
A Middleware Architecture for Context-Aware and Location-Based
Mobile Applications

José Viterbo1, Vagner Sacramento2, Ricardo Rocha1, Gustavo Baptista1,
Marcelo Malcher1 and Markus Endler1

1Department of Informatics
Pontifı́cia Universidade Católica do Rio de Janeiro

R. Marquês de São Vicente, 225
22453-900, Rio de Janeiro, Brasil

{viterbo, rcarocha, gbaptista, marcelom, endler}@inf.puc-rio.br

2Institute of Informatics
Universidade Federal de Goiás

Bloco IMF I
74001-970, Goiânia, Brasil

vagner@inf.ufg.br

Abstract

The development of location and context-aware applica-
tions is greatly facilitated by the use of context-provisioning
middleware. However, development of such applications
still remains a challenge from the point of view of software
engineering. In this paper we present MoCA, a service-
oriented middleware architecture that supports the develop-
ment and deployment of distributed context-aware applica-
tions for mobile users. Besides explaining its main services
and APIs, we discuss in which ways the MoCA architecture
supports some well-known software engineering principles
that apply to the design and implementation of context-
aware applications. Furthermore, we give an overview of
its usage and present the most notable prototype applica-
tions that have been developed on the top of MoCA.

1 Introduction

One of the key requirements of distributed applications
that run on mobile devices is their ability to perceive — and
opportunistically adapt to — the conditions of their physi-
cal and networked execution environments, in order to op-
timize their operations and deliver the best possible service
to the users. However, implementing the so called context-

awareness1 is inherently complex due to the specificity and
the heterogeneity of the executing environments (e.g., vari-
ous execution platforms, wireless networks and sensor tech-
nologies). Hence, development of such applications may be
greatly simplified by the use of context-provisioning mid-
dlewares [28]. The main reason is that the acquisition, dis-
tribution, storage and management of context data becomes
transparent to the application programmer, who can focus
on implementing the application’s logic. Nevertheless, de-
spite the huge amount of publications describing elaborated
context models [29] and extensible frameworks or middle-
ware systems [1], unfortunately, to date there are only very
few freely available, and — in fact — easily usable systems
for the development of context-aware mobile applications.

In this paper, we report our experience in developing
and effectivelly using the Mobile Collaboration Architec-
ture (MoCA) [26], a stable service-oriented middleware ar-
chitecture that has been used by several research groups in
Brazil and abroad for the development of small-scale or ex-
perimental context-aware applications.

MoCA is a service-based architecture which offers sup-
port for the development of distributed context-aware ap-
plications for mobile devices interconnected through IEEE
802.11 wireless LANs. MoCA’s services and components
provide means of collecting, distributing and processing

1In the remainder, we will consider location-awareness as a specific
kind of context-awareness.

1

context data obtained directly from the mobile devices, i.e.,
the state of the devices’ resources, as well as parameters of
the wireless network connection. In addition, MoCA makes
available to the application developer a set of APIs for syn-
chronous and asynchronous access to context data and other
context-specific services.

In the next section we discuss the goals and require-
ments that guided the MoCA’s design and implementation.
In Section 3 we give a bird-eye’s view of MoCA’s archi-
tecture, its basic services and the set of context data that
it delivers, some optional services and MoCA’s personali-
ties. Then, in Section 4 we present the main APIs and the
typical use for context-awareness in MoCA-based applica-
tions. Section 5 briefly discusses how MoCA meets some
well-known principles of system’s software engineering, fa-
cilitating the development of context-aware mobile applica-
tions. Section 6 then presents a few selected context-aware
application prototypes that have been developed over the
years using MoCA. Section 7 compares MoCA with other
context provisioning middleware platforms commonly ref-
erenced in literature. Finally, Section 8 draws some conclu-
sions and points to future developments.

2 The Design and Implementation of MoCA

It has been well recognized that the development of
context-aware and -adaptive mobile applications is a com-
plex task and requires the careful observance of several
well-known software engineering principles [9, 22]. MoCA
was designed as a layered architecture following a con-
text server approach [1], in which largely independent ser-
vices provide an infrastructure for collecting, distributing
and processing context information. This approach aimed
at facilitating the development of applications by observ-
ing principles such as separation of concerns, multi-level
abstractions, incremental development, flexibility of cus-
tomization and multi-language and interoperability support.

Our main goal with the MoCA project was to develop
an extensible architecture and a coherent set of efficient ser-
vices for the collection and distribution of system’s context
and location information of mobile devices, such as hand-
helds, tablet PCs or notebooks. The main motivation was
to free the application programmer from the burden of pro-
gramming the ‘low-level’ interfaces (with the device plat-
forms) for probing the system’s raw context data, and the
basic services for storing context data and implementing
context distribution mechanisms.

While MoCA’s independent services permit separation
of concerns, the simple and comprehensive set of APIs
available offer multi-level abstractions for the application
developer to easily use these services and fully concentrate
on the application’s logic and adaptation requirements. Fur-
thermore, the service-oriented architecture is extensible al-

lowing not only flexibility of customization — i.e., the se-
lection of a specific set of available services to be deployed
and used —, but also the incremental development of addi-
tional context producing and processing services that may
be necessary for a particular application. All these features
are further discussed in Section 5.

Since the early publications [24, 26], several service
components have been incrementally added and improved,
so as to extend the middleware’s facilities [25, 30]. Over
the last four years, several students and researchers have
used MoCA for building their experimental context-aware
mobile or ubiquitous applications [5, 6, 18], and to our sat-
isfaction, most of them appeared to be fairly satisfied. This
has been confirmed by the statements and evaluation grades
given by some developers to several aspects of the architec-
ture such as ease of installation and use, online documenta-
tion, robustness and reliability.

3 System Overview

The typical architecture of a MoCA based application
using the client/server paradigm is shown in Figure 1, where
the MoCA basic services are represented, i.e., the services
that implement the main functionalities of the architecture,
such as context management and location inference. The
figure shows also some optional services, i.e., services that
are used for some specific applications. In its most general
form, an application based on MoCA is composed by one or
more application servers, which execute on static machines
in the wired network, and the application clients, which ex-
ecute on mobile devices, such as Smart Phones, TabletPCs
or Notebooks. The application server is usually the client
of the MoCA services, i.e. a consumer and point of access
to context information of all the mobile devices2. Details
about all the MoCA services are presented in the following
subsections.

3.1 Basic Services

MoCA’s Monitor is the component responsible for prob-
ing several device and network interface resources, convert-
ing them into a standard format and normalized scale, and
making this context information available both to the local
application client and to other instances of the application.
It must be executed on each mobile device. The set of pro-
duced context information includes the quality of the wire-
less connectivity (in terms of RF signal strength – RSSI),
the current Access Point Id (AP Id), the current IP address
and mask, the device’s remaining energy level, CPU usage
and free memory space, as well as the list of all APs within

2Of course, the mobile clients can access context information directly,
in a way similar to the application servers.

Figure 1. Typical architecture of a MoCA-
based client/server application.

the range of wireless access of the device with their corre-
sponding sensed RSSI or the GPS position data, if available.
The two last ones are used for location inference.

This set of context information is periodically sent by
the Monitor to the Context Information Service (CIS). This
service — which may be implemented as a single or multi-
ple CIS servers — is responsible for collecting, storing and
processing this context data. All context variables — or tags
(shown in Table 1) — are indexed by the MAC address of
the mobile device. Hence, by a simple mapping function
the range of possible MAC addresses can be equally split
among the CIS servers, achieving some load balance and
scalability of this service. Using the same mapping func-
tion, the applications (e.g. client or server components) can
request CIS for context information from any of the moni-
tored devices, both synchronously or asynchronously.

Through synchronous requests (via request-reply mes-
sages) it is possible to obtain the latest context informa-
tion about a device. And through asynchronous requests
(via subscription and notifications) applications can regis-
ter at CIS their interest in a specific context state, which
is described by a logic expression involving several con-
text variables (or tags) of the target device. For exam-
ple, with the expression {"FreeMemory < 10MB" OR
"APChange = True"} as a context subscription, an ap-
plication component expresses interest to be notified by CIS
whenever the amount of free memory of a given device
drops below 10 MB or the device has performed a handover
between access points.

The context data made available by CIS can be also used
by other MoCA services to derive higher-level context in-
formation. This is the case of MoCA’s Location Inference
Service (LIS), which uses the context information about the

RF signal strengths of nearby IEEE 802.11 APs (i.e. CIS’
APlist) to infer the approximate location of each mobile
device [20]. This is done by evaluating the similarity be-
tween the RSSI distribution pattern currently sensed by the
device and the RSSI distribution patterns measured at spe-
cific reference points in the geographic region of interest
(indoors or outdoors). LIS delivers location information in
terms of symbolic regions (e.g. a room, a hall, a corridor,
a building floor, or a street section) that are relevant to the
applications, instead of geographic positions.

As with CIS, an application can interact with LIS to ac-
cess the location information both syncronously and asyn-
chronously. Using the first mode, it can be informed of the
symbolic region in which a specific device is currently lo-
cated, or which are all the devices located in a specific loca-
tion. This mode is useful for easily identifying co-located
devices, i.e. users. Using the asynchronous mode, the ap-
plication may get notifications each time a target device en-
ters/leaves some region, or whenever the set of devices of
a specific symbolic region changes. Moreover, the appli-
cation can query LIS to learn all the symbolic regions that
have a mapping (e.g. have been previously measured) in the
service.

Another basic building block of MoCA is the Event
Communication Interface (ECI), an interface for Pub-
lish/Subscribe communication that supports a simple
subject-based subscription mode, but provides several con-
figurable modes of context-oriented notifications: One-
time, N-time or Periodic notification, as well as notifica-
tions whenever an application’s context-interest expression
switches from valid to non-valid, and vice-versa [2]. The
ECI interface is used for implementing the interactions with
the MoCA services, but can, as well, be used by the ap-
plication developer that needs to implement asynchronous
communication within its mobile application.

3.2 Optional Services

MoCA allows not only the creation of symbolic regions
of arbitrary size and shape but also their aggregation into
a hierarchical structure defining nested sub-regions. This
functionality is implemented through an auxiliary service
named Symbolic Region Manager (SRM), which provides
an interface to create, manage and request information
about hierarchies of symbolic regions. In these hierarchies
composite symbolic regions are described as an aggrega-
tion of atomic symbolic regions (determined by LIS) or
other composite symbolic regions. For instance, compos-
ite symbolic region “Computer-Building/1stFloor” may be
defined as containing atomic symbolic regions “room10”,
“room11”, “room12” and “hall”.

Although MoCA was originally designed to support only
symbolic positioning based on comparison of IEEE 802.11

Context Tags Type Description
CPU Integer CPU usage (0 to 100%)
EnergyLevel Integer Remaining battery level (0 to 100%)
AdvertisementPeriodicity Integer Frequency of Monitor context sending (sec.)
APMacAddress String MAC Address of the current AP
FreeMemory Long Total amount of free memory (KB)
DeltaT Long Time interval since previous delivery of context data (msec.)
OnLine Boolean True iff device is connected to any AP
IPChange Boolean True iff device switches IP address
APChange Boolean True iff device switches the AP
APlist String List of tuples (AP Id, RSSI)
GPSPos String Pair (Lat, Long)

Table 1. Context information tags provided by CIS.

RF signal strength patterns (i.e. RSSI fingerprint), we have
extended it to process also GPS-based positioning informa-
tion for mobile devices with GPS capabilities. For this pur-
pose, we developed the Hybrid Positioning Service (HPS),
which is responsible for integrating symbolic and geograph-
ical positioning of a mobile device. HPS gets either the
symbolic location of a device from LIS, whenever this in-
formation is available, or the geographical coordinates from
CIS, when the device can provide GPS coordinates. When
provided only with symbolic location it uses a database with
vectorial geographical data to convert symbolic location to
geographical coordinates (considering the centroid of the
symbolic region). Conversely, if only GPS data is available,
it uses the same database to map the geographic coordinate
into a symbolic location, e.g., a polygon representing a spe-
cific area. Therefore, HPS is capable of delivering both the
symbolic and the geographic position of a client.

In mobile systems, some applications may be interested
in using the resources or services that are available in the
user’s vicinity or in the currently visited network domain,
such as a nearby printer. On the other hand, some services
may be available only to clients within a well defined re-
gion, e.g. within a building or campus. Considering these
aspects, we implemented the Ubiquitous Discovery Service
(UDS) for the MoCA architecture [30]. This service en-
ables application clients to search for a service whose scope
of availability — i.e. the symbolic region where a service
is available — matches the client’s location. Furthermore,
UDS offers a notification service that makes possible for
client applications to register their interest in services with
given characteristics and scope, and to be asynchronously
notified when a desired service becomes available at the
client’s physical location.

Finally, another optional service of MoCA is the Context
Privacy Service (CoPS), which allows the users to define
and manage her privacy policies concerning the disclosure
of their device’s context information [25].

3.3 Personalities

MoCA services and APIs were originally implemented
specifically to support the development of applications in
Java. In order to extend the usability of MoCA’s con-
text services to other programming languages we devel-
oped what we call three MoCA Personalities: MoCA/WS,
MoCA/ORB and MoCA/MAX [31]. These personali-
ties materialize as proxies that implement the mapping of
MoCA’s Java-based APIs (i.e. CIS and LIS clients) to other
implementation highly implementation technologies such
as Web Services or Multi-agent Systems. By using such
proxies the application developer can then implement her
mobile application using different programming language
and have access to context and location information both
in the synchronous and asynchronous modes. It turned out
that this multi-language support of our system was essential
for the development of some application prototypes.

4 Using MoCA

The MoCA services and APIs (developed in Java) and
the MoCA Monitor (developed in C ANSI) may be freely
downloaded from the MoCA Project site3. Until now, we
have implemented versions of the Monitor for Windows
XP, Windows Mobile, Linux and Symbian (for the Smart
Phone Nokia S60). The Monitor was implemented in C be-
cause Java does not provide APIs to access some low-level
drivers. The MoCA services and APIs may be grouped in
three different sets. The first set consists solely of the Mon-
itor, which must be installed only at the mobile device. The
second set comprises the packages that provide the basic
services, such as ECI, CIS and LIS. Those services must be
installed on the machines that are part of the infrastructure
environment, generally in the wired network. The third set
is formed by the APIs used to implement the context-aware

3 http://www.lac.inf.puc-rio.br/moca

applications, which must be installed on the machines that
are part of the development and execution environment.

4.1 Application Programming Interfaces

The MoCA APIs may be divided in three groups: (1)
the communication APIs, which provide interfaces for syn-
chronous and asynchronous (publish/subscribe) communi-
cation using either TCP or UDP; (2) the main APIs that pro-
vide interfaces for accessing the MoCA basic services; and
(3) the optional APIs that provide interfaces for accessing
each of the optional services. The features of the communi-
cation and main APIs are presented in the following:

• Communication Protocol - used for developing appli-
cations that implement synchronous communications
using either TCP or UDP messages. This API is used
for most MoCA services;

• Event-based Communication Interface - implements
asynchronous communications (publish/subscribe), al-
lowing clients, called subscribers, to register interest
for specific events and to be notified when such events
happen. This is a general purpose API and is also
used by all applications that communicate with some
MoCA services, like CIS, LIS and SRM;

• CIS Client - provides a communication interface with
CIS, allowing applications to execute synchronous and
asynchronous queries to get context information about
devices;

• LIS Client - provides a communication interface with
LIS, allowing applications to execute synchronous and
asynchronous queries to get location information about
devices and symbolic regions;

Using the CIS Client API, an application may get up-
dated context information about a given mobile device. Fig-
ure 2 shows in Lines 1 to 11 a synchronous query to a
CIS server expecting at IP address “139.82.24.239” to get
context information about mobile device with MAC ad-
dress “00:02:2D:A5:06:46”. Using asynchronous commu-
nication, this same API allows applications to subscribe at
the CIS server registering interest in a specific context state
of the device — described by SQL expressions correlat-
ing context variables —, to be notified whenever this state
holds. In the asynchronous interaction shown in Figure 2,
Lines 12 to 15, the application requests a specific CIS server
running at IP address “139.82.24.239” to be notified when-
ever the remaining energy level of the mobile device with
MAC address “00:02:2D:A5:06:46” comes below 30% of
its capacity or the free memory is less than 10 Mbytes.
When an application needs to subscribe at (or query) a pool

01 InetSocketAddress server = new InetSocketAddress(‘‘139.82.24.239’’,‘‘55001’’);

02 InetSocketAddress local = new InetSocketAddress(‘‘localhost", ‘‘5000’’);

03 Request request = new Request(‘‘00:02:2D:A5:06:46’’);

04 tcpClient = new TCPConnection();

05 tcpClient.open(server);

06 tcpClient.send(request);

07 reply = (Reply) tcpClient.nonBlockingReceive(3000);

08 tcpClient.close();

09 ctx = (ContextInformation) reply;

10 deviceCTX = ctx.getDvcContext();

11 DeviceCtxManagement.printOutDeviceContext(deviceCTX);

12 CisSubscriber subscriber = new CisSubscriber(ECIClient.TCP,server, local);

13 Topic topic = subscriber.subscribe(‘‘00:02:2D:A5:06:46’’,‘‘(EnergyLevel < 30) OR

 (FreeMemory < 10)’’);

14 CISListener listener = new CISListener(‘‘low resources’’);

15 subscriber.addListener(listener, topic);

Figure 2. Code for interaction with CIS server

of CIS servers, instead of a single one, a high-level sub-
scribe function is used, where the IP of the server is deter-
mined by the adequate MAC-mapping function.

01 LocationInferenceService lis = null;

02 lis = new LocationInferenceService(‘‘locahost’’,‘‘55021’’, ‘‘55020’’, ‘‘5000’’, ‘‘TCP’’);

03 allregions = lis.getAtomicRegions();

04 String [] areas = new String [allregions.length];

05 for (int i = 0; i < allregions.length; i++) areas [i]= allregions [i].getName();

06 alldevices = lis.getDevices();

07 region = lis.getRegion(‘‘00:02:2D:A5:06:46’’);

08 devices = lis.getDevices(‘‘Room 201’’);

09 DeviceListen deviceListen = new DeviceListen();

10 lis.subscribe(‘‘00:02:2D:A5:06:47’’, deviceListen);

11 RegionListen regionListen = new RegionListen();

12 lis.subscribe(‘‘Room 202’’, regionListen);

Figure 3. Code for interaction with LIS server

Using the LIS Client API, an application may execute
synchronous queries to LIS to get information about a spe-
cific mobile device or a specific symbolic region, or — us-
ing asynchronous communication — subscribe to LIS for
being notified whenever a given device changes location or
whenever any device enters or leaves a given symbolic re-
gion. Figure 3 shows synchronous queries to a LIS server
running at IP address “localhost” to get the list of all sym-
bolic regions mapped by the service (Line 3), the list of
all devices being monitored by the service (Line 6), the
symbolic region in which the mobile device with MAC
address “00:02:2D:A5:06:46” is located (Line 7), and the
list of devices which are located in the symbolic region
named “Room 201” (Line 8). The Code shows also
the application issuing subscriptions to register interest in
location-change events for the device with MAC address
“00:02:2D:A5:06:46” (Lines 9 and 10), and device-change

events (devices entering or leaving) for the symbolic region
named “Room 202” (Lines 11 and 12).

Each of the optional services (SRM, HPS, UDS and
CoPS) has its own APIs which are very similar to those dis-
cussed for CIS and LIS, i.e., they allow synchronous and
asynchronous communication and facilitating the access to
each service’s funcionalities.

5 Leveraging some Software Engineering
Principles

As the development of context-aware applications re-
quires the observance of several well-known software en-
gineering principles [9], some of these principles guided
our design and development of the MoCA architecture it-
self and, therefore, were fundamental to the success of the
project. We believe that our current experience with the im-
plementation of several application prototypes already pro-
vides some insights of the practical implications of the use
of our middleware architecture to mobile applications de-
velopment. In this sense, this section presents an initial dis-
cussion on how MoCA meets some of these well-known
principles of system’s software engineering, and how by
such it facilitates the development of context-aware mobile
applications.

Figure 4. Layered architecture of MoCA

Figure 4 shows in detail the MoCA layered architec-
ture, which was designed observing, among others, the fol-
lowing software engineering principles that we discuss be-
low: separation of concerns, multi-level abstractions, incre-
mental development, flexibility of customization and multi-
language and interoperability support.

Separation of concerns is absolutely necessary to cope
with the complexity of designing a distributed mobile appli-
cations. MoCA addresses this question by making context
access transparent to the application developer. It provides
a coherent and intuitive interface to access system’s context
and location information, as presented in Section 4. There-

fore, by using the MoCA CIS and LIS services and APIs
the developer neither has to deal with the intricacies of im-
plementing the modules for probing resources or network
data (for the mobile devices and their network interfaces),
nor to implement a location-sensing software based on RF
strength and AP visibility. Although this does not account
for the full separation of concerns, in fact it is a very impor-
tant component of it, saving much of the developer’s time.

Middleware hides the low-level resources but makes ex-
plicit the key concepts involved in the development of mo-
bile applications, e.g., the management of location data,
event notication, quality of service assessment, adaptabil-
ity, etc, in the form of abstractions, which are the natural
means by which separation of concerns is realized, allow-
ing application developers to have the appropriate level of
knowledge about the computational scenario [22]. Since
MoCA was designed as a general-purpose middleware sys-
tem, it is clear that its abstractions should be general, and
not application specific. However, in order to support de-
velopers of applications with different context-awareness
demands, MoCA provides different levels of abstraction,
ranging from the complex notion of a hierarchy of symbolic
regions down to the simple context value change event.
At the high-level end, LIS and SRM support abstractions
related to location inference: symbolic regions and hier-
archy of symbolic regions, respectively. While both are
very useful for implementing location-aware applications,
at the low-level end CIS’s APMacAddress attribute can
be regarded as a simpler and less precise location informa-
tion. Another useful abstraction is network connectivity,
given by CIS’s Online attribute and/or the current APs
RF signal strength, which may, for example, be used to
initiate some kind of message buffering at the application
server. Yet another abstraction is the information of a re-
cent address change by the device (e.g. CIS’s APChange
or IPChange, which may be used to trigger some resource
reservations at application servers or proxies.

Incremental development is yet another fundamental en-
gineering principle that is intrinsically supported by MoCA
architecture. MoCA services are largely independent of
each other and, therefore, allow the application developer to
evolve her application gradually by using — and creating —
more services as needed. For example, an application may
first use only CIS’s information of the current AP to esti-
mate the device’s location, then it may use LIS for obtaining
a more precise location information, and finally, the devel-
oper may create an application-specific location hierarchy
for SRM and use it for a larger region of interest. Further-
more, MoCA’s general-purpose Pub/Sub component ECI
and its simple and extensible Monitor/CIS protocol (based
on attribute-value strings) facilitates the inclusion of new
context sources (such as GPS coordinates) and the devel-
opment of application-specific context-processing services

which use some basic context data already provided to infer
higher-level context information. For example: one could
implement a context-aggregating component that evaluates
the number of mobile devices with same APMacAddress
(provided by CIS), and implements a service to balance the
load among the WLAN APs (i.e. forcing the reconnection
of some application clients to another AP with less served
devices). We may also cite HPS as an example of incremen-
tal development in the implementation of MoCA architec-
ture, since it extends the functionalities of LIS to provide
symbolic location from GPS coordinates.

Flexibility of customization is motivated by the well-
acknowledged requirement of configuring the middleware
system only to the application’s specific needs. MoCA sup-
ports a flexible combination of its services. This is made
possible through the loose coupling of its services. For ex-
ample, some applications may need to deploy only CIS and
the Monitor at the devices, while others may require Mon-
itors, CIS and LIS for location-awareness. In addition, the
application developer may choose to deploy the discovery
service UDS to enable clients to discover and connect to
other application servers.

Multi-language and interoperability support is nec-
essary, since mobile applications may bear components
implemented in different programming languages or us-
ing different communication standards. MoCA supports
this interoperability by its Personalities, MoCA/ORB and
MoCA/WS, which are proxies that enable access CIS and
LIS as a CORBA-based service or a Web Service. Both
proxies export exactly the same operations as the original
CIS and LIS Java interface, and thus enable both the syn-
chronous and asynchronous access modes. Through the use
of these MoCA personalities, context-awareness is made
available also to application clients implemented in other
languages, such as C++ or C#.

6 Applications

Several context-aware applications have been developed
using the MoCA architecture. In this section we present the
most representative applications that use MoCA to imple-
ment context-aware and/or location-based functionalities,
such as Nita, iPH, UHS and UbiQuiz.

6.1 Notes in the Air

The Nita (Notes in the Air) [10] allows the publication
of messages (and files in general) in symbolic regions, as if
they were virtual boards. Thus, any user who is (or enters)
in a symbolic region to where a message was sent — and
has the proper authorization — will be notified about this
message and will be able to read it and save it on her device.
This application also allows the synchronous location-based

communication, i.e., the creation of chat rooms defined for
symbolic regions. As such, only the users that are inside a
given symbolic regions (for example, a classroom) will be
able to participate in a chat. And everytime a user leaves
that region (physically), he will be removed from the re-
spective room.

Nita is implemented as a client/server application in
which the Nita server subscribes LIS to get location infor-
mation about the devices where Nita clients are running on.
Hence, the Nita server is notified about any location change
of the devices, being able of correctly delivering the mes-
sages and managing the chat rooms associated with sym-
bolic regions.

6.2 Interactive Presenter for Handhelds

The Interactive Presenter for Handhelds (iPH) [19] is
a distributed application that supports the sharing and co-
edition of slide presentations. The application may be exe-
cuted not only on resource-full devices such as notebooks
and tablet PCs, but also on handhelds running Windows
Mobile. During a collaborative session using iPH, one of
the participants plays the role of the instructor, the one that
controls the presentations, selecting and broadcasting the
slides and asking to the other participants to give contri-
butions at particular points of the presentation. Each par-
ticipant may contribute by making changes on his copy of
the slides and sending it to the instructor. Eventually, the
instructor may choose some of the contributions to be dis-
played to all students (through the projector-host), in order
to discuss a given solution and stimulate the participation of
other students in the classroom.

In order to ease and improve the user experience, iPH
was also implemented as a context-aware system — it may
adapt its functionalities according to context information.
iPH requests system context information (e.g., the device’s
energy level, free memory, quality of the wireless connec-
tion, etc.) and location to MoCA to help users to connect to
a classroom-specific collaborative session, or to adapt some
of its functionalities according to it, such as enabling or dis-
abling some collaboration capabilities. As iPH was fully
implemented in C#, it uses MOCA/WS — one of the MoCA
personalities described in Subsection 3.3 — to communi-
cate with the MoCA services (CIS and LIS). For example,
the instructor may determine that only devices with a mini-
mum amount of free memory and low CPU usage may join
a collaborative session or that only students/devices within
the classroom should be capable of giving contributions.
Then if the free memory of a device is below an indicated
threshold or the CPU usage is above some expected value, it
will not be admitted for a session. On the other hand, when-
ever a device is detected outside the specific classroom the
“submit” button at the contributor’s GUI will be disabled,

but it will return to normal state whenever the device is
again detected inside that classroom.

6.3 Ubiquitous Health Services

Ubiquitous Health Services (UHS) [6] is a health ser-
vices network that allows associated physicians to access
electronic patient records (EPRs) from anywhere in a net-
work that connects several associated hospitals. Physicians
that collaborate with some of the associated hospitals can
access the available services from different hospitals or
from their homes, cars or their own offices, for example, us-
ing different types of wireless networks (GPRS, 3G, WiFi)
and devices. Each hospital offers specific services to their
collaborators and the network offers generic services to all
collaborators and associated hospitals. The physician may
start a session with one device and transfer it to another one
during execution — in a operation known as application
roaming. UHS not only guarantees the consistency for the
session data during migration, but also assures that the pro-
cess takes place with small latency. If the roaming process is
interrupted unexpectedly, it guarantees that the interrupted
session data can be saved and later retrieved from the same
device or from another one used by the physician.

In UHS, the location information for the whole environ-
ment is managed by two services: the Local Location Ser-
vice (LLS), for each hospital in the environment, and the
Global Location Service (GLS), which consists of a cen-
tral provider for the environment. LIS is used for providing
to LLS the symbolic location of users (carrying mobile de-
vices) inside closed environments, e.g., a hospital. When
a user is moving inside a hospital while connected to the
network, his symbolic location is stored in a table managed
by the LLS specific for that hospital. A module named lo-
cation monitor executes in each LLS sending events to the
GLS, which stores location information collected from all
associated environments (e.g. all associated hospitals).

6.4 UbiQuiz

UbiQuiz [8] is a simple location-aware quiz game that
runs on Nokia S60 smart phones. In this game, a (human)
player must answer some questions that depend on both his
location and the level he has achieved in the game. The
goal of the player is to go through a number of rooms, an-
swering some questions in each room, while upgrading his
level in the game, until he reaches the last level and wins
the game. At this moment he gets the permission to cre-
ate and post a new question for the game. Starting from
beginner level, the player successively passes to the levels
intermediate, advanced, expert and winner. There are two
kinds of questions, the ‘easy’ ones, that are aimed at begin-
ner and intermediate players, and the ‘difficult’ ones, aimed

at advanced and expert players. After correctly answering
all questions as an expert, the player becomes a winner, and
may post his own question.

The game application was implemented as an UbiQuiz
server that communicates with a client application on the
Smart Phone to send the questions and to collect the an-
swers. UbiQuiz server subscribes to LIS for being con-
tinually notified about the location of each device. It also
keeps track of the level of each player and depending on
both pieces of information it selects the questions to be sent
to the players.

7 Related Work

In general, the majority of the middleware architectures
that have already been proposed follow a same layered
conceptual framework comprising protocols and services
for: sensing, raw data retrieval, preprocessing and stor-
age/management of the contextual information. In this sec-
tion we focus on making some comparisons concerning the
context provisioning middleware platforms commonly ref-
erenced in literature taking into account their architectural
design, context model, availability to be used in real scenar-
ios and technical documentation.

In fact, as discussed in [1], the architectural design of
each middleware depends on special requirements and con-
ditions such as the location of sensors (local or remote), the
amount of possible users (i.e., the desired or intended scala-
bility), the available resources of the used devices (desktops
or mobile devices) or the facility for further extension of the
system.

Considering these issues, the Service-Oriented Context-
Aware Middleware (SOCAM) [12], Context-Awareness
Sub-Structure (CASS) [7] and Context Managing Frame-
work [17] are centralized architectures that in general re-
ceive context data from distributed context sensors and of-
fer it in mostly processed form to the clients. Context
Broker (CoBra) [4] follows an agent-based approach and
Gaia [23], Context Toolkit [27], CORTEX System [3], and
Hydrogen [16] a peer-to-peer architecture. However, Con-
text Toolkit uses a centralized discovery service where dis-
tributed sensor units (called Widgets), interpreters and ag-
gregators are registered in order to be found by client ap-
plications. MoCA architecture follows a centralized ap-
proach in order to provide an infra-structure for building
and rapidly prototyping context-aware mobile services. The
centralized architecture has been chosen targeting practi-
cal and feasible support for context-awareness in infra-
structured networks, rather than ad-hoc networks. As men-
tioned, problems of dependability and lack of scalability of
the centralized approach can be solved by deploying a clus-
ter of networked servers, as it is possbile with MoCA’s Con-
text Information Service (CIS).

Related to the context model, the Service-Oriented
Context-Aware Middleware (SOCAM), Context Man-
aging Framework and Context Broker use Ontologies
(OWL/RDF) to represent and process the context [33]. On-
tologies provide a rich formalism for specifying contex-
tual information. The Context-Awareness Sub-Structure
(CASS) and CORTEX System use relational data model
while Hydrogen use a Object-oriented model. Similarly to
Context Toolkit, MoCA Architecture uses attribute-value
tuples as context model. This model does not offer a declar-
ative semantics about the sensed context and limits the rea-
soning and knowledge sharing capabilities. However, in
current version of MoCA, the attribute-value tuples model
provided appropriate support for the development of many
context-aware applications and offers simple abstractions
that facilitate the understanding of MoCA’s context access
by the application developers.

Differently from most aforementioned architectures,
MoCA is an active project with regular updates and adi-
tions, as well as constant assistance to its users. Moreover,
it offers a set of integrated and robust services such as the
CIS and LIS, as well as simple-to-use APIs that facilitate the
development of location- and context-aware applications in
IEEE 802.11 networks. All these services and APIs are
available for download in the website MoCA Project and
have a rich documentation explaining how to deploy and
use them. Furthermore, there are also some MoCA-based
applications available to be downloaded and tried.

8 Conclusion

In this paper we presented MoCA — an extensible mid-
dleware architecture for context-provisioning — and di-
cussed how it has been used for the development of a num-
ber of distributed mobile application prototypes. Although
MoCA already represents a valuable aid for the develop-
ment of such applications, we are aware that it represents
only a first step towards a more comprehensible and ma-
ture software engineering discipline. We understand that, in
spite of the supported engineering principles, there remain
many open challenges for the specification, design and im-
plementation of systems that cope with context-aware adap-
tation.

For example, other middlewares offer other kinds of
interesting programming abstractions that yield to trans-
parency of the infrastructure mechanism for context aqui-
sition and dissemination. PACE’s preferences [13] and
profiles [32] are examples of such abstractions. However,
such abstractions are very limited to separate the applica-
tion’s business logic from its context-specific logic, because
they are mostly limited to provide vertical separation of
concerns, i.e. concerns among software layers, instead of
among software modules.

Since most frameworks use events to notify applications
about contextual changes, it becomes difficult to structure
the application’s code in modular components. Moveover,
context-aware computing introduces some particular as-
pects, such as context privacy [25] and adaptations that de-
pend on user interactions [13]. Some of those challenges
can be partly overcome with the use of special-purpose pro-
gramming language constructs for describing adaptations
and context-specific adaptations, but these languages intro-
duce new programming abstractions which require special
training by the developer.

Context modeling is another interesting topic that con-
nects software engineering and context-aware computing.
Most work in this direction proposes ontologies to describe
and reason about higher-level context information, such as
user activities and intentions. However, studies have shown
that current ontology-based approaches are not suited for
general purpose modeling [14]. Moreover, the cost of
ontology-based reasoning hinders its usage in large-scale
context-aware scenarios. In fact, there seems to be a trade-
off between complex modeling and efficiency of context-
based reasoning.

Finally, we see also some big challenges on enabling
context-aware applications to become ubiquitous. In this
case, it does not suffice just to provide a distributed context
middleware, but applications must also reinterpret context
information and consistently execute their context-based
adaptations across different middleware systems. Thus,
ubiquitous context-aware applications call for interoperabil-
ity solutions and efficient context information dissemination
approaches. Recent researches in middleware (e.g. [11],
[15] and [21]) have focused on these challenges.

References

[1] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems. Intnl. Journal of Ad Hoc and Ubiq-
uitous Computing, 2(4):263–277, 2007.

[2] G. Baptista, M. Endler, V. Sacramento, and H. Rubinsztejn.
Uma API pub/sub para aplicações móveis sensı́veis ao con-
texto (in Portuguese). In Proc. of the 1st Worskhop on Per-
vasive and Ubiquitous Computing (WPUC), part of 19th
Intnl. Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD 2007), 2007.

[3] G. Biegel and V. Cahill. A framework for developing mo-
bile, context-aware applications. In Proc. of the 2nd IEEE
Intnl. Conf. on Pervasive Computing and Communications
(PerCom’04), pages 361–365, 2004.

[4] H. Chen. An Intelligent Broker Architecture for Pervasive
Context-Aware Systems. PhD thesis, Department of Com-
puter Science, University of Maryland, Baltimore County,
December 2004.

[5] K. Damasceno, N. Cacho, A. Garcia, A. Romanovsky, and
C. Lucena. Context-aware exception handling in mobile
agent systems: the MoCA case. In Proc. of the 2006 Intnl.

Workshop on Software Engineering for Large-scale Multi-
Agent Systems (SELMAS ’06), pages 37–44, 2006.

[6] J. B. Diniz, C. Ferraz, and H. Melo. An architecture of
services for session management and contents adaptation in
ubiquitous medical environments. In Proc. of the 2008 ACM
Symposium on Applied Computing (SAC ’08), pages 1353–
1357, 2008.

[7] P. Fahy and S. Clarke. CASS – A middleware for mobile
context-aware applications. In Proc. of the Workshop on
Context Awareness (MobiSys 2004), 2004.

[8] C. Felicı́ssimo, J. Viterbo, L. Valente, M. Endler, C. Lucena,
B. Feijó, and J.-P. Briot. Supporting agents in intelligent
environments with protocol information. In Proc. of the 4th
IET Intnl. Conf. on Intelligent Environments (IE 08), Seattle,
WA, USA, 2008.

[9] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals
of software engineering. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1991.

[10] K. Gonçalves, H. K. Rubinsztejn, M. Endler, B. S. Silva,
and S. Barbosa. Um aplicativo para comunicação baseada
em localização (in Portuguese). In Anais do Workshop de
Comunicação sem Fio e Computação Móvel, Outubro 2004.

[11] M. Grossmann, M. Bauer, N. Honle, U.-P. Kappeler,
D. Nicklas, and T. Schwarz. Efficiently managing context
information for large-scale scenarios. In Third IEEE Intnl.
Conf. on Pervasive Computing and Communications (Per-
Com 2005), pages 331–340, March 2005.

[12] T. Gu, H. Pung, and D. Zhang. A service-oriented middle-
ware for building context-aware services. Journal of Net-
work and Computer Applications, 28(1):1–18, 2005.

[13] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubra-
maniam. Middleware for distributed context-aware systems.
Lecture Notes in Computer Science, 3760:846–863, 2005.

[14] K. Henricksen, S. Livingstone, and J. Indulska. Towards a
hybrid approach to context modelling, reasoning and inter-
operation. In 1st Intnl. Workshop on Advanced Context Mod-
elling, Reasoning and Management, pages 54–61, March
2004.

[15] C. Hesselman, H. Benz, P. Pawar, F. Liu, M. Wegdam,
M. Wibbles, T. Broens, and J. Brok. Bridging context man-
agement systems for different types of pervasive computing
environments. In 1st Intnl. Conf. on Mobile Wireless Middle-
ware, Operating Systems and Applications (MOBILWARE),
2008.

[16] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger,
J. Altmann, and W. Retschitzegger. Context-awareness on
mobile devices - the Hydrogen approach. In Proc. of the 36th
Annual Hawaii Intnl. Conf. on System Sciences (HICSS’03)
- Track 9, pages 292–302, 2003.

[17] P. Korpipää and J. Mäntyjärvi. An ontology for mobile
device sensor-based context awareness. In Modeling and
Using Context, pages 451–458. Lecture Notes in Computer
Science 2680, February 2003.

[18] F. Lopes, T. Batista, F. Delicato, and N. Cacho. Composição
de eventos para aplicações pervasivas (in Portuguese). In
Proc. of the 26th Brazilian Symposium on Computer Net-
works (SBRC 2008), 2008.

[19] M. A. Malcher and M. Endler. A context-aware collabora-
tive presentation system for handhelds. In Proceedings of

the 5th Brazilian Symposim of Collaborative Systems (SBSC
2008), pages 1–11, 2008.

[20] F. N. Nascimento, V. Sacramento, G. Baptista, H. K. Ru-
binsztejn, and M. Endler. Development and evaluation of
a positioning service based in IEEE 802.11 (in Portuguese).
In Proc. of the XXIV Brazilian Symposium on Computer Net-
works (SBRC 2006), 2006.

[21] R. Rocha and M. Endler. Domain-based context manage-
ment for dynamic and evolutionary environments. In MDS
’07: Proc. of the 4th on Middleware Doctoral Symposium,
pages 1–6, 2007.

[22] G.-C. Roman, G. P. Picco, and A. L. Murphy. Software engi-
neering for mobility: a roadmap. In ICSE ’00: Proc. of the
Conf. on The Future of Software Engineering, pages 241–
258, 2000.

[23] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. A middleware infrastructure
for active spaces. IEEE Pervasive Computing, 1(4):74–83,
2002.

[24] H. K. Rubinsztejn, M. Endler, V. Sacramento, K. Gonçalves,
and F. N. Nascimento. Support for context-aware collabora-
tion. First Intnl. Workshop on Mobility Aware Technologies
and Applications (MATA 2004), 5(10):34–47, 2004.

[25] V. Sacramento, M. Endler, and F. Nascimento. A privacy
service for context-aware mobile computing. In Proc. of the
First IEEE/CreatNet Intnl. Conf. on Security and Privacy for
Emerging Areas in Communication Networks (SecureComm
’01), pages 182–193, September 2005.

[26] V. Sacramento, M. Endler, H. K. Rubinsztejn, L. S. Lima,
K. Gonçalves, F. N. Nascimento, and G. A. Bueno. MoCA:
A middleware for developing collaborative applications for
mobile users. IEEE Distributed Systems Online, 5(10),
2004.

[27] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
aiding the development of context-enabled applications. In
CHI ’99: Proc. of the SIGCHI Conf. on Human Factors in
Computing Systems, pages 434–441, 1999.

[28] B. N. Schilit, N. I. Adams, and R. Want. Context-aware
computing applications. 5th Workshop on Mobile and Ubiq-
uitous Information Access, Dezembro 1994.

[29] T. Strang and C. Linnhoff-Popien. A context modeling sur-
vey. In Workshop on Advanced Context Modelling, Rea-
soning and Management associated with the Sixth Intnl.
Conf. on Ubiquitous Computing (UbiComp 2004), Notting-
ham/England, Setembro 2004.

[30] J. Viterbo, M. Endler, and V. Sacramento. Discovering ser-
vices with restricted location scope in ubiquitous environ-
ments. In Proc. of the 5th Intnl. Workshop on Middleware for
Pervasive and Ad-hoc Computing (MPAC ’07), pages 55–60,
2007.

[31] J. Viterbo, M. Malcher, and M. Endler. Supporting the de-
velopment of context-aware agent-based systems for mobile
networks. In Proc. of the 2008 ACM Symposium on Applied
Computing (SAC ’08), pages 1872–1873, 2008.

[32] S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta. Recon-
figurable context-sensitive middleware for pervasive com-
puting. IEEE Pervasive Computing, 1(3):33–40, 2002.

[33] J. Ye, L. Coyle, S. Dobson, and P. Nixon. Ontology-based
models in pervasive computing systems. Knowledge Engi-
neering Review, 22(4):315–347, 2007.

