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SUMMARY

This work presents a method for predicting resource availability in opportunistic grids
by means of Use Pattern Analysis (UPA), a technique based on non-supervised learning
methods. This prediction method is based on the assumption of the existence of several
classes of computational resource use patterns, which can be used to predict resource
availability. Trace-driven simulations validate this basic assumptions, which also provide
the parameter settings for the accurate learning of resource use patterns.

Experiments made with an implementation of the UPA method show the feasibility
of its use in the scheduling of grid tasks with very little overhead. The experiments also
demonstrate the method’s superiority over other predictive and non-predictive methods.

An adaptative prediction method is suggested to deal with lack of training data at
initialisation. Further adaptative behaviour is motivated by experiments which show
that, in some special environments, reliable resource use patterns may not always be
detected.
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1. Introduction

Computationally intensive applications were initially confined to very expensive supercomput-
ers, but can now run over distributed grid computing environments. In a dedicated grid, all
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computing resources are devoted only to performing grid tasks. Opportunistic grids differ from
dedicated grids in that the machines may not be always available to run grid tasks. This form
of grid has the advantage of being put together using already existing computational resources,
permitting a very low cost solution to perform computationally intensive applications.

In opportunistic grid computing, grid applications use the idle time of desktop machines
to perform high-performance computation, which may last for hours. If a grid application is
running when the machine is claimed back by its owner, the grid job is either paused, migrated
or simply aborted.

It is a great priority in opportunistic grid computing to ensure that computer resource owners
will allow those resources, when idle, to be used for grid computing. For that, the Quality of
Service for private computations must not be perceptibly affected by grid applications.

Research groups working on grid systems, such as Globus [7], Condor [15], BOINC [1],
OurGrid [4], and our own work on InteGrade [10] have investigated opportunistic grid
computing to perform high-performance computation. However, the support for effectively
using these shared resources without compromising the Quality of Service perceived by the
resource owners is still very limited.

Ideally, one would like to schedule grid applications on machines that are fully available for
the duration of the application. To address the problem of effective opportunistic computation,
it is very useful to be able to predict when a given computational resource will be idle, becoming
available for grid applications. However, predicting may be expensive or ineffective, requiring
at least in theory the collection of large amounts of data that may need to cross the system,
potentially placing a big load on the system and compromising the very Quality of Service
that it is trying to maintain. In this respect, some opportunistic grid environments have chosen
not to perform any kind of prediction, preferring instead to concentrate on checkpointing and
restarting tasks; see discussion on Condor in Section 5.2. Note that this solution does not rule
out the feasibility of predictions.

If the prediction of resource availability can be done with some degree of accuracy and at
low cost, the grid scheduler may be more effective in its task of assigning jobs to machines.

This work starts from the observation that many computing resources have a clear pattern
of use and thus, also a clear pattern of availability. The Use Pattern Analysis (UPA) consists
of the task of detecting the local use pattern of each resource in each machine.

We develop a method that performs resource use pattern analysis for machines belonging
to opportunistic grids. This method is based on unsupervised machine learning [17, 2], which
performs a clustering analysis on past records of resource use to discover prototypical patterns
of use [11]. As usual in machine learning settings, the learning activity is performed off-line. The
use patterns learned are used at run-time to predict the availability of computational resources.
Ongoing work aims at employing this run-time prediction as part of grid task scheduling.

The development of the method was done in two steps: simulation and implementation.
A simulation phase was needed due to the existence of a large number of parameters to
be set in clustering-based unsupervised machine learning methods, and was performed using
real data collected from machines belonging to the InteGrade opportunistic grid [10]. Our
group developed the Local Use Pattern Analyser (LUPA) module for the InteGrade grid, and
validated the results of the simulation. The implementation was used to compare the proposed
method against other methods for availability prediction.
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The rest of the paper develops as follows. The UPA method is described in Section 2. Its basic
assumption is validated in the simulation of Section 3 which also determines several parameters
that improve the accuracy of the method. Implementation experiments are described in
Section 4. Related work is analysed and compared in Section 5. Conclusions and future work
are presented in Section 6.

2. The UPA Method

The resource Use Pattern Analysis (UPA) method is based on the assumption that there is a
small set of prototypical daily behaviours that models resource availability at each machine.
The choice of daily patterns may seem arbitrary, and was based on the fact that the method
was designed to help scheduling tasks that last for a few hours. Tasks that last a few seconds
may run on almost any idle machine, and those that may span over weeks or even months
are expected to be executed on non-dedicated machines without being paused or migrated.
However, the method described here may be useful in reducing the number of execution
interruptions for these very long tasks.

In the case of hour long tasks, the existence of prototypical patterns of behaviour is already
a somewhat bold assumption, so prior to implementation a simulation phase was needed to
both validate the method and study some of its properties. As the UPA method obtains the
prototypical behaviour via unsupervised learning of resource use histories, the validation step
was also providential in fine-tuning the method.

Use Pattern Analysis deals with computational resource use objects. Each object is a vector
of values representing the time series of a machine resource use, as illustrated in Figure 1. In
fact, as we are interested in resource availability, the higher the use of a resource, the lower
the expectation it will be made available for grid tasks. Resource down-time is represented
by a truncated time series, a fact that may affect the computation of prototypical resource
patterns; its treatment will be discussed when we describe the training phase.

Machine resource use is sampled at a fixed rate (currently, once every 5 minutes) and grouped
in objects covering 48 hours; the measurement of CPU use is a 5-minute average. The sampling
rate was chosen to both allow the prediction of hour-long availability and not to overburden
the system with too much data. An object starts at midnight, so there is a 24-hour overlap
between consecutive objects. The span of 48 hours, instead of 24 hours, is needed for the
prediction phase.

The method is capable of monitoring several computational resources, such as CPU use,
available RAM, disk space, swap space, network and disk I/O; in this work, only the first two
will be discussed, and these are the most relevant for machine allocation decisions. Use Pattern
Analysis performs unsupervised machine learning [17, 2] via a data clustering process [11] to
obtain a fixed number of use classes, where each class is represented by its prototypical object.
The idea is that each class represents a frequent use pattern, such as a busy work day, a light
work day or a holiday.

The method involves two phases: a training/learning phase and an execution/prediction
phase.
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Figure 1. An object representing a machine’s CPU use over a 48h period

2.1. Learning

Learning is an off-line activity that inputs a large amount of objects collected during the
machine regular operation. A clustering algorithm is applied to the training data [11, 6], which
groups the training objects into a fixed number k of clusters. At each cluster, a prototypical
element is computed that represents the whole use class. The output of the method are k
prototypical vectors to be used by the runtime predictor.

It is common to have incomplete data for training, due mainly to machine down-time. We
considered three possible treatments of resource down-time:

• Consider it as 100% use; this makes sense, as we really want to predict resource
availability, and down-time implies no-availability, as does 100% use.

• Perform a missing data completion; one way to deal with this problem in the literature
is to apply an Expectation Maximisation completion process [5].

• Discard objects containing down-time; those object will simply not be used in the
computation of the prototypical objects.

The current approach opted for the simplest solution, and discarded objects with incomplete
data. Provided there is sufficient data, this solution does not affect the result. This
simplification was made due to the fact that all resources monitored were supposed to be
available at all times. If there is a resource that is turned on and off every day, such as most
home computers, then it would be reasonable to consider down-time as no-availability, and
include that fact in the time-series representation.

The filtering of incomplete data for the learning phase is only a reliable method when there
is a considerable mass of data, which in this case consisted of at least 60 objects, or two months
of data. At the implementation phase, other methods were tested that need smaller amount
of testing data, and their results were compared against the UPA method.

Data clustering analysis can be parameterised in several ways. For the UPA development,
the following parameters were considered:

• Number of clusters. We considered a fixed number of clusters, either 5 or 10. The idea
was to keep the number of prototypical objects small enough to allow for fast prediction.
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A small number of clusters also demands less training data, otherwise one may get some
clusters with very small number of objects, rendering it a highly unreliable pattern.

• Data normalisation. Two possible data normalisation schemas were considered for vector:
no normalisation; and variational normalisation, in which the average value the sequence
is computed and subtracted from each element in the sequence, resulting in a sequence
with average 0. The difference between these two methods is illustrated in Figure 2. The
variational normalisation treats as equal the use at full capacity and full availability,
transforming both as a constant 0 sequence, while the non-normalised one does not. As
a result, it can group more significant clusters; for example, it groups use at full capacity
and full availability without losing the capacity to distinguish between them at runtime.
When using the variational method at runtime, the series is reconstructed by adding the
average of the recent past to every predicted time point. In this way, use at full capacity
is restored at runtime to average 100%.

• Computation of prototypical element. Typically this is a centroid, that is, the average of
all cluster elements, or the centre, that is, an actual element of the cluster that is closer
to the centroid. The centroid method is to be avoided in non-metric spaces, where a
prototypical element cannot be generated and has to be found among the given points.
As this was not the case here, only the centroid method was considered.

• Clustering algorithms. There are many algorithms for clustering, namely hierarchical,
sequential, k-means, etc. No substantial difference in prediction power was noted
among different algorithms. To concentrate on distance measurements, only hierarchical
algorithms are considered, which constructs clusters on a bottom-up fashion, each step
uniting the two closer (i.e., more similar, less distant) clusters. As this methods computes
the distance between clusters, several methods for computing such distances have to be
considered.

• Similarity measurement. There are several ways to compute the distance between two
clusters (similarity is the inverse of distance), assuming that the distance between any
pair of points a and b is given by the Euclidean distance: dab =

√

∑

(ai − bi)2. The
following distances were considered:

– single linkage: the distance between two clusters is the smallest distance between
any two points in these clusters;

– complete linkage: the distance between two clusters is the largest distance between
any two points in these clusters;

– centroid method : the distance between two clusters is the distance between their
centroids.

– Ward’s method : the distance between two clusters is the variance of the union of the
clusters. That is, one takes the two clusters as a single one, finds its new centroid,
computes the distance between every point in the union to the new centroid, and
takes the variance of this set of pointwise distances as the distance between the
two clusters.
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Figure 2. Non-normalised versus Variational time series

2.2. Runtime Prediction

During runtime, a request is sent to each machine predictor specifying the amount of resources
(CPU, disk space, RAM, etc) and the expected duration needed by an application to be
executed at that machine. This expected duration may be provided by users, which may not
be a reliable estimate [14]; research in progress within the InteGrade grid manager framework
investigates the automated learning of the duration and the computation resource needed by
applications, and existing models for task duration prediction will also be considered [19].
The UPA predictor has to decide if the resources will be available for the expected duration
provided as input.

This decision is reached according to the following method. A record is kept about the
recent use of each resource; usually the last 24 hours, as illustrated in Figure 3. The
predictor computes the distance between the vector representing recent history and each of
the prototypical element of the use classes learned during the training phase. The recent use
object has span of 24 hours, but the prototypical elements have span of 48h. To compute the
distance, the recent record of resource use is compared with the corresponding times in the
use classes; so if a request for a resource is made at 6 pm, the last 24 hours of that resource
use is compared to the interval 18–42 in each prototypical element. The class with the smallest
distance is the current use class.

The interval between the current time and the end of the 48h in the current use class, after
some possible processing, is used as the prediction of the near future; so if a request is made
at 6pm, this method can predict the next 6 hours.

When variational normalisation is used, the following extra steps have to be observed:

• The average a of resource use for the last 24-hour series is computed.
• This value is subtracted from each element of the series, generating a new series.
• The prototypical element that is closest to this new series is chosen.
• The average a is added to each element of the chosen prototypical element, so that the

prediction is made with respect to this assembled series.

If a prediction for a longer period is needed, there are two possibilities:
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Figure 3. Prediction of class pertinence

(a) To use less that 24 hours of recent record to compare with the start of each prototypical
element, which allows for predictions over 24 hours. The reliability of predictions
decreases with the span of the recent record used.

(b) To chain predictions, by using the last 24 hours of record or prediction as a basis for the
next prediction. This allows for unbounded predictions, but the longer the chain, the less
reliable the prediction. This is not implemented yet and remains for future work.

3. Simulation

There are many parameters involved in data clustering analysis. Simulation was used to choose
those parameters. In the end, with a set of chosen parameters, the basic assumption of the
UPA method could be evaluated, namely that prototypical daily behaviours are good models
of resource availability and are worthy of being implemented.

The data for simulation was collected, for CPU and RAM use, during a period of 120 days
from four Linux machines with very different types of users:

(a) a general purpose machine with more than 30 users;

(b) a single user machine;

(c) a general purpose machine with 6 users;
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(d) a multi-user machine employed for testing heavy computational linguistics programs.

For each machine, the learning process generated both a 5-cluster and a 10-cluster output,
called according to the presentation above a5, a10, b5, b10, c5, c10, d5, d10; furthermore,
clustering was performed both for pure and for normalised data.

A single test is defined by a resource r, an instant in time t, an availability level α and an
interval η; the test output is yes if it is predicted that the availability level of r will remain
above α for duration η starting at t, and no otherwise. The output is correct if the decision
coincides with that obtained from simulation data.

An availability matrix A = {aij}N×M was constructed for each machine and each resource,
with availability α in the interval 10%–90% of total capacity with 10% steps, and for intervals η
of 10, 20, 30, 60, 90, 120, 240 minutes. Each aij contains the percentage of correct predictions in
100 tests for a given pair 〈α, η〉, with random starting point t. For each matrix A, the average

prediction success was computed as µA = 1

NM

∑N

i=1

∑M

j=1
aij .

One simulation experiment consists of the construction of an availability matrix A containing
63 cells, each cell containing the number of correct prediction in 100 tests, generating a single
value for the average prediction success, µA. The simulation experiments were made in batches
of 8 experiments, one for each machine with 5 and 10 clusters. For each resource, 4 batches of
experiments were made, each using a different distance measurement. The 64 experiments were
repeated for normalised and non-normalised clusters. Overall, 128 experiments are reported.

3.1. Simulation Results

We present now the results that allowed us to validate the method and fix the learning
parameters discussed in Section 2.1.

3.1.1. Validation

Figure 4 shows the results of all experiments, separating the results of predictions based on
pure and normalised (variational) data. The values of µA were surprisingly high. All values for
average prediction success above 75%, and mostly above 80%.

The quality of the results allows for the validation of the basic assumption of the UPA
method, namely that computing learning the prototypical elements and computing the distance
from the recent past to the closest prototypical element is a good form of predicting future
availability of resources.

3.1.2. Pure × Normalised Data

Besides validating the UPA assumption, Figure 4 compares the prediction results obtained
from clustering process with pure data and from normalised clustering with 0-mean, variational
data. Predictions with normalised data yield a better result in all experiments, with average
prediction success were above 90% in all cases.

For this reason, the following results are presented only for normalised variational clustering.
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Figure 4. Success rates of all experiments, pure × normalised data

3.1.3. Distance Measurements

Experiments were made for hierarchical clustering using four different types of distance
measurements, as described in Section 2.1. Figure 5 presents the results for RAM availability
prediction and Figure 6 presents the results for CPU availability prediction.

No distance measurement dominates all the others all the time. However, it seems that
computing distances by Ward’s method has a slightly superior overall performance. Similarly,
no measurement is clearly the worst. As the number of machines analysed is still small, no
categorical preference can be established. The results in Figures 5 and 6 may even suggest that
each domain of machines may require an initial analysis to determine the best measurement
for each case.

It is worth noting that predicting RAM availability is easier than predicting CPU use. It
calls the attention that machine (b) yields the best results for RAM prediction and the worst
ones for CPU prediction. This reinforces the need for an initial per machine analysis prior to
the choice of measurement to be implemented.

In case no method is demonstrably superior to others, we propose a different criterion to
select the distance measure, namely the least complex method with respect to the number
of elements in the clusters; the justification for such a criterion is that the chosen method
will decrease system overheads both in learning and in runtime phases. If we compute the
distance between two clusters with n1 and n2 elements, the lowest complexity method is the
centroid method, which computes the distance in constant time. For Ward’s method, the
distance computation is O(n1 +n2); for single and complete linkage, the distance computation
is O(n1 ∗ n2). Thus, the complexity criterion selects the centroid method.

3.1.4. Number of Clusters

Figures 5 and 6 show a consistent prevalence of 10-cluster predictions over 5-cluster prediction
for all distance measurements. However, in all cases, this prevalence is in fact very small.
Furthermore, by investigating the clusters learned with 10-cluster outputs, one verifies that a
considerable number of clusters has a very small number of elements, normally less than 5. On
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the other hand, with 5-cluster outputs the representativity of the clusters learned is always
higher.

So no categorical conclusion can be reached as to the fact on the number of clusters, other
than that no big difference is achieved by choosing a larger number of clusters.

3.2. Simulation Conclusions

Simulation definitely validated the UPA assumption. Data normalisation is to be preferred,
and the number of clusters can be kept as low as 5, without seriously affecting prediction
performance. Distance measurements have to be analysed on a case-by-case basis prior to
implementation, but no method among the analysed ones is either the best or the worst; in
this case, the least complex method was proposed as a prevailing decision criterion, which
selected the centroid method.

4. Implementation

The development of an implementation of a resource Use Pattern Analyser had three main
goals:

• To explore the scheduling of grid applications using predictions made by the UPA
method.

• To compare the UPA scheduling with other scheduling methods.
• As the UPA method needs a few months of resource use data collection to be reliable,

identify initialisation strategies to be used during the first period of activation.

Note that the results described here concern only the prediction capabilities of the
implemented system modules with regard to resource availability, not their actual use for
scheduling.

4.1. Design Decisions

Resource use data information has to be collected locally at each machine taking part in an
opportunistic grid. This data can be analysed locally or can be sent to a centralised server for
analysis. The latter possibility may make the task of machine allocation easier, but it can be
seen as a breach on the privacy by users of single-user machines, which may not allow those
machines to take part on the grid for fear that their pattern of work is being monitored. On
the other hand, local analysis hides the computed resource use patterns from the rest of the
system. Furthermore, the local analysis of data also has the advantage of preventing the flow
of use data on the network, decreasing the overhead placed on the system.

So the first design decision selected a local analysis of resource use patterns. As a
consequence, a Local resource Use Pattern Analyser (LUPA) module is installed in all machines
that allow their resource to be opportunistically used by grid applications. The LUPA module
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was implemented in C++ on several Linux platforms, and is now an integral part of the
InteGrade distribution †.

The LUPA architecture is shown if Figure 7, and consists of three subsystems:

• Data Collection. Performs resource use sampling, recording CPU and RAM use every
5 minutes. This is the same rate used for simulations.
Data is recorded with no normalisation or other form of preprocessing, so that it can
later be used by different clustering methods.

• Pattern Analyser. Performs off-line clustering of resource use objects, as described
in Section 2, generating a fixed number k of prototypical use classes; for the results
presented below, k = 5. For time-efficiency reasons, centroid distance is used.
In the current implementation, patterns are recomputed once a day but that, as will be
shown, does not place a heavy burden on the system.

• Predictor. Performs runtime predictions based on the recent resource use history. The
interface to access the predictor contains the following elements:

double[] getPrediction(resource r, int hours) returns a vector of values repre-
senting the r-use prediction for the next hours, in 5-minute intervals.

boolean canRunGridApplication(freeCpu, freeRam, hours) returns a yes/no an-
swer if the prediction allows for freeCpu and freeRam for the next hours.

int howLongCanRunGridApplication(freeCpu, freeRam) returns the number of
hours for which there is a prediction of availability of freeCpu and freeRam. To
avoid running forever in case of very low input data, the method is at the moment
limited at 72 hours.

It is important to note that at this stage of development, the LUPA module is not yet
integrated with the grid scheduler, for there is no implemented automated mechanism to
evaluate an application’s resource requirements yet.

In the experiments for evaluating the implementation, scheduling is restricted to selecting
the machine with higher CPU availability.

4.2. Experiments

The experiments simulate the scheduling of a grid application. Experiments were performed
using 15 machines, with data collection logs varying from 41 to 120 days, none of which were
used for the simulation phase, so as to avoid biased results.

Three different scheduling methods were compared:

• RR: round robin. Machines are randomly placed on a circular list; when n machines
are requested, the initial n machines are returned and the list starting pointer is advanced
n positions. No prediction is made.

†Freely available at http://www.integrade.org.br.
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Figure 7. The LUPA Architecture

• last4. Resource prediction for any amount of time is considered the average of the last
four hours. The method chooses n machines with highest prediction of availability.
Preliminary tests were also made for the last 8, 12 and 24 hours, and their performance
were considered basically equivalent to the last4 method.

• UPA. Prediction using the UPA method. The method chooses n machines with smaller
prediction of CPU use for the next h hours.

An experiment consists of a sequence of tests for a fixed set of test parameters. Initially, the
valid days in the data collection logs are selected, in which there are at least m valid machines,
where m is a test parameter.

For each selected day, pattern analysis is run and then 24 tests are executed, each for an
hour of the day and for each of the three scheduling algorithms above. These are the instant

tests. Therefore, the number of instant tests in an experiment is initially a multiple of 24, but
some instant tests may be discarded if minimum availability is not met, as described below.

The performance metric is the average free CPU percentage in the chosen machines in the
interval [t, t + h], given by
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performances(t) = 1 −

∑n

i=1
use(mi, t, h)

n
where s is the scheduling algorithm, n is the number of chosen machines, mi is one of the
machines chosen to run an application process for h hours starting at time t, and use(mi, t, h)
is the average CPU use at machine mi for that period according to the log.

Experiments can constrain the set of chosen machines by requiring a minimum CPU
availability a at chosen machines; if this requirement is not met, the instant test is not
computed. As a consequence, an experiment can have any number of instant tests.

An experiment set of parameters is therefore given by:

• n: number of machines to be chosen to run the application, 1 ≤ n ≤ 6;
• h: application duration, in hours, h ∈ {2, 4, 6, 12, 24};
• m: minimum number of machines available to be chosen at a given day, m ≥ n and

1 ≤ m ≤ 15;
• a: minimum CPU availability at chosen machines, a ∈ {0.6, 0.7, 0.8, 0.9, 0.98}.

An experiment is performed for a set of parameters only if the logs allowed for at least 100
instant tests for that set. A total of 45 experiments were made, averaging 527 tests each. The
output of an experiment is the performance of each of the three scheduling methods for each
test. The performance of scheduling methods s and r were compared on a test by test basis.
Methods s1 and s2 were considered equivalent for a test if the performance difference was less
than 2%, that is, |performances1

(t) − performances2
(t)| < 0.02. Method s1 performs better

than method s2 if performances1
(t) − performances2

(t) > 0.02.
Results.

The performance of RR was consistently below that of both last4 and UPA scheduling
methods, beating last4 on less than 1% of the tests and UPA even less.

Figure 8 displays a coarse-grained comparison between the UPA and last4 scheduling
methods showing the total percentage of instant tests that each method outperformed the
other, and their equivalence.

It calls the attention that for an average of 77.6% of all tests, the two methods are equivalent.
When equivalent results are discarded, the UPA performs better than last4 in 75.6% of the
experiments.

Due to the surprise on the results, we performed a detailed analysis of the cases when the
UPA was not the best of the two, namely, when the two methods were basically equivalent
or when last4 had better results. We arrived at the following conclusions:

• When UPA was not the best, the machines have been idle for at least an hour, and
remain in an idle state for quite sometime. In fact, this is consistent with the intuition
that when machines are idle, no effort is needed for predicting the near future.
It turns out that the way the tests were constructed permitted a high number of instant
tests to occur when the system was idle. By selecting valid days and then performing 24
instant tests, one at each hour, the idle hours of the day have always received a lot of
attention. Furthermore, several instant tests were discarded when minimal performance
was not met, but this only occurs at busy times, which increase the proportion of instant
tests performed at idle times.
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Figure 8. Coarse comparison between UPA versus last4

• When last4 was the best, it chose machines that, besides being idle, were associated
to very irregular prototypical behaviours. This amounts to say that these machined did
not have clear patterns of use. In general, those machines were at the disposal of a large
number of users of a community under low demand. So pattern analysis does not perform
very well when no pattern exists.

Those observations were followed by new experiments in which a set of 15 machines belonging
to a student lab were selected, and tests were performed only during the period of 10pm–6am.
The same jobs were submitted to the grid with the UPA method and without it (namely,
just by supposing that the current CPU use will persist into the future). Classes of jobs
with different duration were submitted to a scheduler that implements the UPA method via
canRunGridApplication interface.

When jobs taking between 30 minutes and one hour were submitted, predictions without
UPA achieved a better performance in 1.3% of the cases. This small disadvantage of the UPA
method was amplified with longer jobs. When jobs taking between one and two hours were
submitted, the no UPA method achieved a better performance in 12.5% of the cases.

Although detecting irregular patterns may not be very easy to automate, detecting idleness
(that is, detecting availability above some high threshold, say 99%) is quite simple, which
suggests the following adaptative behaviour for the predictor:
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UPA last4

Performance Similar to last4,
but better

Similar to UPA

Impact of ↑ m/n ↑ performance no effect

Impact of ↑ d ↑ performance
w.r.t last4

↓ performance
w.r.t. UPA

Impact of ↑ h no effect no effect

Table I. Prediction Methods Comparison Summary

if the machine has been idle for two hours
and UPA predicts idle predominance for the expected duration of the job

then prefer the last4 method
else use the UPA method.

Table I summarises the effect of the test parameters on the performance of the
methods. Scheduling using UPA has its relative performance increased when the ratio m/n
(available/required machines) increases, as well as when d (required free CPU) increases.
Overall, the UPA method displays better results. It was also clear that the method performs
well with less than 60-day training data.

We conclude that last4 is quite a good method, and a candidate to be run during LUPA
initialisation. Final LUPA implementation has the following adaptative behaviour:

• Use UPA method if more than 21 days of data collection is available; else
• Use last4 method if more than 4 hours of data collection is available; else
• Predict that resource use at request time persists.

With regard to system overhead, the running time for pattern analysis was always below
1s, and the running time for prediction calls was always below 3ms. Measurements were made
on a notebook with an AMD Turion 64 1.8GHz CPU, 1GB RAM running Kubuntu 7.10 (32
bits) Linux.

The conclusion is that the load placed by the last4 method is quite minimal, in favour of
its use by a grid scheduler.

5. Related work

Several lines of research in grid computing may be considered as related to the present work,
all of which have in common the investigation of methods that may be employed to improve
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grid application performance; mainly, those techniques aim at reducing application execution
time [16, 21].

Each of main grid research project — such as BOINC, Condor and Globus — has a way
to deal with the problem of predicting resource availability on the grid, even if this means a
strategy to totally avoid the problem. In the following we review the work developed in several
grid projects.

Also several non-grid related work on resource prediction is found in the literature, and a
few of them are reviewed here.

5.1. Correlated availability

A recent work developed within the framework of the BOINC system [1] is perhaps the work
in the literature that most align to ours. That work takes place in the scope of volunteer

computing, which is an extension of the paradigm initiated by the SETI@home project [22].
One of the possible extensions intends to run communicating applications in parallel, so it
becomes very important to be able to predict machines that are simultaneously available on
the internet.

Derrick et al [13] thus investigates large portions of the internet in the search of correlated

availability in internet-distributed systems. It computes patterns of simultaneous availability
of individual machines which, as in our case, is obtained by a process of data clustering.

To achieve its goal, it reportedly monitors 112,268 hosts over the whole internet, thus
employing a global monitoring service that generates a large amount of data that is submitted
to the process of pattern discovery. Even if the pattern discovery is divided over time zones,
the amount of data to be analysed is still very large.

The system was not originally intended to be used as a tool for scheduling applications, but
was used to discover interesting clusters of machines and many facts about classes of users,
such as home and office users. Those finds have the potential of enabling several applications.

This method contrasts with the UPA method by taking a global approach to resource
monitoring, and only idle time is detected. On the other hand, the UPA method performs
only local monitoring, with considerably smaller, distributed overhead.

5.2. Preemptive resume scheduling

The Condor grid system [24, 15] also deals with opportunistic and non-opportunistic
(i.e. dedicated) grids. In its scheduling mechanism it employs a technique called preemptive

resume scheduling [20], which combines both dedicated and opportunistic scheduling. For
opportunistic grids, in which grid jobs may be interrupted when the owner of a computational
resource claims it back from the grid, it applies a checkpoint technique.

Condor will checkpoint and preempt jobs when an owner needs it computing resource. When
another computer is available to run the job, Condor will resume the job on that computer.
In most cases, this does not require the modification of jobs, only their relinking with libraries
provided by Condor, which makes the whole process very attractive.

However, the basic point of this method is that it performs no prediction, which distinguished
it from our approach. One the one hand, this releases the scheduler from the task of predicting
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job duration; on the other hand, this forces the scheduler to take decisions based only on the
current state of resources, which could be improved in the presence of previsions.

5.3. Conservative scheduling

The development of the Globus project [7] has lead to a predictive form of scheduling called
conservative scheduling [26]. It is a statistical predictive method that aggregates several levels
of predictions to obtain a machine’s CPU load prediction.

On the lowest level, it applies one-step-ahead CPU load prediction [25], a tendency-based
time series predictor based on history CPU load information which predicts the next value of
CPU load according to the tendency of the time series change.

This initial prediction is aggregated, generating an interval load prediction, averaging over
aggregated CPU load time series. This aggregation is performed because the intention is not
to predict one step ahead, but to be able to predict the CPU load over the time interval during
which an application will run.

Besides the average of an interval load prediction, the method also computes the variation
of CPU load, computing the standard deviation of the original CPU load time series.

The conservative scheduling method combines both interval and variance load prediction.
It is similar to our case in that it employs histories of CPU load time series, but the sort
of treatment to which these data is submitted is a combination of statistical methods, which
differs from our cluster-based pattern analysis method.

Unfortunately, we have not performed any experiments that compare the conservative
scheduling method and the UPA method for predicting CPU availability, so at this point
in time we do not have any knowledge on their relative performance. This remains a topic for
future work.

5.4. Parallel computing environments

Outside the world of grid computing, parallel computing has also dealt with the problem of
allocating tasks to processes and threads.

Work on parallelisation of commonly used algorithms has led to the concept of work stealing,
that is, whenever a processor runs out of work, it steals work from a randomly chosen processor.
A well known implementation of work stealing is that of the Cilk-5 multi-threaded language [8];
other forms of implementation are [9, 3].

Stealing work is a similar process to computing in opportunistic grids, but while in an
opportunistic grid we have an application that searches for available resources, in the work
stealing framework it is the idle resource that searches for work.

A recent implementation of work steal [23] employs a data structure that resembles a
learning process, namely a list of “successful steals”. However, it does not perform a traditional
learning task, for there is no distinction between a learning phase and a runtime phase. On
the contrary, that list is used as heuristics for the choice of work stealing to be performed.
There is both theoretical and experimental evidence pointing that such heuristics outperforms
single-threaded executions of the same algorithms [23].
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On a different direction, parallel and distributed computer systems are using performance
evaluation to manage workload. The work of [12] develops a two model strategy to evaluate
performance. On the one hand, there is a model of the application. On the other hand, there
is a model of resource use, namely CPU profiling and cache models. For the latter, a toolset
for performance prediction is employed [18]. The authors of [12] claim that the difficulty in
deriving a priori performance data makes the use of data obtained through monitoring a
preferred approach. This kind of approach may be very useful for grid computing, specially in
what concerns the prediction of application resource needs, and deserves further investigation
in the future.

6. Conclusions and Further Work

The experiments have shown that some form of prediction always perform better than no
prediction, and the UPA-scheduling method was favourably compared with respect to other
methods, with small overhead. This confirms that the method can be used in practical
scheduling of grid application tasks. It also became clear that if a resource is idle for a long
period, it is better to adaptatively turn the UPA method off for the expected duration of the
idleness.

Future work includes integrating the LUPA module with a task scheduler, so that
experiments can be made using real grid applications and several scheduling variants applying
Use Pattern Analysis can be tested. Furthermore, the capacity for longer term predictions
remains to be explored; there are several scheduling possibilities this predictive capacity allows
for, which deserves a detailed analysis, such as preemptive task migration and the automated
“booking” of machine resources for future executions. Also, the existence of long histories for
training has to be studied, to determine the ideal weight to be given to recent and distant past
information.
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