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aFederal University of Maranhão, Department of Informatics, São Lúıs, Brazil
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Abstract

The InteGrade project is a multi-university effort to build a novel grid com-

puting middleware based on the opportunistic use of resources belonging to

user workstations. The InteGrade middleware currently enables the execu-

tion of sequential, bag-of-tasks, and parallel applications that follow the BSP

or MPI programming models.

This article presents the lessons learned over the last five years of In-

teGrade development and describes the achieved solutions concerning the

support for robust application execution. The contributions cover the re-

lated fields of application scheduling, execution management, and fault tol-

erance. We present our solutions, describing their implementation principles

and evaluation through the analysis of several experimental results.
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1. Introduction

The success of grid systems can be verified by the increasing number

of middleware systems, actual production grids, and dedicated forums that

appeared in recent years. The use of Grid Computing technology is increasing

rapidly, reaching more scientific fields and encompassing a growing body of

applications (Wilkinson , 2009; Grandinetti , 2005).

A grid might be seen as a way to interconnect clusters that is much more

convenient than the construction of huge clusters. Another possible approach

for conceiving a grid is the opportunistic use of workstations of regular users.

The focus of an opportunistic grid middleware is not on the integration of

dedicated computer clusters (e.g., Beowulf) or supercomputing resources,

but on taking advantage of idle computing cycles of regular computers and

workstations that can be spread across several administrative domains.

During the last five years, our research group has been engaged on the

development of the InteGrade project1, a multi-university effort to build

a robust and flexible middleware for opportunistic grid computing. Inte-

Grade’s main goal is to be an opportunistic grid environment with support

for tightly-coupled parallel applications. By leveraging the idle computing

power of existing commodity workstations and connecting them to a grid

infrastructure, InteGrade enables the execution of computationally-intensive

parallel applications that would otherwise require expensive cluster or par-

allel machines.

In this article, we focus on the support provided by InteGrade for applica-

1Homepage: http://www.integrade.org.br
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tion execution, covering three key related issues concerning the development

of an opportunistic grid middleware: resource management and availabil-

ity prediction for application scheduling, execution management, and fault

tolerance.

Resource management encompasses challenges such as how to effi-

ciently monitor a large number of highly distributed computing resources

belonging to multiple administrative domains. On opportunistic grids, this

issue is even harder due to the dynamic nature of the execution environ-

ment, where nodes can join and leave the grid at any time due to the use of

the non-dedicated machines by their regular (non-grid) users. An effective

monitoring infrastructure is crucial for performing appropriate application

scheduling decisions and for timely detecting failures. Besides the current

state of grid resources, the application scheduler should also take into con-

sideration a prediction of the future availability of computing resources. This

is particularly useful on opportunistic grids, as users of non-dedicated ma-

chines can resume local processing, forcing grid tasks to either migrate to

other grid machine or abort and possibly restart at another machine.

With respect to application execution management, which also in-

cludes monitoring, there must be user-friendly mechanisms to execute appli-

cations in the grid environment, to control the execution of jobs, and to pro-

vide tools to collect application results and to generate reports about current

and past situations. Application execution management should encompass

all execution models supported by the middleware. The InteGrade middle-

ware currently allows the execution of sequential, bag-of-tasks, and parallel

applications that follow the Bulk Synchronous Parallel (BSP) (Valiant , 1990)
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or Message Passing Interface (MPI) (MPI Forum , 1997) programming mod-

els. A related issue concerning application execution is the management of

application data, which includes the application binaries, and input and out-

put data. On grid environments, applications usually generate large amounts

of data, which, combined with the environment’s large scale, turns a central-

ized approach for data storage inappropriate. On the other hand, building

a flexible distributed storage system that provides high data availability and

fast data access in a dynamic environment, such as an opportunistic grid, is

a challenging task.

Finally, fault tolerance comprises a major requirement for grid mid-

dleware as grid environments are highly prone to failures, a characteristic

amplified on opportunistic grids due their dynamism and the use of non-

dedicated machines, leading to a non-controlled computing environment. An

efficient and scalable failure detection mechanism must be provided by the

grid middleware, along with a means for automatic application execution

recovery, without requiring human intervention.

InteGrade presents solutions to those problems. There are special mod-

ules in charge of controlling the resources for opportunistic grids, monitoring

them, and providing tools to analyze the gathered data. There are spe-

cial tools for managing the execution of applications, which guarantee se-

cure mechanisms to store application binaries, their input and the generated

output. InteGrade also provides mechanisms for fault tolerance, including

both replication and checkpointing, in a configurable way, allowing mul-

tiple choices for data storage. The middleware also provides support for

tightly-coupled parallel applications using both the MPI and BSP standard
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programming models, as well as mobile agents for long-running sequential

applications.

All these solutions, when used together, provide a powerful framework

that allows for the execution of sequential and parallel applications in an

opportunistic environment. Indeed, as all these solutions were designed to

be decentralized and distributed, a good level of scalability is obtained.

This article concentrates on the new developments on the InteGrade

project carried out since its prototype architecture was presented five years

ago; for a detailed description of that early work, the reader should refer to

(Goldchleger et al. , 2004).

In the next section we present an overview of the current InteGrade archi-

tectural model. In Section 3, we discuss the use of resource monitoring data

to infer future availability of resources, which is taken into account during the

scheduling process to minimize application migration and restart. Section 4

describes aspects related to application execution management, emphasizing

the mechanisms that allow the execution of parallel applications that fol-

low the MPI or BSP models; this section also addresses the management of

application input and output data. In Section 5, we describe the available

mechanisms used to guarantee application progress, circumventing failures.

In Section 6, we provide a comparative analysis of InteGrade and Condor, a

well know middleware system for opportunistic grids. Finally, in Section 7

we conclude the article presenting open research problems and ongoing work.
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2. InteGrade Overview

The basic architectural unit of an InteGrade grid is a cluster, a collection

of machines usually connected by a local network. Clusters can be organized

in a hierarchy, enabling the construction of grids with a large number of ma-

chines. Each cluster contains a Cluster Manager node that hosts InteGrade

components responsible for managing cluster resources and for inter-cluster

communication. Other cluster nodes are called Resource Providers and ex-

port part of their resources to the grid. They can be either shared with local

users (e.g., secretaries using a word processor) or dedicated machines. The

cluster manager node, containing InteGrade management components, must

be a stable machine, usually a server, but not necessarily dedicated to Inte-

Grade execution only. In case of a cluster manager failure, only its managed

cluster machines will become unavailable.

InteGrade currently allows the execution of three application classes: (a)

sequential applications, where the task to be run is assigned to a single grid

node 2; (b) parametric or bag-of-tasks applications, where several copies of a

task are assigned to different grid nodes, each of them processing a subset of

the input data independently and without exchanging data; (c) parallel ap-

plications following the BSP or MPI models, whose processes exchange data

among themselves using message passing or shared memory abstractions.

The InteGrade architecture comprises several components. Figure 1 shows

the components that enable application execution, which are the following.

Application Repository (AR): before being executed, an application

2A machine acting as a grid resource provider.
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Figure 1: InteGrade architecture.

must be previously registered with the Application Repository. This compo-

nent stores the application description (metadata) and binary code.

Application Submission and Control Tool (ASCT): a graphical user

interface that allows users to browse the content of the Application Reposi-

tory, submit applications, and control their execution. Alternatively, appli-

cations can be submitted via the InteGrade Grid Portal, a Web interface

similar to ASCT.

Local Resource Manager (LRM): a component that runs on each clus-

ter node, collecting information about the state of resources such as memory,

CPU, disk, and network. It is also responsible for instantiating and executing

applications scheduled to the node.

Global Resource Manager (GRM): manages cluster resources by re-

ceiving notifications of resource usage from the LRMs in the cluster (through

an information update protocol) and runs the scheduler that allocates tasks

to nodes based on resource availability; it is also responsible for communi-

cation with GRMs in other clusters, allowing applications to be scheduled

for execution in different clusters. Each cluster has a GRM and, collectively,
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the GRMs form the Global Resource Management service. We assume that

the cluster manager node where the GRM is instantiated has a valid IP ad-

dress and firewalls are configured to allow TCP traffic on the port used by

the GRM. Network administrators establishing a Virtual Organization can,

optionally, make use of ssh tunnels in order to circumvent firewalls and NAT

boxes.

Execution Manager (EM): maintains information about each appli-

cation submission, such as its state, executing node(s), input and output

parameters, submission and termination timestamps. It also coordinates the

recovery process in case of application failures.

Since grids are inherently more vulnerable to security threats than tra-

ditional systems, as they potentially encompass a large number of users,

resources, and applications managed by different administrative domains, In-

teGrade encompass an opinion-based grid security model called Xenia. Xenia

provides an authorization and authentication system and a security API that

allows developers to access a security infrastructure that provides facilities

such as digital signatures, cryptography, resource access control and access

rights delegation. Using Xenia, we developed a secure Application Repos-

itory infrastructure, which provides authentication, secure communication,

authorization, and application validation. A more detailed description of

InteGrade security infrastructure can be found on (Pinheiro Junior, Vidal,

Kon and Finger , 2006).

From this basic description, we can move on to InteGrade’s core issues

related to application execution, which include resource management and

availability prediction for an appropriate scheduling, application execution
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management and fault tolerance, which are explained in the following sec-

tions.

3. Resource Availability Prediction

The success of an opportunistic grid depends on a good scheduler. An

idle machine is available for grid processing, but whenever its local users need

their resources back, grid applications executing at that machine must either

migrate to another grid machine or abort and possibly restart at another

machine. In both cases, there is considerable loss of efficiency for grid appli-

cations. A solution is to avoid such interruptions by scheduling grid tasks on

machines that are expected to remain idle for the duration of the task.

InteGrade predicts each machine’s idle periods by locally performing Use

Pattern Analysis of machine resources at each machine on the grid, as de-

scribed in (Finger, Bezerra and Conde , 2008, 2009). Currently, four different

types resource are monitored: CPU use, RAM availability, disk space, and

swap space.

Use pattern analysis deals with machine resource use objects. Each object

is a vector of values representing the time series of a machine’s resource use, as

illustrated in Figure 1. The sampling of a machine’s resource use is performed

at a fixed rate (currently, once every 5 minutes) and grouped into objects

covering 48 hours with a 24-hour overlap between consecutive objects. We

employ 48-hour long objects so as to have enough past information to be

used in the runtime prediction phase.

Use Pattern Analysis performs unsupervised machine learning (Barlow ,

1999; Theodoridi and Koutroumba , 2003) to obtain a fixed number of use
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Figure 2: An object representing a machine’s CPU use over a 48h period

classes, where each class is represented by its prototypical object. The idea

is that each class represents a frequent use pattern, such as a busy work day,

a light work day or a holiday. As in most machine learning processes, there

are two phases involved in the process, which in the InteGrade architecture

are implemented by a module called Local Use Pattern Analyzer (LUPA), as

follows.

The Learning Phase. Learning is performed off-line, using 60 ob-

jects collected by LUPA during the machine regular use. A clustering al-

gorithm (Sokal , 1996; Everitt, Landau and Leese , 2001) is applied to the

training data, such that each cluster corresponds to a use class, represented

by a prototypical object, which is obtained by averaging over the elements

of the class. Learning can occur only when there is a considerable mass of

data. In our case, we require at least two months of data. As data collection

proceeds, more data and more representative classes are obtained.

The Decision Phase. There is one LUPA module per machine on the

grid. Requests are sent by the scheduler specifying the amount of resources
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(CPU, disk space, RAM, etc.) and the expected duration needed by an

application to be executed at that machine. The LUPA module decides

whether this machine will be available for the expected duration, as explained

below. LUPA is constantly keeping track of the current use of resources. For

each resource, it focuses on the recent history, usually the last 24 hours, as

illustrated in Figure 3, and computes a distance between the recent history

and each of the use classes learned during the training phase. This distance

takes into account the time of the day in which the request was made, so that

the recent history is compared to the corresponding times in the use classes.

The class with the smallest distance is the current use class, which is used

to predict the availability in the near future. If all resources are predicted to

be available, then the application is scheduled to be executed; otherwise, it

is rejected.

Current Use Use Classes

d1

d2

d3

Figure 3: Estimation of class pertinence for use prediction

This scheduling strategy has been tested via simulation, using data col-

lected from real machines on the grid, and was compared against two other
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strategies, namely: one that projects the availability at the time of the re-

quest into the future (alt1); and one that projects into the future a fixed

valued obtained from the average use of the past 24 hours (alt2).

Table 1 presents a summary of the trace-based simulation results with

data collected over a period of 7 months. Results are presented for two kinds

of machines, single-user and multi-user machines, which have quite different

use profiles; and for two types of resource availability prediction: memory and

CPU. At random instants of time, a request is issued for a random amount of

resources during a random amount of time, and a prediction for availability

is made at that time; the prediction of availability is considered correct if

the amount of resource required remains available for the full duration of

the request; a prediction of unavailability is considered correct if at some

point of this interval the requested amount of resources is unavailable. Three

basic results are shown. First, the percentage of correct predictions. Second,

the probability that the proposed strategy predicts availability with higher

percentage of correctness than strategy alt1; this probability is computed

assuming that the correctness of predictions follows a normal distribution for

each strategy, such that the difference between them also follows a normal

distribution. Third, the probability that the proposed strategy performs

better than strategy alt2 under the same assumptions. All results in Table 1

were obtained with 5 data clusters. The same experiments were run for 10

clusters, with basically the same results.

Table 1 allows us to conclude that the proposed strategy is very successful

in predicting idleness, with success rates above 90% at all times. It also shows

that single-user machines are easier to predict than multi-user machines. The
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Resource Machine Correct Predictions Beats alt1 Beats alt2

Memory single user 99.47% 47.77% 99.12%

Memory multi user 99.08% 64.97% 90.37%

CPU single user 97.57% 50.21% 87.89%

CPU multi user 92.52% 91.23% 91.35%

Table 1: Simulation results for 5 clusters

proposed method also performs better than the proposed alternatives in all

cases except one, namely the prediction of memory availability for single user

machines, in which case the extremely simple strategy of projecting into the

future the current availability seems to perform better.

A complete description of Use Pattern Analysis method can be found in

our previous work (Finger, Bezerra and Conde , 2008). Work in progress

is addressing the problem of predicting, for each application, its resource

demands and duration. Admittedly, it is not reasonable to assume that users

or even application writers can always perform well such prediction task. So

automated methods are under study. Those methods involve computing

several statistics over runs of the same program with a range of input data.

Several (mainly conservative) prediction methods are being considered, such

as the worst case seen in practice, or the average plus three times the standard

deviation.

4. Managing Application Executions

Once scheduled to proper grid resources, the tasks that comprise a sub-

mitted application can be instantiated and begin their execution. Executing
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computationally intensive parallel applications on dynamic heterogeneous en-

vironments, such as computational grids, is a daunting task. This is particu-

larly true when using non-dedicated resources, as in the case of opportunistic

computing, where one uses only the idle periods of the shared machines. In

this scenario, the execution environment is typically highly dynamic, with re-

sources periodically leaving and joining the grid. When a resource becomes

unavailable, due to a failure or simply because the machine owner requests

its use, the system needs to perform the necessary steps to restart the tasks

on different machines. In the case of BSP or MPI parallel applications, the

problem is even worse, since all processes that comprise the application may

need to be restarted from a consistent distributed checkpoint.

The Execution Manager (EM) module is in charge of managing appli-

cation execution, including sequential, bag-of-tasks, MPI, and BSP applica-

tions. The EM maintains information regarding each application executing

on its cluster, such as the execution status, the nodes where the application

processes are running and the names of the application input and output

files. The EM is also responsible for restarting applications that had pro-

cesses executing on a machine that became unavailable. Tasks comprising a

BSP or MPI parallel application are always scheduled to a single InteGrade

cluster in order to minimize communication overhead and avoid the necessity

of bypassing firewalls and NAT boxes.

The following subsections describe how InteGrade implements the sup-

port for managing the execution of MPI and BSP parallel applications. Next,

we describe the management of application data, which includes the appli-

cation binaries, input, and output data.
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4.1. Managing BSP Applications

InteGrade’s support for executing BSP applications adheres to the Oxford

BSP API 3, targeted for the C language. Thus, an application based on

the Oxford BSPlib can be executed over InteGrade with little or even no

modification of its source code, requiring only its recompilation and linkage

with the appropriate InteGrade libraries.

A BSP computation proceeds in a series of global supersteps. Each super-

step comprises three ordered stages: (1) concurrent computation: computa-

tions take place on every participating process. Each process only uses values

stored on its local memory. Computations are independent in the sense that

they occur asynchronously of all others; (2) communication: at this stage,

the processes exchange data between themselves; (3) barrier synchroniza-

tion: when a process reaches this point (the barrier), it waits until all other

processes have finished their communication actions. The synchronization

barrier is the end of a superstep and the beginning of another one.

InteGrade’s implementation of the BSP model uses CORBA (OMG ,

2008) for inter-process communication. CORBA has the advantage of being

an easier and cleaner communication environment, shortening development

and maintenance time and facilitating system evolution. Also, since it is

based on a binary protocol, the performance of CORBA-based communica-

tion is an order of magnitude faster than the performance of technologies

based on XML, requiring less network bandwidth and processing power. On

the shared grid machines, InteGrade uses OiL ((Maia, Cerqueira and Cosme

3The Oxford BSP Toolset http://www.bsp-worldwide.org/implmnts/oxtool
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, 2006)), a very light-weight version of a CORBA ORB that imposes a small

memory footprint. Nevertheless, CORBA usage is completely transparent

to the InteGrade application developer, who only uses the BSP interface

(Goldchleger et al. , 2005).

InteGrade’s BSPLib associates to each process of a parallel application a

BspProxy. The BspProxy is a CORBA servant responsible for receiving re-

lated communications from other processes, such as a virtual shared address

read or write, or the receipt of messages signaling the end of the synchroniza-

tion barrier. The creation of BspProxies is entirely handled by the library

and is totally transparent to users.

The first created process of a parallel application is called Process Zero.

Process Zero is responsible for assigning an unique identifier to each applica-

tion process, broadcasting the CORBA IORs of each process to allow them

to communicate directly, and coordinating synchronization barriers. More-

over, Process Zero executes its normal computation on behalf of the parallel

application.

On InteGrade, the synchronization barriers of the BSP model are used

to store checkpoints during execution, since they provide global, consistent

points for application recovery. In this way, in the case of failures, it is

possible to recover application execution from a previous checkpoint, which

can be stored in a distributed way as described in Section 5.2. Application

recovery is also available for sequential, bag-of-tasks, and MPI applications.

4.2. Managing MPI Applications

Support for parallel applications based on MPI is achieved in InteGrade

through MPICH-IG (Cardozo and Costa , 2008), which in turn is based on
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MPICH24, an open source implementation of the second version of the MPI

standard, MPI2 (MPI Forum , 1997). MPICH-IG adapts MPICH2 to use

InteGrade’s LRM and EM instead of the MPI daemon (MPD) to launch

and manage MPI applications. It also uses the application repository to

retrieve the binaries of MPI applications, which are dynamically deployed

just prior to launch, instead of requiring them to be deployed in advance,

as with MPICH2. MPI applications can thus be dispatched and managed in

the same way as BSP or sequential applications.

In order to adapt MPICH2 to run on InteGrade, two of its interfaces

were re-implemented: the Channel Interface (CI) and the Process Manage-

ment Interface (PMI). The former is required to monitor a sockets channel

to detect and treat failures. The latter is necessary to couple the manage-

ment of MPI applications with InteGrade’s Execution Manager (EM), adding

functions for process location and synchronization.

Regarding communication among an application’s tasks, MPICH-IG uses

the MPICH2 Abstract Device Interface (ADI) to abstract away the details of

the actual communications mechanisms, enabling higher layers of the com-

munications infrastructure to be independent from them. In this way, we im-

plemented two underlying communications channels: a CORBA-based one,

for tasks running on different, possibly heterogeneous, networks, and a more

efficient one, based on sockets, for tasks that reside in a single cluster.

Another feature of MPICH-IG, in contrast with conventional MPI plat-

forms, refers to the recovery of individual application tasks after failures.

4http://www.mcs.anl.gov/research/projects/mpich2/
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This prevents the whole application from being restarted from scratch, thus

contributing to reduce the makespan of application execution. Application

recovery is supported by monitoring the execution state of tasks, as described

in Section 5.1. Faulty tasks are then resumed on different grid nodes, se-

lected by the GRM. Task recovery is implemented using checkpoints, which

are managed as described in Section 5.2, although using system-level check-

points, which are more suitable for tightly coupled parallel applications.

While other MPI platforms focus specifically on fault-tolerance and recovery,

notably MPICH-V (Bosilca et al. , 2002), they usually rely on homogeneous,

dedicated, clusters. MPICH-IG removes this limitation to enable the dy-

namic scheduling of non-dedicated machines.

These features also favor MPICH-IG when compared to other approaches

to integrate MPI into grid computing environments, such as MPICH-G2 (Ka-

ronis, Toonen and Foster , 2003). In common to MPICH-G2 is the ability to

run MPI applications on large scale heterogeneous environments, as well as

the ability to switch from one communications protocol to another, depending

on the relative location of the application tasks. However, MPICH-IG’s abil-

ity to use non-dedicated resources in an opportunistic way further contributes

to scale up the amount of available resources. In addition, MPICH-IG en-

ables legacy MPI applications to be transparently deployed on an InteGrade

grid, without the need to modify their source code.

Regarding performance, Figure 4 shows a comparison of MPICH-IG (with-

out checkpointing) and MPICH2, considering the execution time for a parallel

QuickSort algorithm. The execution time is shown for different input sizes

(number of elements to be sorted). As can be seen MPICH-IG has compara-
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ble performance for small input sizes. Actually, its performance in such cases

was slightly worse due to the overhead of loading application binaries from

the application repository prior to execution on each node (in MPI, applica-

tion binaries are assumed to be pre-installed on the nodes). However, as the

input size grows, it shows a considerable gain. This is due to InteGrade’s

ability to schedule tasks to the most available nodes, while MPICH2’s MPD

simply chooses the next node from a circular list.

Figure 4: Comparing the execution time for parallel QuickSort on MPICH-IG and

MPICH2, with 10 parallel tasks and 6 processing nodes.

4.3. Managing Application Data

Users can register an application in InteGrade using either the Appli-

cation Submition and Control Tool (ASCT) or the InteGrade Web portal,

providing the application description and one or more execution files to en-

able its execution on multiple platforms. InteGrade stores the application

executables in the Application Repository (AR) module, together with meta-
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data describing the application and the platforms for which executables are

available.

Managing and storing application input and output files is more diffi-

cult than managing executables, since the former can be much larger. To

deal with those files, we developed a distributed data repository called Opp-

Store (Camargo and Kon , 2007). Access to this distributed repository is

performed through a library called access broker, which interacts with Opp-

Store.

OppStore is a middleware that provides reliable distributed data storage

using free disk space from shared grid machines. The goal is to use this

free disk space in an opportunistic way, i.e., only during the idle periods

of the machines. The system is structured as a federation of clusters and

is connected by a Pastry peer-to-peer network (Rowstron, Druschel , 2001)

in a scalable and fault-tolerant way. This federation structure allows the

system to disperse application data throughout the grid. During storage, the

system slices the data into several redundant, encoded fragments and stores

them in different grid clusters. This distribution improves data availability

and fault-tolerance, since fragments are located in geographically dispersed

clusters. When performing data retrieval, applications can simultaneously

download file fragments stored in the highest bandwidth clusters, enabling

efficient data retrieval.

When an InteGrade user submits an application for execution, its input

files are first stored in distributed grid machines using the access broker. The

execution request is then sent to the GRM, which selects the LRMs that will

execute the application and forwards the request to those nodes. When a
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LRM receives an application execution request, it obtains the application

binary for its particular platform from the Application Repository and the

input file from OppStore. When the execution finishes, the output files are

stored in OppStore.

Using OppStore, application input and output files can be obtained from

any node in the system. Consequently, after a failure, restarting of an appli-

cation execution in another machine can be easily performed. Also, when an

application execution finishes, the output files uploaded to the distributed

repositories can be accessed by the user from any machine connected to the

grid.

To determine the availability of data stored in a large-scale grid composed

of non-dedicated machines, we simulated a grid composed of 100 clusters,

with the number of machines on each cluster randomly chosen as 10, 20,

50, 100, and 200. We defined three usage patterns, based on measurements

of machine utilization in different environments (Mutka and Livny , 1991;

Bolosky, Douceur, Ely and Theimer , 2000), and which are randomly assigned

to each cluster. In the first pattern, the mean idle time is 60% during the day

and 80% during the night and weekends. The second pattern has idle times

of 25% and 40%, and the third 40% and 70%, respectively. We distributed

the clusters uniformly across 24 time zones.

We simulated the storage of ten thousand files and attempted to later

retrieve those files, checking the number of fragments that could be recovered

for each file. The file retrieval requests were repeated during a simulated

period of one month. Figure 5 shows the percentage of successful retrieval

requests for the file retrieval attempts. Using only the idle periods of the
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Figure 5: Percentage of successful file retrieval requests.

shared machines to retrieve data in realistic situations, we could recover

enough fragments to reconstruct the files in 99.9% of the requests, for files

encoded in 24 fragments, from which 8 are required for reconstruction, a

replication factor of 3. When all the fragments necessary to reconstruct a

file are not available immediately, the broker can download the available

fragments and wait until the remaining fragments become available.

We also performed experimental evaluations (Camargo and Kon , 2007)

that showed that the time required to store and retrieve files in OppStore

is mostly dependent on the bandwidth of cluster connections. The broker

downloads the file fragments in parallel and, since the number of available

fragments is normally larger than the number of required fragments for file

reconstruction, the broker can choose the fragments located in the clusters

with the fastest connections. Consequently, file retrieval can be performed

very efficiently in OppStore.
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5. Fault Tolerance in Grid Environments

On opportunistic grids, application execution can fail due to several rea-

sons. System failures can result not only from an error on a single component

but also from the usually complex interactions between the several grid com-

ponents that comprise a range of different services. In addition to that, grid

environments are extremely dynamic, with components joining and leaving

the system at all times. Also, the likelihood of errors occurring during the

execution of an application is exacerbated by the fact that many grid appli-

cations will perform long tasks that may require several days of computation.

To provide the necessary fault tolerance functionality for grid environ-

ments, several services must be available, such as: (a) failure detection:

grid nodes and applications must be constantly monitored by a failure de-

tection service; (b) application failure handling: various failure handling

strategies can be employed in grid environments to ensure the continuity of

application execution; and (c) stable storage: execution states that allow

recovering the pre-failure state of applications must be saved in a data repos-

itory that can survive grid node failures. This section describes InteGrade

failure detection and handling techniques. InteGrade stable storage is based

on Oppstore, already presented on Section 4.3.

5.1. InteGrade Failure Detection

Failure detection is a very important service for large-scale opportunis-

tic grids. The very high rate of churn makes failures a frequent event and

the capability of the grid infrastructure to efficiently deal with them has a

direct impact on its ability to make progress. Hence, failed nodes should be
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detected quickly and the monitoring network should itself be reliable, so as

to ensure that a node failure does not go undetected. At the same time, due

to the scale and geographic dispersion of grid nodes, failure detectors should

be capable of disseminating information about failed nodes as fast and re-

liably as possible and work correctly even when no process has a globally

consistent view of the system. Moreover, the non-dedicated nature of oppor-

tunistic grids requires that solutions for failure detection be very lightweight

in terms of network bandwidth consumption and usage of memory and CPU

cycles of resource provider machines. Besides all of these requirements per-

taining to the functioning of failure detectors, they must also be easy to

set-up and use; otherwise they might be a source of design and configuration

errors. It is well-known that configuration errors are a common cause of Grid

failures (Medeiros et al. , 2003).

The aforementioned requirements are hard to meet as a whole and, to

the best of our knowledge, no existing work in the literature addresses all of

them. This is not surprising, as some goals, e.g., a reliable monitoring net-

work and low network bandwidth consumption, are inherently conflicting.

Nevertheless, they are all real issues that appear in large-scale opportunis-

tic grids, and reliable grid applications are expected to deal with them in

a realistic setting. The InteGrade failure detection service (Filho et al. ,

2008) is an attempt to achieve this goal. It includes a number of features

that, when combined and appropriately tuned, address all these challenges

while adopting reasonable compromises for the ones that conflict. The most

noteworthy features of the proposed failure detector are the following: (i)

a gossip- or infection-style approach (Renesse, Minsky and Hayden , 1998),
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meaning that the network load imposed by the failure detector scales well

with the number of processes in the network and that the monitoring network

is highly reliable and descentralized; (ii) self-adaptation and self-organization

in the face of changing network conditions; (iii) a crash-recover failure model,

instead of simple crash; (iv) ease of use and configuration; (v) low resource

consumption (memory, CPU cycles, and network bandwidth).

InteGrade’s failure detection service is completely decentralized and runs

on every grid node. Each process in the monitoring network established

by the failure detection service is monitored by K other processes, where

K is an administrator-defined parameter. This means that for a process

failure to go undetected, all the K processes monitoring it would need to

fail at the same time. Even for high process failure probabilities, e.g., 0.2,

a small value of K, such as 6 or 7, makes this event unlikely. A process

r which is monitored by a process s has an open TCP connection with it

through which it sends heartbeat messages and other kinds of information.

If r perceives that it is being monitored by more than K processes, it cancels

the monitoring relationship with a randomly chosen process, so as to keep the

number of monitoring connections as close as possible to K. Furthermore, r

also periodically checks whether the number of processes monitoring is lower

than K. If so, r asks a randomly chosen process to monitor it. It does this

periodically, so long as the sum of the number of processes monitoring r and

the number of processes that r has asked to monitor it (but have still not

answered) is lower than K. Evaluation of this simple approach has shown

that it yields considerable gains in reliability (Filho et al. , 2009) at a very

low cost in terms of extra control messages.
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InteGrade’s failure detector automatically adapts to changing network

conditions. Instead of using a fixed timeout to determine the failure of a pro-

cess, it continuously outputs the probability that a process has failed based

on the inter-arrival times of the last W heartbeats and the time elapsed since

the last heartbeat was received, where W is an administrator-defined param-

eter. The failure detector can then be configured to take recovery actions

whenever the failure probability reaches a certain threshold. Multiple thresh-

olds can be set, each one triggering a different recovery action, depending on

the application requirements.

We employ a reactive and explicit approach to disseminate information

about failed processes. This means that once a process learns about a new

failure it automatically sends this information to J randomly-chosen pro-

cesses that it monitors or that monitor it. The administrator-defined param-

eter J dictates the speed of dissemination. According to (Ganesh et al. ,

2003), for a system with N processes, if each process disseminates a piece

of information to (log n) + c randomly chosen processes, the probability that

the information does not reach every process in the system is e(−e
(−c)), with

n → ∞. For J = 7, this probability is less than 0.001. On the other hand,

no explicit action is taken to disseminate information about new processes.

Instead, processes get to know about new processes by simply receiving heart-

beat messages. Each heartbeat that a process p sends to a process q includes

some randomly chosen ids of K processes that p knows about. In a grid, it is

important to quickly disseminate information about failed processes in order

to initiate recovery as soon as possible and, when recovery is not possible

and the application has to be re-initiated, to avoid wasting grid resources.

26



On the other hand, information about new members is not so urgent, since

not knowing about new members in general does not keep grid applications

from making process.

Our group membership service is implemented in Lua (Ierusalimschy ,

1996), an extensible and lightweight programming language. Lua makes it

easy to use the proposed service from programs written in other programming

languages, such as Java, C, and C++. Moreover, it executes in several plat-

forms. Currently, we have successfully run the failure detector in Windows

XP, Mac OS X, and several flavors of Linux. The entire implementation of

the group membership service comprises approximately 80Kb of Lua source

code, including comments.

5.2. InteGrade Application Recovery

In order to overcome application execution failures, InteGrade provides

support for the most used failure handling strategies: (1) retrying: when

an application execution fails, it is restarted from scratch; (2) replication:

the same application is submitted for execution multiple times, generating

various application replicas; all replicas are active and execute the same code

with the same input parameters at different nodes; and (3) checkpointing:

periodically saves the process’ state in stable storage during the failure-free

execution time. Upon a failure, the process restarts from the latest available

saved checkpoint, thereby reducing the amount of lost computation. As part

of the application submission process, users can select the desired technique

to be applied in case of failure. These techniques can also be combined re-

sulting in four more elaborate failure handling techniques: retrying (without

checkpoint and replication), checkpointing (without replication), replication
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(without checkpointing), and replication with checkpointing.

The InteGrade checkpointing mechanism adds to the basic applica-

tion execution protocol steps responsible for gathering application state into

a checkpoint and its storage in machines executing the Autonomous Data

Repository (ADRs) module of OppStore. ADRs are located at resource

provider machines in the grid and are responsible for managing grid data

stored on these machines.

To gather application state, InteGrade includes a portable application-

level checkpointing mechanism (Camargo, Kon and Goldman , 2005) for

sequential, bag-of-tasks, and BSP parallel applications written in C. This

portability allows an application’s stored state to be recovered on a ma-

chine with a different architecture from the one where the checkpoint was

generated. In application-level checkpointing, the application is responsible

for providing the data that will be checkpointed. We implemented a pre-

compiler that inserts, into application code, the statements responsible for

gathering and restoring the application state from the checkpoint. To use

checkpointing, the user has to instrument the application source code us-

ing the precompiler and then recompile the application using his preferred

compiler. On BSP applications, checkpoints are generated immediately after

the end of a BSP synchronization phase. Since all messages are guaranteed

to be delivered during that phase, there is no risk of message losses or pro-

cesses receiving extra messages. For MPI parallel applications, we provide a

system-level checkpointing mechanism based on a coordinated protocol (Car-

dozo and Costa , 2008).

When the checkpointing library needs to store a checkpoint, it request
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a list of available ADRs from OppStore. When storing checkpoints, Opp-

Store selects only ADRs from the cluster where the application is running.

Comparing with the standard storage mode of OppStore, called perennial

mode and described in Section 4.3, checkpoint storage has lower overhead,

since all machines are physically close, but reduced fault-tolerance, since it

is vulnerable to cluster failures. A trade-off is achieved by storing part of the

checkpoints in the perennial mode. When storing checkpoints in the local

cluster, OppStore allows two storage strategies:

• Data replication: stores full copies of checkpoint data on different ma-

chines. This approach uses more storage space and network bandwidth,

but less processing power, since no coding is performed;

• Rabin’s classic Information Dispersal Algorithm (IDA) (Rabin , 1989):

encodes the checkpoint into redundant fragments, such that regener-

ating the original checkpoint is possible using only a subset of them.

This approach uses less network bandwidth and storage space, but more

processing power.

These two strategies allow the application library to select a trade-off

between the use of storage space and network bandwidth and the CPU time

necessary to encode the checkpoint. Checkpoint encoding and transfer are

performed by a separate application thread, allowing the application to con-

currently continue its execution. Finally, to improve performance, the library

transfers the several checkpoint fragments or replicas to the repositories in

parallel.

We evaluated the overhead of the checkpointing mechanism using the

29



replication and IDA strategies using a matrix multiplication (Hayashida et

al. , 2005) application. Figure 6 shows the results for the executions of the

application using two matrix sizes (3200x3200 and 4800x4800), configured to

run without checkpointing and with checkpointing using replication and two

IDA configurations. The first, IDA(7,1), generates 8 fragments from which 7

are required to reconstruct the original file, and the second, IDA(6,2), gen-

erates 8 fragments and require 6 for file reconstruction. We executed each

experiment 16 times, with the vertical bars showing the mean measured over-

head and the error bars representing the standard deviation. For a matrix

of size 4800x4800, which generates global checkpoints of 791MB, and a min-

imum interval between checkpoints of 60s, the overhead is 13% when using

replication, 18% when using IDA(7,1) and 20% for IDA(6,2). This overhead

can be reduced by increasing the checkpointing interval. For example, with a

checkpointing interval of 5 minutes, the overhead would be of approximately

2.6% using replication.

These results show that the use of checkpointing has low overhead even

when running coupled parallel applications that generate large checkpoints.

Using the IDA strategy causes a higher overhead, as it is necessary to encode

the checkpoints using processor cycles from the machines running the paral-

lel application. Using replication causes a smaller overhead, but uses more

network and storage resources. Since parallel applications run on grid clus-

ters composed of physically close machines and storage space is not a scarce

resource, the default strategy used is replication of the checkpoint data.

Replication of the execution of application tasks is another failure han-

dling technique commonly applied on grid environments. While checkpoint-
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Figure 6: Checkpointing execution overhead using different checkpointing strategies.

ing imposes an overhead to application execution (for gathering and storing

the execution state), replication requires a larger amount of grid resources

for executing the same task.

InteGrade allows replication for sequential, bag-of-tasks, MPI and BSP

applications. The amount of generated replicas is currently defined during

the application execution request, issued through the Application Submission

and Control Tool (ASCT). The request is forwarded to the Global Resource

Manager (GRM), which runs a scheduling algorithm that guarantees that all

replicas will be assigned to different nodes. Another InteGrade component,

called Application Replication Manager (ARM), concentrates most of the

code responsible for managing replication. The GRM instantiates a new
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ARM for every application execution request that demands replication. The

ARM gathers the application input files from the ASCT and forwards a

copy of the execution request to the LRM of every node involved with the

application execution. Each LRM instantiates an application process. The

ARM also registers each application process with the Execution Manager

(EM) and, in case of a replica failure, starts its recovery process. When

the first application replica concludes its job, the ARM kills the remaining

ones, releasing the allocated grid resources. In this way, the complexity of

replication is confined to the ARM code, minimizing the required changes on

InteGrade components to support replication.

6. Condor and InteGrade: a Comparative Analysis

A well known middleware system that allows the construction of oppor-

tunistic grids is Condor (Litzkow, Livny and Mutka , 1988; Thain, Tannen-

baum and Livny , 2005). The project started in 1988 and currently has a

mature implementation and a large number of users. It has some similar-

ities to InteGrade, such as the support for the opportunistic execution of

application in shared machines. It supports the execution of sequential and

parallel applications, including Parallel Virtual Machine (PVM) and MPI

applications. Scheduling in Condor is performed using a mechanism called

ClassAds, which tries to match advertised resources and application needs.

It also has a checkpointing mechanism for execution fault-tolerance, but it

works for sequential applications only.

The main difference between InteGrade and Condor is that InteGrade

focuses on the opportunistic usage of resources for the execution of coupled
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parallel applications. InteGrade has two mechanism for allowing this execu-

tion: (1) a usage pattern analyzer that predicts the amount of time that each

machine is likely to remain idle, and (2) a checkpoint-based rollback recovery

mechanism to allow failed BSP and MPI applications to be restarted from

the lasted saved checkpoint. Both mechanisms are central in the InteGrade

design and are a major difference between the systems.

7. Summary, Conclusions, and Future Directions

Opportunistic grid middleware enables the use of the existing computing

infrastructure available in laboratories and offices in universities, research

institutes, and companies to execute computationally intensive parallel ap-

plications. Nevertheless, executing this class of applications on such a dy-

namic and heterogeneous environment is a daunting task, especially when

non-dedicated resources are used, as in the case of opportunistic computing.

This article presented recent advances on the InteGrade opportunistic

grid middleware concerning the support for application execution, covering

the related fields of application scheduling, execution management, and fault

tolerance.

The InteGrade module called Local Usage Pattern Analyzer (LUPA) pre-

dicts each machine’s idle periods by locally performing Usage Pattern Anal-

ysis of machine resources using an unsupervised machine learning approach.

Experimental results demonstrate that the proposed strategy is very success-

ful in predicting idleness, with success rates above 90% at all times, leading

to better scheduling decisions and minimizing task migrations.

InteGrade is very flexible with respect to the supported application classes.
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It currently allows the execution of sequential, parametric (bag-of-tasks), and

parallel applications following either the BSP or MPI models. Native MPI

applications can be transparently deployed on an InteGrade grid, without

the need to modify their source code or even to recompile them. InteGrade’s

MPI support emphasizes scalability as well as the opportunistic use of idle

resources, which are not normally feasible with cluster-based MPI platforms.

It also allows the recovery of individual tasks of an application, which pre-

vents the whole application from being restarted from scratch. InteGrade

also allows the execution of BSP applications through the implementation

of several functions from the Oxford BSPlib, including both DRMA (di-

rect remote memory access) and BSMP (bulk synchronous message pass-

ing). Fault-tolerance for BSP applications is provided by an application-level

checkpointing mechanisms, which includes a precompiler that instruments

the application source code.

Concerning the management of application data, which includes the ap-

plication binaries, input and output data, InteGrade’s OppStore component

provides reliable distributed data storage using the free disk space from

shared grid machines in an opportunistic way, i.e., only during the idle pe-

riods of the machines. Experimental results demonstrate that OppStore can

recover enough fragments to reconstruct files in 99.9% of the tested requests

and that file retrieval can be performed very efficiently.

Since opportunistic grid environments are highly prone to failures, spe-

cial care was taken on InteGrade to circumvent application execution disrup-

tions. The failure detection infrastructure separates failure detection from

the dissemination of information about failures, allowing the grid adminis-
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trator to adjust two distinct parameters: the number of failure detectors

monitoring a node and the number of notified failure detectors. A gossip-

or infection-style approach is also used, leading to a scalable, reliable, and

decentralized monitoring approach. InteGrade provides support for replica-

tion, checkpointing, and retry recovery techniques that can also be combined

together in a flexible way. Checkpointing and replication are available for

sequential, bag-of-tasks, MPI and BSP parallel applications and experimen-

tal results demonstrate that checkpoint usage has a low overhead even when

running coupled applications that generate large checkpoints.

All those presented features, when combined, provide a robust and flexible

environment that allows the efficient execution of large scale, computationally-

intensive parallel applications, even on highly dynamic environments, such

as opportunistic grids. As future work we intend to deploy the InteGrade

middleware in a large opportunistic grid and evaluate its performance in a

real scenario with hundreds of machines and users. The InteGrade source

code and documentation is available as free software distributed under the

LGPL license at http://www.integrade.org.br.
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