A Model for Parallel Job Scheduling on Dynamic Computer Grids

Alfredo Goldman

Carlos Queiroz

Department of Computer Science - University of Sao Paulo
{gold, carlosq}@ime.usp.br

Abstract

This work presents a model that allows the execution of parallel applications in a grid environment. Our
main focus is on how to share the idle cycles of clusters and computers to execute parallel applications. We
introduce a new model with the notions of locality and adaptability. The locality is used for job allocation,
and for job migration. The adaptability provides a simple mechanism to allow clusters to join or leave a
grid. We also propose a middleware architecture to implement the model.

1 Introduction

A great effort has been done in the construction
of huge grids trough the interconnection of several
smaller clusters [1]. The main advantage for clus-
ter owners is to have access to much more pro-
cessing power rather than using only their clusters
stand alone. However, the cluster is no longer exclu-
sive. There should be special restrictions in order
to guarantee priorities, on each participating clus-
ter, for jobs submitted by the cluster administrator.
That is, for each cluster owner, the grid environment
should use only their idle cycles. Similar ideas have
been developed for networks of personal computers
(Condor [2], InteGrade [3]).

There is a tradeoff when participating in a grid
environment: in one side the access to more compu-
tational resources, and in the other side there is no
exclusive access for the owners of each cluster. In a
grid scenario we can imagine two main types of job
submission: from inside by the local administrator,
or from outside by the grid scheduler. One of the
main difficulties in this scenario is how to balance
both types in a transparent way. Given some simple
hypothesis, we derive a new model for this scenario.

In this paper we show some very simple ways to
share resources. The main idea is to focus on the
effort on how to provide access to idle cycles. There
are many related works on grid computing, however
we are mainly interested on doing parallel process-
ing on grids. We focus on two aspects: network
heterogeneity (as in [4]) and adaptability (as in [5]).

The text is organized as follows. First, we present
the adopted model and the basic algorithms. Then,
we show how it can be easily implemented. We con-
clude with some ideas for future work. In our work
we intend to use the advantages of a multi-cluster
environment with some constraints to create a adap-
tative environment. In this environment, the cluster
administrators should be able to dynamically leave
or join the grid.

2 The model

The grid is represented by a graph; the vertices cor-
respond to the processing nodes, which can be clus-
ters of computers, parallel machines, or even single
computers. To characterize the different number of
processing units on each cluster to each vertex i we
associate its cardinality n;. For stand alone com-
puters we have n; = 1. To simplify the analysis
we assume that all computers are equal. We also
denote single computers as clusters of size one.

There are edges interconnecting the neighboring
vertices if there is a fast link between them. Here,
fast means similar latency and bandwidth as inside a
dedicated cluster. However, as it is not a dedicated
link, we suppose that it has worse performance than
a link in a cluster. The motivation for this is to con-
sider that not all clusters are in the same domain.

For each vertex in the graph there is a local sched-
uler which is responsible for the submission of local
jobs. This local scheduler periodically informs the
current load of the cluster to the grid scheduler, and

it is also responsible for allocating grid jobs. In our
model, the load is simply the number of available
processors, so this number is an integer greater or
equal to zero.

There are two different job priorities, one for the
local jobs and other for the grid jobs. The jobs
submitted by the grid scheduler have smaller pri-
ority, and their tasks can be preempted. The jobs
submitted by the local administrator should not be
movable.

We also assume the existence of a mechanism to
migrate a parallel job, or part of it, from a cluster to
another one, this can be done using languages like
Charm [6], or in the case of a parallel job with com-
municating tasks by leaving in the original nodes a
prozy which informs the new task location. If a task
from a grid job finds no new host, the whole job is
suspended. There can be a waiting time to start
new local jobs, as the tasks from the grid cannot
be moved while they are communicating. If a pro-
gramming model like BSP [7] with small super steps
is used, this waiting time should not be large. To
simplify the problem we assume a fixed cost propor-
tional to the number of tasks to be transfered. We
also provide a distributed mechanism for migration.

3 Algorithm

The clusters are interconnected and the grid sched-
uler takes care of some jobs. The jobs submitted
by the grid scheduler can be executed in several dif-
ferent sites. However, the different sites have to be
adjacent, two-by-two, and an overhead has to be
considered. We consider only a fixed overhead for
multi-site execution, even if there are more than two
sites involved. This is reasonable on communication
patterns like complete exchange where the slowest
link should be the origin of the larger overhead [8].
With a more complex allocation scheme this is no
longer true. However, to find a good embedding of
a parallel application is a difficult problem.

As the given graph can have a large number of
vertices, a centralized control and monitoring of all
local clusters activities is difficult. So, we propose
the following mechanism on each cluster:

1) Each cluster scheduler maintains its own queue
of submitted jobs. Each job has its processing re-
quirements. Associated to each job we have also its

estimated processing time;

2) For each local scheduler, the first job in the queue
is analyzed. If this job can be executed on the clus-
ter, the scheduler allocates the job. Otherwise, there
are three possibilities: (1) the job can be executed
within time Ayg, i. e., one or more of the jobs in exe-
cution will finish soon, (2) a grid job running on the
cluster can migrate freeing the necessary processors,
and (3) the job is sent to the grid scheduler;

3) To migrate a grid job, all of its tasks have to be
suspended. Then, the local scheduler will check the
availability of processors on its neighbors (the com-
munication is done without the participation of the
grid scheduler). If there is a neighbor with enough
free processors, the job tasks are transfered. Oth-
erwise the grid job is stopped and sent back to the
grid scheduler;

4) A grid job or a regular job can be stopped if its
current execution time is significantly larger than
the predicted time;

5) Periodically, the scheduler sends its status to the
grid scheduler.

The grid scheduler has two priority queues, one
for new submissions (NJ), and another for submis-
sions in progress, CJ (that were stopped by migra-
tion).

1) If the submission in progress queue (CJ) is not
empty, the grid scheduler finds (if it exists) a set of
adjacent clusters to continue the execution of the
first job in the queue. Otherwise, the grid scheduler
finds a candidate job on the new submissions queue
(NJ);

2) If all the chosen processors on the clusters are
available, the job is sent to them. Otherwise, the
previous item is repeated until a candidate is found;
3) Periodically, the grid scheduler receives the status
from local schedulers.

4 An Implementation Proposal

The idea is to propose a simple add-on middleware
to provide grid facilities to interconnect independent
clusters. For each cluster, we only need a small dae-
mon which communicates with the grid scheduler,
which should be able to handle several requests at
the same time. This daemon contains three compo-
nents: neighborhood information (NI), a monitor,
and a scheduler (see Figure 1). The daemons should
inform periodically the availability of processors in
each cluster, moreover, the local schedulers can also

send jobs to be processed by the grid scheduler. On
the other side, the grid scheduler can also check the
current availability of a group of clusters (by the
grid conditions component) and send tasks to the
local schedulers (by the allocator, according to the
availability). Finally, there should be a mechanism
which allows the tasks of a parallel application to
be migrated (this is another line of research in Inte-
grade [3]).

grid controller

[NJqueve | | CJqueue]
/

grid

conditions H@C@‘
AN

Figure 1: Proposal for the Grid Architecture.

The grid scheduler is more complex. It has to
maintain the list of available processors in neigh-
boring clusters; this can be done using some pre-
processing techniques in order to find the cliques
(complete sub-graphs) on the graph formed by all
clusters.

Another characteristic of the model is the possi-
bility to join and leave the grid dynamically. For
joining the grid, it is only necessary to run the dae-
mon, inform the processors availability, and provide
which are the adjacent clusters. On the other side,
to leave the grid, the cluster has to send a signal
to the monitor which sends signals to the grid ap-
plications running on it, and wait for their migra-
tion. For the migration, the neighborhood infor-
mation (NI) is consulted in order to find available
processors on the adjacent clusters. If the number
of processors is insufficient, the grid job is stopped
and sent back to the grid allocator. After the migra-
tion, only a lightweight daemon acting as a proxy
will stay alive until the end of the grid application.

For a less flexible, but still dynamic grid environ-
ment, a lease policy can be used. In this case, the
cluster monitor is responsible for the lease policy.
Instead of allowing clusters to leave the grid at any
moment, when joining the grid the cluster admin-
istrator can also provide its time availability. This

time availability can be renewed if the cluster can
stay in the grid after the end of the given time pe-
riod. A proposal of an architecture can be seen on
Figure 1.

5 Conclusion

In this paper we studied the proposal of a new model
to allow the execution of parallel applications in a
dynamic grid environment. The model provides pa-
rameters to measure the overhead time to share a
job among different clusters, and to consider parallel
tasks migration cost. We also propose an architec-
ture for the implementation.

To continue this work we intend to explore the dif-
ferent possibilities of the model through more elab-
orated simulations. Initial simulations results can
be found on the extended version of this document
in [3]. We also intend to study more mechanisms
for migrating tasks of a parallel job, and to imple-
ment the proposed architecture in our computing
environment.

References

1] The grid forum. www.gridforum.org/.

2

Condor. wuw.cs.wisc.edu/condor/.

[1]
[2]
[3] Integrade. gsd.ime.usp.br/integrade/.

[4] C. Ernemann, V. Hamscher, A. Streit, and
R. Yahyapour. On Effects of Machine Config-
urations on Parallel Job Scheduling in Compu-
tational Grids. In 6th PASA, pages 169-179.

VDE-Verlag, 2002.

[6] L. V. Kal, S. Kumar, and J. DeSouza. A
malleable-job system for timeshared parallel ma-
chines. In 2nd CCGRID, pages 230-237, May
2002.

[6] Charm. charm.cs.uiuc.edu/.

[7] L.G. Valiant. A bridging model for parallel
computation. Communications of the ACM,
33(8):103-111, August 1990.

[8] A. Goldman. Scalable algorithms for complete
exchange on multi-cluster networks. In 2nd CC-
GRID, pages 286—287, May 2002.

