A Flexible Architecture for Mobile Collaboration Services

Thomas Springer, Daniel
Schuster, Iris Braun &
Jordan Janeiro
TU Dresden, Germany
thomas.springer@tu-
dresden.de

1. INTRODUCTION

Collaboration services like Instant Messengers, audio and
video conferencing, shared presentations and applications,
have developed into important tools in business and private
live. The availability of more powerful, sensor equipped mo-
bile devices, higher data rates provided by urban WLAN
infrastructures and the UMTS extension HSDPA as well as
cheap data communication enable a wide use of collabora-
tion applications also in mobile environments.

There is already a multitude of collaborative applications
available on the market. Although they share a lot of com-
mon functionality, most of them are built from scratch, or
are tailored to a specific device platform using proprietary
libraries. An open and customizable environment for mobile
collaborative applications is still missing.

An analysis of the top 50 proposals of Google’s Android De-
velopers Challenge should illustrate the need for platform
support for mobile collaboration. These applications can be
considered as a representative sample regarding user needs
and market relevance. According to our analysis 41 of 50
applications (i.e. 82%) provide collaborative functionality,
i.e. could use at least one of the services we propose in sec-
tion 2. The collaboration features comprise shared editing
of images, chatting, or discussing music or prices. The most
important aspect is location-awareness, 52% use it, followed
by communication features (26 %), geo-tagging (22 %) and
content-sharing (20 %). 30 % of the applications combine
at least 3 collaborative features.

In the following sections we present a conceptual architec-
ture for mobile collaborative systems. We identify common
functionality that may be helpful for a number of mobile
collaborative applications. This include map-based visual-
ization, multimedia geo-tagging, communication functions
and comprehensive context management. We evaluated the
architecture by implementing it under three different mobile
platforms using free collaboration frameworks like XMPP or
NaradaBrokering [2].

Markus Endler
Departamento de Informatica
PUC-Rio
Rio de Janeiro, Brazil
endler@inf.puc-rio.br

Antonio A.F. Loureiro
DCC/UFMG
Belo Horizonte, Brazil
loureiro@dcc.ufmg.br

2. MOBILIS ARCHITECTURE

Our Mobilis conceptual architecture for mobile collaboration
consists of four layers, namely the operating system of the
(mobile) device, the basic services layer, the Mobilis services
layer and the application layer (see figure 1). The Device OS
layer represents the functionality provided by the operating
system of the device (e.g. Windows Mobile, Symbian OS or
the OS layer in Android)'. The Basic Services layer con-
tains functionality which is implemented dependent on the
operating system functionality. The Mobilis Services layer
contains the services for supporting mobile collaboration.
At this layer all services can share their functionality with
all other services, e.g. the group chat service uses the group
management service, and most of the services are adaptive
using context. The Application layer is the layer where the
applications reside. In the following we will focus on the
Mobilis layer. We describe all services and their interdepen-
dencies with Mobilis as well as Basic services.

The Context Management Service is responsible for
sharing context between different participants of a collabo-
ration session (e.g. device and connectivity, physical context
like location, noise or light level, and current situation like
user task, or willingness to communicate). It uses basic ser-
vices for request/response and pub/sub communication and
Mobilis services for group management and security to deal
with privacy concerns of context distribution.

The Geo-location Service provides access to location in-
formation and answers proximity and range queries. This
includes the access of geographic information systems and
lower layer positioning functionality (e.g. GPS or WLAN).
The service builds on Basic communication functionality and
access to local hardware (e.g. a GPS device).

The Multimedia Tagging Service supports to attach lo-
cations with multimedia content and for accessing arbitrary
tags. The service uses the basic event detection and pub/sub
service and Geo-location, Media Sharing and Context Man-
agement for representing tags by overlaying maps.

The Group Chat Service allows the creation of chat rooms
and the exchange of asynchronous chat messages in the scope
of particular rooms. It builds on the session management
and Group and Context Management Service.

The Group Management Service enable the creation
of groups and the control of adding and removing/leaving
members to and from groups. The service uses the basic

'Because we focus on Java programming the Virtual Ma-
chine and additional Java libraries reside partially on that
layer, partially on higher layers.

‘ Application ‘ Application ‘ ‘ Application Apfla:sz‘:‘lon
e " ServiceEnvironment
_Service Management and Brokerage >
Context Geo- Media Group .
Managmt. location Sharing Chat Mobilis
1 1 1 1 Service
— 1 T Layer
Collaborative Group Multimedia
Drawing Managmt. Tagging
Pub/ s o Peer Event Service Session Bas.'c
ecurity | | . . N Services
Sub Discovery | | Detection | | Discovery | Managmt. Layer
Device OS
GPS WLAN GSM Bluetooth layer

Figure 1: The Mobilis conceptual architecture.

pub/sub, event detection and session management service.

The Media Sharing Service offers the functionality to
search for, access and offer multimedia content in the scope
of groups. Therefore, the service builds on the pub/sub and
session management basic services and the Mobilis services
for Group and Context Management. Context is used to
adapt content to connectivity and device capabilities.

The Collaborative Drawing Service allows to edit a
common canvas/screen in a group. Especially an overlay
with other content is supported, e.g. for drawing the short-
est route between two locations on a map provided by the
Geo-location Service. The service builds on the Event Detec-
tion , Session Management, Group Management, and Con-
text Management.

3. IMPLEMENTATION EXPERIENCES

We implemented our middleware concept using the three
platforms Java ME, Java SE and Android [1]. For provid-
ing collaboration functionality we adopted XMPP function-
ality, encapsulated into the specified services. XMPP is a
family of protocols for collaborative environments based on
a client/server architecture. A set of XEPs (XMPP Exten-
sion Protocols) provide further functionality, e.g. presence
exchange, pub/sub, group management and group chat.

We implemented a collaborative location-aware tourist guide
as a first application. One major requirement was the use
of Java, because it is supported by the majority of device
platforms. For XMPP/XEPs a set of libraries exists which
implement the protocols on client site. The most compre-
hensive one is the Smack API, the API we choose for the im-
plementation. It is the only library with support for XEPs
for pub/sub and Group Management.

Our first target platform was Java ME as it is able to run
on different mobile operating systems and is supported by a
large number of mobile devices. But especially designing an
appropriate GUI and integrating the XMPP libraries turned
out to be very difficult under JME. We spent a lot of time
trying different combinations of Virtual machines, versions
of JME and XMPP APIs. The final solution uses a modified
version of the Beep XMPP API on top of the Java Cre-
ME virtual machine. Due to the difficulties with the JME
approach, we implemented a Java SE version in parallel.
There we were able to use the actual Java version with full
functionality and the comprehensive Smack XMPP library.
It was also easier to develop a GUIL. The major drawback is
the limited possibility to run Java SE on mobile devices. In a

third parallel approach, we implemented a prototype based
on the Android framework. With Android we were able to
combine the good points of JSE-based development with a
good GUI framework and abstraction for OS services like
GPS. The Mobilis services were implemented as Android
activities and services. We also used the Smack API for
XMPP functionality.

In the context of our tourist application the Mobilis services
are used and combined to support several features. Geo-
location Service uses the Google Maps API to access and
display the map around a position, and supports the com-
mon map navigation functions. Geo-tagging Service sup-
ports the creation and management of so called Fun flags,
the selective display of them on the map displayed by Geo-
location Service, and the binding of a multimedia object to
a Fun flag, e.g. a photo or a text based on the Media Shar-
ing Service;Group Management Service is used to cre-
ate and manage tourist groups, and authenticate the group
members; it exports any changes of the group membership
to the other services; Context Management Service pro-
vide local and remote Mobilis services with different sorts of
system context information, e.g. battery level, or connec-
tivity status; and Media Sharing Service supports the share
of any sort of content object either locally or remotely in
a transparent way. For remote pub/sub communication,the
NaradaBrokering system was adopted.

4. SUMMARY

Our market analysis has illustrated the need for a middle-
ware platform for mobile collaboration. We have presented
the Mobilis platform as our solution and discussed the ser-
vices as well as their interrelations. While the Mobilis plat-
form is a conceptual one it can be implemented on top of
various operating systems. We have presented our experi-
ences with the implementation of the Mobilis platform based
on Java ME, Java SE and Android. As a result we discov-
ered that our assumption about the lack of support for col-
laborative features in the platforms is correct. All platforms
provide just basic features more or less related to collabo-
ration functionality. The capabilities of the platforms are
quite different. With Java ME we failed to implement the
entire functionality because of version problems of Java and
XMPP libraries. Some of the functionality had to be imple-
mented again. The Java SE version was fully implemented
but introduces limitations with regard to the supported de-
vice platforms. Just Laptops and powerful PDAs are sup-
ported. The Android platform provided the best support
for our implementation. Especially the concepts for creating
Uls and the easy to use APIs for Google Maps access have
arisen to be helpful. In future we want to extend the services
of our platform and plan to find new and innovative applica-
tion scenarios with new requirements for our platform such
as knowledge sharing within a group or P2P location-aware
product search on mobile devices.

5. REFERENCES

[1] Google. Android - An Open Handset Alliance Project.
Web page, 2008. http://code.google.com/android/.

[2] S. Pallickara and G. Fox. NaradaBrokering: A
Distributed Middleware Framework and Architecture
for Enabling Durable Peer-to-Peer Grids. In in
Proceedings of Middleware Conference 2003, Rio de
Janeiro, pages 41-61, 2003.

