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Abstract

The Message Passing Interface (MPI) is a popular pro-
gramming model for parallel applications. Support for MPI
in grid middleware is important for the widespread use of
grids for parallel programming. This enables existing par-
allel applications to be executed on large-scale grids, as
opposed to being restricted to local clusters. In the spe-
cific case of opportunistic grids, the use of idle comput-
ing power from non-dedicated computers further adds to
the range of resources that can be used. In this paper we
present MPICH-IG, an implementation of the MPI2 stan-
dard on top of the InteGrade grid middleware. Existing MPI
applications can be run unmodified, while taking advantage
of the InteGrade scheduler to harvest available computing
power from the grid. In addition, fault-tolerance of MPI ap-
plications is achieved through a checkpointing mechanism,
which allows applications to be resumed after failures of
particular grid nodes.

1 Introduction

One of the main motivations for the advent of grid com-
puting was the ability to provide high performance comput-
ing using widely available resources [4]. Arguably, grids
are strong candidates as execution environments for parallel
applications as they may be used to provide vast amounts of
computing power in a cost-effective way, without requiring
dedicated infrastructure. Opportunistic grids go one step
further by enabling such a scenario in a general purpose
computing environment where idle resources are harvested
and aggregated to run distributed applications.

Nevertheless, opportunistic grids pose extra complexity
to the running of parallel applications when compared to
dedicated cluster environments. In particular, this type of
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grid is very dynamic, which means that a number of ser-
vices have to be provided, among them: resource location
and scheduling; recovery from failures; security; and het-
erogeneity management. Although these services are com-
mon in grid computing middleware, it must be possible
for the parallel applications programmer to use them in a
transparent way, i.e, without requiring modification of the
source code. This can be achieved by modifying or re-
implementing parallel programming libraries so that they
use the grid middleware services instead of their own native
services to run the applications.

In this paper, we present MPICH-IG, an implementation
of the MPI2 standard for opportunistic grids. MPICH-IG
is based on MPICH2 [11], which has a modular architec-
ture that allows reuse of several of its components, as well
as clean replacement of those related to the management
of application execution, essential to effectively use the re-
sources of a computing grid. MPICH-IG is built on top
of the InteGrade platform, a CORBA-based object-oriented
grid computing middleware aimed at opportunistic grids
based on general purpose, non-dedicated, computers [5].

2 MPI and MPICH2 Architecture

The Message Passing interface (MPI) has become the de
facto standard for parallel applications programming [7]. Its
current version, MPI2, was released in 1997 and defines a
comprehensive set of functions for point-to-point communi-
cation, management of process groups, group communica-
tion, query about the execution state of processes, support
for distributed shared memory, and dynamic spawning of
processes [11].

Several implementations of the standard exist, among
them the open source MPICH2 [1]. One of the main char-
acteristics of MPICH2 is its modular, layered, architecture,
which clearly separates the implementation of the high level
protocols and functions of MPI2 from the low-level mech-
anisms used for interprocess communication and process
management. This makes it easier to port it to different



platform infrastructures. In this respect, the main element
of the architecture is the Abstract Device Interface (ADI),
which specifies the operations required from the low-level
communications protocol to support the MPI2 functions [6].
Through different implementations of the ADI, it is possi-
ble to seamlessly port (and optimize) MPICH2 to different
hardware and software platforms, which are called devices
in the MPICH2 terminology.

A number of implementations of the ADI exist, aimed
at different platforms, such as Globus and Myrinet. There
is also a generic implementation, called CH-3, which was
developed with the goal of further minimizing the set of op-
erations that must be re-implemented in order to port the
library to different platforms. CH-3 defines a lower layer,
called Channel Interface (CI), which specifies basic primi-
tives for interprocess communication, such as send, receive
and select. All higher-level communications features are
implemented in terms of these low-level primitives.

Another important module of the architecture is the Pro-
cess Manager Interface (PMI). It defines functions to man-
age communication among parallel processes, such as pro-
cess location, configuration of the communications environ-
ment (e.g., binding IP addresses and port numbers to pro-
cesses), dynamic creation of processes, and collection of
computation results. The most common implementation of
the PMI is the Multiporpose Daemon (MPD), which runs on
each machine that hosts MPI processes. When the user re-
quests the execution of an MPI parallel application (through
the mpiexec command), the involved MPDs exchange the
required information to enable communication among the
application’s processes. The MPDs also collect the output
of the application processes and send it to the the process
that requested the execution of the application.

2.1 Parallel Applications on the Grid

Computational grids have been proposed as an envi-
ronment to run parallel applications, mostly due to the
fact that they interconnect large amounts of computing re-
sources and their ability to transparently schedule and allo-
cate the resources that are most appropriate to run the ap-
plication’s processes. Scavenging or opportunistic grids go
one step further by allowing resources to be harvested from
general-purpose, non-dedicated, machines, contributing to
the cost/benefit relation. On the other hand, problems of re-
source location, communication and fault-tolerance become
more complicated due to the need to deal with the typical
heterogeneity of such grids and the fact that machines may
leave the grid when their resources are requested by the lo-
cal user, causing resource failures.

In order to deal with such problems, parallel program-
ming environments must be able to negotiate with a diverse
set of resource managers to run the applications on an in-

tegrated set of resources that span different administrative
domains. This metacomputing capability, however, is not
present in standard parallel programming environments like
MPI2 [3]. A solution to this problem is to modify the paral-
lel programming library to replace its process management
mechanisms with those of the grid middleware. This main-
tains the original programming model and enables trans-
parency to the parallel applications developer, as well as
the ability to run legacy parallel programs on the grid. This
approach is adopted in our implementation of MPI2 on top
of the InteGrade middleware.

3 Overview of InteGrade

The InteGrade project aims at building an object-
oriented grid middleware to use the idle capacity of non-
dedicated computing resources in an opportunistic setting.
One of the major design principles of InteGrade is to pro-
vide support for a rich set of parallel programming mod-
els, among them: Bag-of-Tasks (BoT), BSP (Bulk Syn-
chronous Parallelism), and MPI. In this section, we give a
brief overview of the architecture of InteGrade, focusing on
the elements that were relevant for the integration of the
MPI programming model and library. Further details can
be found elsewhere [5].

InteGrade architecture is based on CORBA [12], which
is the communications middleware that enables interaction
among InteGrade components. This includes the use of
standard CORBA services such as naming and trading. The
basic structural unit of an InteGrade grid is the cluster,
which may contain both dedicated and shared (i.e., used by
other applications) compute nodes, along with user nodes
(from which grid application execution is requested) and a
manager node, which manages and schedules the comput-
ing resources of the cluster. Each node in a cluster runs a
set of InteGrade components (i.e., CORBA objects), which
execute the meta-computing tasks of the grid. The main
components with respect to the implementation of MPICH-
IG are:

• GRM (Global Resource Manager): runs on the man-
ager node and is responsible for resource allocation
and application scheduling;

• LRM (Local Resource Manager): runs on each com-
pute node and monitors resource usage levels, sending
periodic notifications to the GRM. It also accepts and
processes requests to run grid applications on the node.

• AR (Application Repository): stores grid applications
in executable form, making them available so the
LRMs can run them.

• CDRM (Checkpointing Data Repository Manager):



provides to the checkpoint library the location of the
repositories where to store checkpoints in the cluster.

• CkpLib (Checkpoint Library): enables checkpointing
and recovery of the applications on a given node.

• CkpRep (Checkpoint Repository): stores checkpoint
data and provides such information when the applica-
tion needs to be recovered.

• EM (Execution Manager): manages application exe-
cution by monitoring the nodes where they are run. It
sends notifications when the application finishes, and
initiates recovery actions upon failures.

• ASCT (Application Submission and Control Tool):
GUI-based application used to submit, monitor and
collect the results of application execution.

These components communicate by using two CORBA-
compliant ORBs, namely JacORB1 for the components
written in Java, and OiL (ORB in Lua)2 for those written
in Lua or C/C++. The MPICH-IG library, described in the
next section, is implemented as a set of components that
complement this original InteGrade architecture.

4 MPICH-IG

As seen above, the approach we adopted for the imple-
mentation of MPICH-IG was to modify an existing MPI2
library, MPICH2, instead of heavily modifying the imple-
mentation of InteGrade itself. This is enabled by the ar-
chitecture of MPICH2, which encourages portability by re-
quiring only the re-implementation of its lowest, platform-
dependent, layers.

In order to adapt MPICH2 to run on InteGrade, two of
its interfaces had to be re-implemented: the Channel In-
terface (CI) and the Process Management Interface (PMI).
The former is required to monitor the sockets channel to de-
tect and treat failures through a mechanism of coordinated
checkpointing and recovery. The latter is necessary to cou-
ple the management of MPI applications with InteGrade’s
Execution Manager (EM), adding functions for process lo-
cation and synchronization, as well as to store checkpoints.
These interfaces are implemented by the modules IG-Sock
and IG-PM, respectively, replacing the corresponding mod-
ules of MPICH2 (Socket Channel and MPD), as shown in
Figure 1.

4.1 IG-PM

On a grid, the several processes that compose a par-
allel application may be geographically dispersed, requir-

1http://www.jacorb.org
2http://oil.luaforge.net

Figure 1. Differences between the standard
implementation of MPICH2 (a) and MPICH-IG
(b).

ing mechanisms to publish and discover the necessary in-
formation to establish communication among them. The
processes also need to synchronize their execution for the
purposes of coordination. In MPICH2, this service is pro-
vided by the MPD. However, the MPD does not deal with
resource heterogeneity and failures, which are common on
opportunistic grids. Thus, MPICH-IG replaces MPD with
the IG-PM component, which besides determining applica-
tion termination and collecting the results (with the help of
the LRMs), performs the following functions:

• loads, from the LRM, the necessary information to en-
able execution of the processes of an MPI application;
this information is passed to the LRM by the GRM
when requesting application execution) and comprises
the process rank (unique id), the number of processes,
and a numeric value representing the checkpoint inter-
val (in seconds);

• synchronizes and locates application processes: the
IG-PM running on each node must send to InteGrade’s
EM connection information (IP address and port num-
ber) of the local processes; in return, it receives, also
from the EM, similar connection information of all
other processes; and

• stores and recovers checkpoints: for this purpose, IG-
PM uses the CkpLib component of InteGrade, which
implements a given checkpointing and recovery strat-
egy.

The application execution protocol for MPICH-IG appli-
cations is similar to that for BSP applications [5]. Its first
steps basically consist of the user submitting the application
via the ASCT to the GRM, which uses resource availability
information to select the nodes to run the application and
informs the EM to start managing it. The GRM then sends
requests to the LRMs on the selected nodes to dispatch the



Figure 2. Execution of an MPI application on
InteGrade.

application processes. The LRMs in turn fetch the appli-
cation executable from the AR and the input data from the
ASCT, before dispatching the local application process and
notifying the execution to the ASCT. The next step, how-
ever, is specific to the execution of MPI applications, and
is used to publish MPI-specific connection information to
the several processes that compose the parallel application.
This step is detailed in the sequence diagram of Figure 2
and described next for one particular node involved in the
execution of the parallel application.

Once the LRM launches an application (1), the loca-
tion and synchronization process is initiated on each par-
ticipating process by the MPI Init and MPID Init calls
(2, 3), through which MPICH2 initializes its control vari-
ables, buffers and data structures. CH3 then calls IGPM’s
PMI Init function (4) to load application execution infor-
mation. It then calls IG-Sock’s MPIDI CH3 Init (5), which
initializes the necessary TCP/IP socket data structures. IG-
Sock initiates a server socket and records its IP address and
port number. It then calls IG-PM’s PMI Barrier (6) to syn-
chronize the execution of the local process with the other
processes that make up the parallel application. IG-PM
then uses InteGrede’s EM to publish the connection infor-
mation received from the local MPI process by calling reg-
isterMpiProcess (7, 8). The EM waits until all processes of
the MPI application are registered in this same way in or-
der to publish all the collected connection information back
to all of them. This modification takes advantage of EM’s
object-oriented architecture, which enables different appli-
cation management strategies to be implemented by inher-
iting from the standard implementation.

4.2 IG-Sock and Rollback Recovery

In an opportunistic grid, resources are non-dedicated and
can fail independently from each other, which may com-
promise long-running MPI applications. Support for some
form of fault-tolerance is thus of paramount importance

Figure 3. Architecture of the IG-Sock module.

for MPICH-IG, which uses an approach based on check-
pointing and recovery to avoid that applications need to be
restarted from scratch after failures. The IG-Sock module
implements a checkpoint strategy based on the MPICH-
Pcl version of MPICH-V, a fault-tolerant implementation
of MPI [10], for the creation of checkpoints based on dis-
tributed snapshots [2].

MPICH-Pcl enables checkpointing of processes that
communicate over a sockets channel, including the state of
the channel. It is extended by IG-Sock with functionality
that is specific to InteGrade: to define when to generate
checkpoints, to store checkpoints, and to recover the appli-
cation after failures. Currently, IG-Sock employs a blocking
protocol to obtain global checkpoints, although we plan to
extend it with a more efficient non-blocking protocol.

The architecture of IG-Sock is composed of three com-
ponents, as shown in Figure 3:

• FT-Sock: a re-implementation of MPICH2’s channel
interface; although it still uses TCP/IP sockets, it ex-
tends the original implementation to generate notifi-
cations when messages are sent and received, when
connections are established, and when communication
failures occur. These notifications are sent to the PCL
component to coordinate the creation of checkpoints.

• PCL: implements the checkpoint protocol based on
the notifications from FT-Sock and on the distributed
snapshot protocol. It also uses IG-PM to obtain infor-
mation about the application, notably the location to
store checkpoints and the interval for their generation.

• MpiChpLib: this is the actual implementation of the
checkpoint strategy; the two main options are system-
level (currently implemented using the BLCR library
[8]) and application-level checkpointing. This compo-
nent is also responsible for reconstructing the applica-
tion from a previously stored checkpoint, as seen next.



Figure 4. The application recovery protocol of
MPICH-IG.

4.3 Recovery Protocol

The application recovery protocol is illustrated in Figure
4. In InteGrade, when an application fails and has to be re-
covered, it is re-scheduled for execution in a similar way as
in the application execution protocol (steps 1 and 2), except
that application state is recovered from a checkpoint using
the checkpointing services of InteGrade (CDRM, CkpLib
and CkpRep), in steps 5-7, instead of being initialized from
input data provided by the ASCT. The components of IG-
Sock are responsible for determining that it is a recovery
of the application instead of its first launch ever. Finally,
connection information is obtained from the EM by the FT-
Sock component (steps 8-10).

5 Evaluation

In this section we provide a performance comparison of
MPICH-IG and MPICH2. Due to the fact that both use a
sockets channel for inter-process communication, we did
not observe a major performance difference. In fact, most
of the overhead of MPICH-IG is concentrated on the ini-
tial steps of application execution, due to the fact that the
application binaries need to be fetched from the application
repository before being launched locally on each machine.

A visible advantage of MPICH-IG is the use of Inte-
Grade’s scheduling to transparently selects the most appro-
priate resources, managing their allocation and use across
the application’s lifetime. In contrast, in MPICH2, the user
explicitly needs to define which nodes to use, as well as to
ensure that the application binaries are available on them.
In addition, the ability to use widely dispersed nodes con-
tributes to make larger amounts of resources available than
would be possible in a centralized cluster.

Figures 5 and 6 show a comparison of the execution
times for a parallel matrix multiplication application run-

ning on MPICH2 and MPICH-IG (without checkpointing)
with two different input sizes. The figures also compare
both results with the ”ideal” execution time, i.e., when the
application does not require interprocess communication.

Figure 5. Comparing the execution time
for multiplying two 1000x1000 matrices on
MPICH2 and MPICH-IG.

Figure 6. The same experiment for an input
size of 3000x3000.

As can be seen, an MPICH-IG application usually takes
longer to execute, although the absolute difference tends to
become smaller as the number of processes rises (the per-
cent difference seems to remain roughly the same though).
The overhead is mainly due to the application execution
protocol of MPICH-IG, as seen above, which requires the
transfer of application binaries to the compute nodes. This
is evidenced by the second experiment (Figure 6), in which
the computation of the larger instance size tends to diminish
the effect of the initial overhead.



6 Related Work

MPICH-G2 [9] is a port of MPICH to run on GTK4
grids. It is based on MPI-1 and uses GTK4’s services for
authentication, authorization, resource allocation and net-
work I/O, as well as for the creation, monitoring and con-
trol of processes. Similarly to MPICH-IG, it re-implements
the ADI interface. It also enables MPI applications to run
across multiple organizational domains and enables the pro-
grammer to select the most appropriate communications
topology for the application. Its main disadvantage is the
absence of a recovery service, which means that applica-
tions have to be restarted from scratch in case of failures.

MPICH-GF [13] is an extension of MPICH-G2 to pro-
vide transparent checkpoint-based recovery. It uses a
fixed checkpointing mechanism, based on TCP sockets and
system-level checkpoints. This limits the degree to which
MPI applications can be run on an heterogeneous grid. In
contrast, MPICH-IG’s modular architecture enables check-
point strategies to be seamlessly implemented and replaced.

Other MPI implementations focus specifically on fault-
tolerance and recovery. One example is MPICH-V [10],
with its two versions, MPICH-Pcl, which uses blocking
checkpoints, and the more efficient MPICH-Vcl, which
uses non-blocking checkpoint. However, MPICH-V only
runs on homogeneous clusters, although we used MPICH-
Pcl as part of the checkpointing solution of MPICH-IG.

7 Final Remarks

MPICH-IG enables the execution of legacy MPI applica-
tions on opportunistic grids based on InteGrade. Its archi-
tecture and implementation are based on MPICH2, which
has been adapted to use the resource management mecha-
nisms of the grid and augmented with services that are re-
quired in the grid environment, notably an automatic mech-
anism to recover applications after failures. The modu-
lar architecture of MPICH-IG (which was influenced by
the architecture of MPICH2) enables a clear separation be-
tween process management, communication and recovery
from failures. As a result, new communication channels
can be seamlessly added to MPICH-IG, such as one based
on CORBA to deal with more heterogeneous grids.

A preliminary performance evaluation was carried out
by comparing execution times in MPICH-IG and MPICH2.
The results have shown that the main overhead of MPICH-
IG (in the current implementation) is due to the initial steps
of application execution (application staging), which are not
present in MPICH2. This means that for long-running ap-
plications, the relative importance of this overhead becomes
insignificant. Furthermore, the presence of a checkpointing
mechanism enables more efficient recovery from failures
since applications do not have to be restarted from scratch.

As future work, we plan to replace the blocking check-
point protocol, currently provided by the PCL module, with
a non-blocking checkpointing mechanism to optimize the
generation of checkpoints. This implementation will de-
mand an extension of the architecture, including a new mod-
ule that will intercept received messages. We also plan to
provide support for the complete set of functions of MPI2,
as MPICH-IG currently does not provide support for the
dynamic creation (spawning) of application processes. This
implementation will require InteGrade to be extended with
a protocol to support the scheduling of dynamic process. Fi-
nally, we aim to implement other kinds of communication
channels, notably one based on CORBA to enhance inter-
operability in heterogeneous environments.
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