Figure 4: Serialization Graphs for the Schedules S1

and S′

1.

r1(CEL)R1

C1 C2

S2'= r1(PALM)R1w1(CEL, CEL+5)R1r2(PALM)R1

r2(CEL)R2w2(CEL, CEL+7)R2

Figure 5: Schedule S2.

in the copy DBR2
and in the primary copy, this value is

8. However, both the values are inconsistent, whereas these
values would not be generated by any serial execution of the
transactions T1 and T2.

Observe that this inconsistency results from the fact that
the value read for the operation r2(CEL)R2

does not corre-
spond to the value written for w1(CEL, CEL+5)R1

. There-
fore, the value read by the operation r2(CEL)R2

is prior to
the value generated for the operation w1(CEL, CEL+5)R1

.
The temporally correct schedule (S′

2) is shown in figure 6,
while the correct temporal serialization graph for schedule
S′

2 is presented in figure 7 (b). Thus, a not conflict serializ-
able schedule (incorrect schedule) was considered correct. Of
course, this phenomenon must be avoided because it would
generate inconsistencies in the database. In the proposed
protocol, the correct temporal serialization graph would be
generated, a cycle identified and the transaction T2 aborted.
In this in case the final value of the item “CEL” in the copy
DBR1

and the primary copy would be 6, while in the copy
DBR2

this item would have a value of 1. Then, the value
6 would be propagated by the primary copy for the other
copies (servers). However, this value is consistent because, it
was generated by the execution of an only transaction (T1).

r1(CEL)R1

C1 C2

S2
'= r1(PALM)R1

w1(CEL, CEL+5)R1

r2(PALM)R1

r2(CEL)R2 w2(CEL, CEL+7)R2

Figure 6: Schedule S′

2.

T1 T2T1 T2T2
T1 T2T1 T2

(a) (b)

Figure 7: Serialization Graphs for the Schedules S2

and S′

2.

4.5 Protocol Correctness
Next, we will demonstrate that the proposed algorithm en-
sures two basic correctness criterion: a) one-copy serializ-
ability, that is, the concurrent execution of a set of trans-
actions on a replicated database will be equivalent to a se-
rial execution on a same non-replicated database, and b) all
the copies, eventually, will converge to one same consistent
state. First, we will prove that all schedules produced by
the proposed protocol are conflict serializable, that is, they
ensure the data consistency in all the replicated servers.

Theorem 1. Let TSGTR be the set of all schedules on
the set T = T1, T2, ..., TN of transactions produced by the
proposed protocol and CSR the set of all the conflict seri-
alizable schedules on T . Then TSGTR = CSR.

Sketch of Proof. It is easy to show that TSGTR ⊂ CSR.
We only need to observe that every schedule S produced by
the proposed protocol presents an acyclic temporal serializa-
tion graph (TSG). By definition, the temporal serialization
graph for S represents the conventional serialization graph,
adding of temporal information to capture the correct execu-
tion order of the operations in S. In other words, if the TSG

for S is acyclic, the conventional serialization graph also is.
Therefore, S ∈ CSR and consequently, TSGTR ⊂ CSR.

To prove that TSGTR ⊃ CSR, we need to show that every
S ∈ CSR schedule can be produced by the proposed proto-
col. We can show this using induction in the size of S that
all operation p in S cannot generate a cycle in the TSG.
For this reason operation p can be executed. As previously
mentioned, the TSG represents the convention serialization
graph, adding temporal information.

Now, we prove that all the copies eventually will converge
to one same consistent state.

Theorem 2. If R = Re1, Re2, ..., ReN is the set of the
replicated servers, and DB(Rei, t)) the database state in the
replicated server Rei, in the time instant t, then, a position
in future time t will exist where, ∀i, j (with i 6= j, 0 < i, j ≤
n) DB(Rei, t) = DB(Rej , t) and DB(Rei, t) is consistent.

Sketch of Proof. In step 3 of the protocol, we observe
that after the commit of a transaction Ti, the scheduler
propagates the new value of the data items updated by
Ti to all replicated servers with which the primary server
has communication. If some replicated server Rek is out of
the communication area, its identification must be stored
in log, since the scheduler should re-send this information.
Certainly, a time instant t will exist in which there are no
updates being carried out. At this instant t, DB(Rej , t),
where Rej is the primary server, is consistent and stable,
and, additionally, all the replicated servers Rek will have a
connection, even if temporary, with the primary server Rej ,
receiving the pending updates and updating its local copy
state, making DB(Rek, t) = DB(Rej , t). Thus, by Theorem
1, DB(Rek, t) is consistent (∀ k com 0 < k ≤ n).

5. DISCUSSION
The mobile database replication mechanism we are propos-
ing is optmistic (read-any/write-any model), centralized (uses
a master copy to maximize the commitment process) and
ensures strong consistency (by the use of serializability to
guarantee data consistency). Beside using an already con-
solidated correctness criterion, the proposed protocol relaxes
the isolation property. This property predicts that the trans-
actions are isolated, that is, the transaction results only can
be seen at the end of their execution, whether it finished suc-
cessfully or not. The proposed protocol relaxes the isolation
and adopts a read-any/write-any approach, allowing higher
data availability. Moreover, the operations that compose the
several transactions are executed only once and the servers
do not need to store a log with all the executed operations.
These two last properties are not guaranteed by the mech-
anism presented in [13]. In addition, our approach reduces
the number of messages exchanged among the servers. So,
our protocol looks for guarantees in savings in the commu-
nication channels use cost, in the limited power capacity of

the portable computers and in its scarce memory resources.

In our approach, the server needs to keep a serialization
graph (TSG) of all the active transactions, which can re-
duce the scalability. However, the garbage collection strat-
egy presented in [10] can be used to reduce the graph size.
Another drawback stems from the fact that the replicated
servers have to send a message informing the data items
which have been read and/or written to the primary server.
However, such a message consists only of the item, transac-
tion and server identifier, and one timestamp.

Similar to the approach shown in [13], a primary server is
used and the replica coherence is ensured only eventually.
However, in our protocol, the conflict detention is carried out
through the comparison between timestamps, which consist
of numerical values pairs, which provide low costs. In [13],
a method is used where each write is associated with a set
of validation rules and with a procedure, written in a high
level interpreted language, for conflict resolution, that is,
the task of detection and conflict resolution is transferred to
the programmers.

Finally, the assumption in Theorem 2 that there will be a
time instant in which the system will be in the absence of
updates, despite seeming strong, is common in other replica-
tion mechanisms, as for example, in the approach presented
in [13, 12].

6. CONCLUSIONS
In this paper we present a new mechanism that guarantees
the replicated data consistency (one-copy serializability) and
the replica convergence to the same consistent final state
(eventual consistency), in mobile computing environments.
This protocol explores the temporal information about the
moment where a replicated database object was read or up-
dated and uses the serializability as correctness criterion.
It’s important to note that serializability already became a
standard, and, therefore, practically all existing DBMS in
the market implement this model. Besides using a consol-
idated correctness criterion, the proposed protocol relaxes
the isolation property and adopts the read-any/write-any
approach, allowing higher data availability. In this mecha-
nism, the operations that compose the several transactions
are executed only one time and the servers do not need to
store a log with all executed operations. Moreover, our ap-
proach reduces the number of messages exchanged between
the servers. All this will ensure a savings in the commu-
nication channels cost, in the limited portable computers
energy capacity and in its scarce memory resources. We in-
tend to extend the proposed protocol in order to allow that
the isolation level be adapted to the conditions of the mo-
bile environment in future studies through the choice of one
amongst the four standardized ANSI/ISO SQL 92 [1] iso-
lation levels, and make the item updates propagation in a
peer-to-peer (P2P) manner possible.

7. REFERENCES
[1] A. Adya, B. Liskov, B. O’Neil, and P. O’Neil.

Generalized Isolation Level Definitions. In proceedings
of the IEEE International Conference on Data
Engineering, San Diego, CA, March, 2000.

[2] J. Barreto and P. Ferreira. An Efficient and

Fault-Tolerant Update Commitment Protocol for

Weakly Connected Replicas. Proceedings of the
EUROPAR, Lisboa, Portugal, 2005.

[3] P. A. Bernstein, V. Hadzilacos, and N.Goodman.
Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

[4] M. A. Casanova. The Concurrency Problem of

Database Systems. In Lectures Notes in Computer
Science, 116, 1981.

[5] U. Cetintemel, P. Keleher, and M. Franklin. Support

for Speculative Update Propagation and Mobility in

Deno. Proceedings of the The 21st IEEE International
Conference on Distributed Computing Systems
(ICDCS’01), 2001.

[6] D. K. Gifford. Weighted Voting for Replicated Data.
Proceedings of the Seventh Sysmposium on Operating
Systems Principles, 1979.

[7] R. Golding and D. Long. Modeling replica divergence

in a weak-consistency protocol for global scale

dirstibuted data bases. Technical Report
UCSC-CRL-93-09, 1993.

[8] P. Keleher. Decentralized replicated-object protocols. In:
Proc. of the 18th Annual ACM Symp. on Principles of
Distributed Computing (PODC’99), 1999.

[9] R. Maya and L.Anthony. Decentralized Weighted

Voting for P2P Data Managemento. Proceedings of
the 3rd ACM International Workshop on Data
Engineering for Wireless and Mobile Access, San
Diego, CA, USA, (MobiDe ’03), 2003.

[10] J. M. Monteiro and A. Brayner. Controlling

Concurrency in Mobile Computing Environments with

Broadcast-based Data Dissemination. Proceedings of
the EUROPAR, Lisboa, Portugal, 2005.

[11] Y. Saito and M. Shapiro. Optimistic Replication.
ACM Computing Surveys, Vol. V, No. 3, 2005.

[12] D. Terry, A. Demers, K. Petersen, M. Spreitzer, and
M. Theimer. Flexible Update Propagation for Weakly

Consistent Replication. 1997.

[13] D. Terry, A. Demers, K. Petersen, M. Spreitzer,
M. Theimer, B. Welch, and C. Hauser. Managing

Update Conflicts in Bayou, a Weakly Connected

Replicated Storage System. 1995.

