
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2009; 00:1–16 Prepared using cpeauth.cls [Version: 2002/09/19
v2.02]

MPI Support on
Opportunistic Grids based on
the InteGrade Middleware

M. C. Cardoso and F. M. Costa1 ∗,†

1 Institute of Informatics, Federal University of Goiás, Campus Samambaia,
Goiânia-GO, 74.690-815, Brazil

SUMMARY

The Message Passing Interface (MPI) is a popular programming model for parallel
applications. Support for MPI in grid middleware is important for the widespread use of
grids for parallel programming. This enables existing parallel applications to be executed
on large-scale grids, as opposed to being restricted to local clusters. In the specific case
of opportunistic grids, the use of idle computing power from non-dedicated computers
further adds to the range of resources that can be used. In this paper we present
MPICH-IG, an implementation of the MPI-2 standard on top of the InteGrade grid
middleware. Existing MPI applications can be run unmodified, while taking advantage of
the InteGrade scheduler to harvest available computing power from the grid. In addition,
fault-tolerance of MPI applications is achieved through a checkpointing mechanism,
which allows applications to be resumed after failures of particular grid nodes.
Copyright c© 2009 John Wiley & Sons, Ltd.

key words: Grid computing; opportunistic grids; Message-Passing Interface; parallel applications

1. INTRODUCTION

One of the main motivations for the advent of grid computing was the ability to provide
high performance computing using widely available resources [1]. Arguably, grids are strong
candidates as execution environments for parallel applications as they may be used to
provide vast amounts of computing power in a cost-effective way, without requiring dedicated

∗Correspondence to: Instituto de Informática, Universidade Federal de Goiás, Campus Samambaia, Goiânia-
GO, 74.690-815, Brazil
†E-mail: fmc@inf.ufg.br
Contract/grant sponsor: CNPq–Brazil; contract/grant number: 55.0895/2007-8
Contract/grant sponsor: FAPEG–Goiás–Brazil; contract/grant number: Chamada 02/2007
Contract/grant sponsor: FINEP–Brazil; contract/grant number: 01.08.0166.00

Received 01 March 2009
Copyright c© 2009 John Wiley & Sons, Ltd. Revised 10 May 2009



2 M. C. CARDOSO AND F. M. COSTA

infrastructure. Opportunistic grids go one step further by enabling such a scenario in a general
purpose computing environment where idle resources are harvested and aggregated to run
distributed applications.

Nevertheless, opportunistic grids pose extra complexity for running parallel applications
when compared to dedicated cluster environments. In particular, this type of grid is very
dynamic, which means that a number of services have to be provided, among them: resource
location and scheduling; recovery from failures; security; and heterogeneity management.
Although these services are common in grid computing middleware, it must be possible for
the parallel applications programmer to use them in a transparent way, i.e, without requiring
modification of the source code. This can be achieved by modifying or re-implementing parallel
programming libraries so that they use the grid middleware services instead of their own native
services to manage application execution.

In this paper, we present MPICH-IG, an implementation of the MPI-2 standard [2] for
opportunistic grids. MPICH-IG is based on MPICH2 [3], which has a modular architecture
that allows reuse of several of its components, as well as clean replacement of those components
related to the management of application execution, essential to effectively use the resources of
a computing grid. The main feature of MPICH-IG is the ability to run native MPI applications
on resources that are used in an opportunistic way. This is complemented by fault tolerance
mechanisms that enable individual tasks of an MPI application to be recovered after failure,
based on previously taken checkpoints. MPICH-IG is built on top of the InteGrade platform,
an object-oriented grid computing middleware based on CORBA (Common Object Request
Broker Architecture) [4] and aimed at opportunistic grids that are built using general purpose,
non-dedicated, computers [5].

The paper is structured as follows. Section 2 discusses the architecture of MPICH2, with
emphasis on the features that enable its use to implement MPICH-IG. Section 3 reviews the
overall architecture of the InteGrade grid computing middleware, with a focus on application
execution management. Section 4 presents the architecture and implementation of MPICH-
IG, including its fault-tolerance features, while Section 5 discusses some evaluation results and
Section 6 considers related work. Section 7 presents final remarks and considerations.

2. MPI AND MPICH2 ARCHITECTURE

The Message Passing interface (MPI) has become the de facto standard for parallel applications
programming [6]. It provides a comprehensive set of functions for the management and
communication of parallel processes, also enabling a level of distribution transparency to the
developer. The first version of the MPI standard was released in 1995 and contains functions for
point-to-point communication (both blocking and non-blocking), definition and management
of process groups, group communication, and query about the execution state of processes.
The second version of the standard, MPI-2, released in 1997, augmented the interface with
two extra set of functions, respectively for the support to distributed shared memory and for
the dynamic spawning of parallel processes [2].

Several implementations of the standard exist, among them the open source MPICH2 [3].
One of the main characteristics of MPICH2 is its modular, layered, architecture, which clearly

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 3

Figure 1. The layered structure of MPICH2.

separates the implementation of the high level protocols and functions of MPI-2 from the
low-level mechanisms used for interprocess communication and process management. This
makes it easier to port MPICH2 to different platform infrastructures. In this respect, the
main element of the architecture is the Abstract Device Interface (ADI), which specifies
the operations required from the low-level communications protocol to support the MPI-2
functions [7]. Through different implementations of the ADI, it is possible to seamlessly port
(and optimize) MPICH2 to different hardware and software platforms, which are called devices
in the MPICH2 terminology. The layered architecture of MPICH2 is presented in Figure 1,
which shows the structure of ADI-3, the latest implementation of the ADI.

A number of implementations of the ADI exist, aimed at different platforms, such as Globus
and Myrinet. There is also a generic implementation, called CH-3, which was developed with
the goal of further minimizing the set of operations that must be re-implemented in order to
port the library to different platforms. CH-3 defines a lower layer, called Channel Interface
(CI), which specifies basic primitives for interprocess communication, such as send, receive and
select, which in turn may be implemented using mechanisms such as shared memory, Remote
Direct Memory Access (RDMA) and TCP sockets. All higher-level communications features
are implemented in terms of these low-level primitives.

Another important module of the architecture, also shown in Figure 1, is represented by
the Process Manager Interface (PMI). It defines functions to manage communication among

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



4 M. C. CARDOSO AND F. M. COSTA

parallel processes, such as process location, configuration of the communications environment
(e.g., binding IP addresses and port numbers to processes), dynamic creation of processes,
and collection of computation results. The most common implementation of the PMI is
the Multipurpose Daemon (MPD), which runs on each machine that hosts MPI processes.
When the user requests the execution of an MPI parallel application (through the mpiexec
command), the involved MPDs exchange the required information to enable communication
among the application’s processes. The MPDs also collect the output of the application
processes and send it to the the process that requested the execution of the application.
Another common implementation of the PMI interface is the forker process management
system, which simply starts MPI tasks as processes on a single machine. In this work, we
propose an altogether different implementation of the PMI, based on InteGrade’s mechanisms
for managing application execution, as seen in Section 4.

2.1. Parallel Applications on the Grid

Computational grids have been proposed as an environment to run parallel applications, mostly
due to the fact that they interconnect large amounts of computing resources and their ability
to transparently schedule and allocate the resources that are most appropriate to run the
application’s processes. Scavenging or opportunistic grids go one step further by allowing
resources to be harvested from general-purpose, non-dedicated, machines, contributing to the
cost/benefit relation. On the other hand, problems of resource location, communication and
fault-tolerance become more complicated due to the need to deal with the typical heterogeneity
of such grids and the fact that machines may leave the grid when their resources are requested
by the local user, causing resource failures.

In order to deal with such problems, parallel programming environments must be able to
negotiate with a diverse set of resource managers to run the applications on an integrated set of
resources that span different administrative domains. This metacomputing capability, however,
is not present in standard parallel programming environments like MPI-2 [8]. A solution to
this problem is to modify the parallel programming library to replace its process management
mechanisms with those of the grid middleware. This maintains the original programming model
and enables transparency to the parallel applications developer, as well as the ability to run
legacy parallel programs on the grid. This approach is adopted in our implementation of MPI-2
on top of the InteGrade middleware.

3. OVERVIEW OF INTEGRADE

The InteGrade project aims at building an object-oriented grid middleware to use the idle
capacity of non-dedicated computing resources in an opportunistic setting. One of the major
design principles of InteGrade is to provide support for a rich set of parallel programming
models, among them: Bag-of-Tasks, Bulk Synchronous Parallelism (BSP), and MPI. In this
section, we give a brief overview of the architecture of InteGrade, focusing on the elements
that were relevant for the integration of the MPI programming model and library. Further
details can be found in [5].

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 5

Figure 2. Software components in an InteGrade cluster.

InteGrade architecture is based on CORBA [4], which is the communications middleware
that enables interaction among InteGrade components. This includes the use of standard
CORBA services, most notably the trading service, which is used to discover instances of the
components (see below) that make up the grid support infrastructure. The basic structural unit
of an InteGrade grid is the cluster, which may contain both dedicated and shared (i.e., used
by other applications) computing nodes, along with user nodes (from which grid application
execution is requested) and a manager node, which manages and schedules the computing
resources of the cluster. An InteGrade grid is thus comprised of a potentially large federation of
clusters, which may be structured in a hierarchical way, further contributing to its scalability,
as described in [5]. As shown in Figure 2, each node in a cluster runs a set of InteGrade
components (i.e., CORBA objects), which execute the meta-computing tasks of the grid.

The main components of InteGrade, with respect to the implementation of MPICH-IG, are
described next. The checkpoint-related components, as, which are of particular importance in
this work, are further described in [9].

• GRM (Global Resource Manager): runs on the manager node and is responsible for
resource allocation and application scheduling;

• LRM (Local Resource Manager): runs on each computer node and monitors resource
usage levels, sending periodic notifications to the GRM. It also accepts and processes
requests to run grid applications on the node.

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



6 M. C. CARDOSO AND F. M. COSTA

• AR (Application Repository): stores grid applications in executable form, making them
available so the LRMs can run them.

• CDRM (Checkpointing Data Repository Manager): this component maintains
information about the checkpoint repositories (CkpRep) of a cluster. Such information
is provided to the checkpointing library (CkpLib) when it needs to store or retrieve
application checkpoints.

• CkpLib (Checkpoint Library): enables checkpointing and recovery of the applications
running on a given resource provider node. The checkpoint library interacts with CDRM
to obtain the list of repositories available to store checkpoints in the cluster. Importantly,
its architecture enables the decoupling of the actual library used to generate checkpoints
and the mechanism used to store and retrieve such checkpoints. In this way, InteGrade
is able to support a variety checkpoint generation strategies.

• CkpRep (Checkpoint Repository): also called ADR (Autonomous Data Repository), this
component stores checkpoint data and enables them to be retrieved when the application
needs to be recovered.

• EM (Execution Manager): manages application execution by monitoring the nodes where
applications are run. It sends notifications when the application finishes, and coordinates
the reinitialization process when an application fails.

• ASCT (Application Submission and Control Tool): GUI-based application used to
submit, monitor and collect the results of application execution.

These components communicate using two CORBA-compliant ORBs, namely JacORB [10]
for the components written in Java, and OiL (ORB in Lua) [11, 12] for those written in Lua
or C/C++. MPICH-IG, described in the next section, is implemented as a set of components
that extend and complement this original InteGrade architecture. In particular, the checkpoint
and recovery components of InteGrade, originally designed for BSP applications, have been
adapted, together with MPICH2, in order to provide such fault-tolerant behavior for MPI
applications as well. MPICH2 has also been modified in order to seamlessly use the application
management protocols implemented by the GRM and EM components.

4. MPICH-IG

As seen above, the approach we adopted for the implementation of MPICH-IG was to modify
an existing MPI-2 library, MPICH2, instead of significantly modifying the implementation of
InteGrade itself. This is enabled by the architecture of MPICH2, which encourages portability
by requiring only the re-implementation of its lowest, platform-dependent, layers.

Figure 3 shows how MPICH-IG fits in the InteGrade architecture as a layer on top of which
MPI applications run. As the figure suggests, as far as InteGrade is concerned, the MPI support
provided by MPICH-IG is considered as part of the grid application. In fact, when launching an
MPI-based grid application, the whole package comprised by MPICH-IG and the application
itself is fetched from the application repository and put to run on each of the selected grid
nodes. As discussed in Section 5, this represents an initial overhead in terms of the overall
application execution time. Nevertheless, it has the advantage of not requiring the machines

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 7

Figure 3. Layered structure for the integration of MPICH-IG and InteGrade.

on the grid to be previously prepared to support MPI applications. All that is required from
those machines is the usual InteGrade support. As a further consequence of this approach,
InteGrade becomes independent of the particular MPI-2 implementation in use. For instance,
we could replace MPICH2 with LAM/MPI [13] without having to change InteGrade (LAM
MPI would have to be adapted instead).

In order to adapt MPICH2 to run on InteGrade, two of its interfaces had to be re-
implemented: the Channel Interface (CI) and the Process Management Interface (PMI).
The former is required to monitor the sockets channel to detect and treat failures through
a mechanism of coordinated checkpointing and recovery. The latter is necessary to couple the
management of MPI applications with InteGrade’s Execution Manager (EM), adding functions
for process location and synchronization, as well as to store checkpoints. These interfaces are
implemented by the modules IG-Sock and IG-PM, respectively, replacing the corresponding
modules of MPICH2, Socket Channel (the original implementation of the CI) and MPD (the
multipurpose daemon, original implementation of the PMI), as shown in Figure 4. As the
figure (part b) suggests, InteGrade is used as the support for process management, enabling
grid resources to be transparently scheduled to run MPI applications. The communications
channel, in turn, is still based on TCP sockets for the sake of efficiency (the changes introduced
by IG-Sock are mostly concerned with instrumenting the channel for application checkpointing
and recovery). A CORBA-based implementation of the channel is considered for future work,
enabling better interoperability and the use of CORBA’s firewall/NAT traversal mechanisms
for inter-cluster communication.

Regarding changes to the InteGrade middleware, the approach followed by MPICH-IG
requires only a minor modifications to the Execution Manager (EM) and ASCT components.
The EM has been changed in order to enable it to collect connection information from the
MPI application’s processes during the synchronization phase (right after application launch).
Such information is provided by each MPI processes in the form of key:value pairs, which

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



8 M. C. CARDOSO AND F. M. COSTA

Figure 4. Differences between the standard implementation of MPICH2 (a) and MPICH-IG (b).

contain, among other things, the IP address and port number that identify the process. This
information, however, is treated as opaque data by the EM, which simply relays it to each and
every process comprising the MPI application. Finally, the change to the ASCT component
consists simply in adding an extra option in its GUI (Graphical User Interface) to allow the
user to request the execution of MPI applications, as shown in Figure 5

4.1. IG-PM

On a grid, the several processes that compose a parallel application may be geographically
dispersed, requiring mechanisms to publish and discover the necessary information in order to
establish communication among them. The processes also need to synchronize their execution
for the purposes of coordination. In MPICH2, this service is provided by the MPD daemon.
However, MPD does not deal with resource heterogeneity and failures, which are common
in opportunistic grids. Thus, MPICH-IG replaces MPD with the IG-PM component, which,
besides determining application termination and collecting the results (with the help of the
LRMs), performs the following functions:

• loads, from the LRM, the necessary information to enable execution of the processes
of an MPI application; this information is passed to the LRM by the GRM when
requesting application execution) and comprises the process rank (unique id), the number
of processes, and a numeric value representing the checkpoint interval (in seconds);

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 9

Figure 5. ASCT GUI interface with new option for MPI applications.

• synchronizes and locates application processes: the IG-PM running on each node must
send to InteGrade’s EM connection information (IP address and port number) of the
local processes; in return, it receives, also from the EM, similar connection information
about all other processes; and

• stores and recovers checkpoints: for this purpose, IG-PM uses the CkpLib component of
InteGrade, which implements a given checkpointing and recovery strategy.

The application execution protocol for MPICH-IG applications is similar to that for BSP
applications [5]. Its first steps basically consist of the user submitting the application via
ASCT to GRM, which uses resource availability information to select the nodes to run the
application and informs the EM to start managing it. The GRM then sends requests to the
LRMs on the selected nodes to dispatch the application processes. The LRMs in turn fetch the
application executable from the AR and the input data from the ASCT, before dispatching the
local application process and notifying the execution to the ASCT. The next step, however, is
specific to the execution of MPI applications, and is used to publish MPI-specific connection
information to the several processes that compose the parallel application. This step is detailed
in the sequence diagram of Figure 6 and described next for one particular node involved in
the execution of the parallel application.

Once the LRM launches an application (1), the location and synchronization process is
initiated on each participating process by the MPI Init and MPID Init calls (2, 3), through
which MPICH2 initializes its control variables, buffers and data structures. CH3 then calls
IGPM’s PMI Init function (4) to load application execution information. It then calls IG-

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



10 M. C. CARDOSO AND F. M. COSTA

Figure 6. Execution of an MPI application on InteGrade.

Sock’s MPIDI CH3 Init (5), which initializes the necessary TCP/IP socket data structures.
IG-Sock initiates a server socket and records its IP address and port number. It then calls
IG-PM’s PMI Barrier (6) to synchronize the execution of the local process with the other
processes that make up the parallel application. IG-PM then uses InteGrede’s EM to publish
the connection information received from the local MPI process by calling registerMpiProcess
(7, 8). The EM waits until all processes of the MPI application are registered in this same
way in order to publish all the collected connection information back to all of them. This
modification of the EM is the only implementation change that is required on InteGrade.
It takes advantage of EM’s object-oriented architecture, which enables different application
management strategies to be implemented by inheriting from the standard implementation.

4.2. IG-Sock

In an opportunistic grid, resources are non-dedicated and can fail independently from each
other, which may compromise long-running MPI applications. Support for fault-tolerance is
thus of paramount importance for MPICH-IG, which uses an approach based on checkpointing
and recovery to avoid that applications need to be restarted from scratch after failures.
The IG-Sock module implements a checkpoint strategy based on the MPICH-Pcl version
of MPICH-V, a fault-tolerant implementation of MPI [14], for the creation of checkpoints
based on a distributed snapshot protocol to determine consistent cuts among the application’s
processes [15].

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 11

Figure 7. Architecture of the IG-Sock module.

MPICH-Pcl enables checkpointing of processes that communicate over a sockets channel.
Checkpoints include not only the local state of the processes themselves, but also the state
of the communications channel. IG-Sock extends MPICH-Pcl with features that are specific
to InteGrade: to ability to determine when to generate checkpoints; checkpoint storage; and
application recovery after failures. Currently, IG-Sock employs a blocking protocol to obtain
global checkpoints, although we plan to re-implement it with a more efficient non-blocking
protocol in the near future.

The architecture of IG-Sock is composed of three components, as shown in Figure 7:

• FT-Sock: a re-implementation of MPICH2’s channel interface; although it still uses
TCP/IP sockets, it extends the original implementation to generate notifications
when messages are sent and received, when connections are established, and when
communication failures occur. These notifications are sent to the PCL component to
coordinate the creation of checkpoints.

• PCL: implements the protocol to find consistent cuts based on the notifications it receives
from FT-Sock and on the distributed snapshot protocol [15]. It also uses IG-PM to obtain
information about the application, notably the location to store checkpoints and the
interval for checkpoint generation.

• MpiCkpLib: this is the actual implementation of the checkpoint strategy; the two
main options are system-level, currently implemented by wrapping the Berkeley Lab
Checkpoint/Restart (BLCR) library [16], and application-level checkpointing (not

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



12 M. C. CARDOSO AND F. M. COSTA

Figure 8. The application recovery protocol of MPICH-IG.

currently implemented). This component is also responsible for reconstructing the
application from a previously stored checkpoint, as seen next.

As a result MPICH-IG has a modular implementation of checkpoints, meaning that each
of these components can be implemented in different ways, with different protocols and
mechanisms, without compromising the other components. For instance, the checkpoint
generation protocol can be changed by replacing BLCR with a different (e.g., application-level)
checkpoint strategy. As another example, the implementation of FT-Sock can be replaced with
a CORBA-based channel, provided that the latter also sends the usual notifications to the PCL
component.

4.3. Recovery Protocol

The application recovery protocol is illustrated in Figure 8. In InteGrade, when an application
fails and has to be recovered, it is re-scheduled for execution in a similar way as in the
application execution protocol (steps 1 and 2), except that the application state is recovered
from a checkpoint using the checkpointing services of InteGrade (CDRM, CkpLib and
CkpRep), in steps 5-7, instead of being initialized from input data provided by the ASCT. The
components of IG-Sock are responsible for determining that it is a recovery of the application
instead of its first launch ever. Finally, connection information is obtained from the EM by
the FT-Sock component (steps 8-10).

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 13

Figure 9. Comparing the execution time for multiplying two 1000x1000 matrices on MPICH2 and
MPICH-IG.

5. EVALUATION

In this section we provide a performance comparison of MPICH-IG and MPICH2. Due to the
fact that both use a socket-based channel for inter-process communication, we did not observe
a major performance difference. In fact, most of the overhead of MPICH-IG is concentrated
on the initial steps of application execution, due to the fact that the application binaries need
to be fetched from the application repository before being launched locally on each machine.
In contrast, in MPICH2, the application binaries must be previously installed on each node.

A visible advantage of MPICH-IG is the use of InteGrade’s scheduling to transparently select
the most appropriate resources, managing their allocation and use across the application’s
lifetime. In contrast, in MPICH2, the user explicitly needs to define which nodes to use, as
well as to ensure that the application binaries are available on them. In addition, the ability
to use widely dispersed nodes contributes to make larger amounts of resources available than
would be possible in a centralized cluster.

Figures 9 and 10 show a comparison of the execution times for a parallel matrix
multiplication application running on MPICH2 and MPICH-IG (without checkpointing) with
two different input sizes. To put the results in perspective, the figures also show a hypothetical
case (called “ideal”) when the execution time does not include the overhead of managing
application execution (i.e., considering the same set of tasks, but with all tasks running
independently of each other).

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



14 M. C. CARDOSO AND F. M. COSTA

Figure 10. The same experiment for an input size of 3000x3000.

As can be seen, an MPICH-IG application usually takes longer to execute, although the
absolute difference tends to become smaller as the number of processes rises (the percent
difference remains roughly the same though). The overhead is mainly due to the application
execution protocol of MPICH-IG, as seen above, which requires the transfer of application
binaries to the computing nodes. This becomes clear in the second experiment (Figure 10), in
which the computation of the larger instance size diminishes the effect of the initial overhead.
This latter result is particularly promising as computer grids are typically used to run long-
running applications.

Further experiments are part of our ongoing work and include an evaluation of the
checkpointing and recovery mechanisms, as well as the use of MPICH-IG to execute long-
running applications in more realistically sized grids.

6. RELATED WORK

MPICH-G2 [17] is a port of MPICH to run on GTK4 (Globus Toolkit version 4) grids. It is
based on MPI-1 and uses GTK4’s services for authentication, authorization, resource allocation
and network I/O, as well as for the creation, monitoring and control of processes. Similarly to
MPICH-IG, it re-implements the ADI interface. It also enables MPI applications to run across
multiple organizational domains and enables the programmer to select the most appropriate

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 15

communications topology for the application. Its main disadvantage is the absence of a recovery
service, which means that applications have to be restarted from scratch in case of failures.

MPICH-GF [18] is an extension of MPICH-G2 to provide transparent checkpoint-based
recovery. It uses a fixed checkpointing mechanism, based on TCP sockets and system-level
checkpoints. This limits the degree to which MPI applications can be run on an heterogeneous
grid. In contrast, MPICH-IG’s modular architecture enables checkpoint strategies to be
seamlessly implemented and replaced.

A few MPI implementations focus specifically on fault-tolerance and recovery. One example
is MPICH-V [19], with its two versions, MPICH-Pcl, which uses blocking checkpoints, and the
more efficient MPICH-Vcl, which uses non-blocking checkpoint. However, MPICH-V only runs
on homogeneous clusters, although we used MPICH-Pcl as part of the checkpointing solution
of MPICH-IG. Another example is the fault-tolerance extension of Open MPI [20]. It takes
advantage of the modular, framework-based, architecture of Open MPI to enable the seamless
integration of different alternative strategies for checkpoint and recovery. In this respect it
pursues a similar goal as MPICH-IG. Nevertheless, Open MPI is meant for use in dedicated
clusters, as opposed to opportunistic grid settings.

7. FINAL REMARKS

MPICH-IG enables the execution of legacy MPI applications on opportunistic grids based on
InteGrade. Its architecture and implementation are based on MPICH2, which has been adapted
to use the resource management mechanisms of the grid and augmented with services that are
required in the grid environment, notably an automatic mechanism to recover applications after
failures. The modular architecture of MPICH-IG (which was influenced by the architecture
of MPICH2) enables a clear separation between process management, communication and
recovery from failures. As a result, new communication channels can be seamlessly added to
MPICH-IG, such as one based on CORBA to deal with more heterogeneous grids.

A performance evaluation was carried out by comparing execution times of a simple
application in MPICH-IG and MPICH2. The results have shown that the main overhead of
MPICH-IG is due to the initial steps of application execution (application staging), which are
not present in MPICH2. We believe that for long-running applications the relative importance
of this overhead will become less significant. Such overhead can also be compensated by the
ability to run MPI applications over a potentially larger set of resources (resulting from the
opportunistic harvesting of idle, non-dedicated, machines) than it would be possible in more
conventional MPI settings, usually restricted to local dedicated clusters. Furthermore, the
presence of a checkpointing mechanism enables more efficient recovery from failures since
applications do not have to be restarted from scratch.

As future work, we plan to replace the blocking checkpoint protocol, currently provided by
the PCL module, with a non-blocking checkpointing mechanism to optimize the generation
of checkpoints. This implementation will demand an extension of the architecture, including
a new module that will intercept received messages. We also plan to provide support for the
complete set of functions of MPI-2, as MPICH-IG currently does not provide support for
the dynamic creation (spawning) of application processes. This implementation will require

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



16 M. C. CARDOSO AND F. M. COSTA

InteGrade to be extended with a protocol to support the scheduling of new tasks that were
created after the initial scheduling of a grid application. Finally, we aim to implement other
kinds of communication channels, notably one based on CORBA to enhance interoperability
in heterogeneous environments.

The current release of MPICH-IG can be obtained from http://www.integrade.org.br, as
part of the InteGrade distribution.

REFERENCES

1. Foster I, Kesselman C. The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann
Publishers: San Francisco, 2003.

2. Huss-Lederman S. MPI-2: Extensions to the message passing interface. Technical Report, MPI Forum July
1997.

3. Gropp W. MPICH2: A new start for MPI implementations. Proceedings of the 9th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Springer-Verlag: London, UK, 2002; 7.

4. OMG. The Common Object Request Broker Architecture (CORBA/IIOP). Object Management Group,
Needham, MA, rev. 3.1 edn. January 2008.

5. Goldchleger A, Kon F, Goldman A, Finger M, Bezerra GC. InteGrade: Object-Oriented Grid Middleware
Leveraging Idle Computing Power of Desktop Machines. Concurrency and Computation: Practice and
Experience March 2004; 16(5):449–459.

6. Gropp W, Lusk E, Skjellum A. Using MPI: Portable Parallel Programming with the Message Passing
Interface, vol. 1. The MIT Press, 1994.

7. Thakur R, Gropp W, Lusk E. An abstract-device interface for implementing portable parallel-I/O
interfaces. Proc. of the 6th Symposium on the Frontiers of Massively Parallel Computation, Annapolis-
MD, 1996; 180–187.

8. Foster I, Geisler J, Gropp W, Karonis N, Lusk E, Thiruvathukal G, Tuecke S. Wide-area implementation
of the Message Passing Interface. Parallel Computing 1998; 24(12–13):1735–1749.

9. de Camargo RY, Kon F, Cerqueira R. Strategies for checkpoint storage on opportunistic grids. IEEE
Distributed Systems Online 2006; 7(9):1.

10. Brose G, Vogel A, Duddy K. Java Programming with CORBA, Third Edition. John Wiley & Sons, Inc.:
New York, NY, USA, 2001.

11. Distributed Systems Group. OIL – The Lua Object Request Broker. http://oil.luaforge.net/ (Accessed:
August 27, 2009).

12. Maia R, Cerqueira R, Kon F. A middleware for experimentation on dynamic adaptation. ARM ’05:
Proceedings of the 4th workshop on Reflective and adaptive middleware systems, ACM: New York, NY,
USA, 2005.

13. Burns G, Daoud R, Vaigl J. LAM: An Open Cluster Environment for MPI. Proceedings of Supercomputing
Symposium, Toronto-Canada, 1994; 379–386.

14. MPICH-V. MPICH-V: MPI implementation for volatile resources. http://mpich-v.lri.fr/ (Accessed:
August 27, 2009).

15. Chandy KM, Lamport L. Distributed snapshots: Determining global states of distributed systems. ACM
Transactions on Computer Systems Feb 1985; 3(1):63–75.

16. Hargrove PH, Duell JC. Berkeley Lab checkpoint/restart (BLCR) for Linux clusters. Proceedings of
SciDAC 2006 – Scientific Discovery Through Advanced Computing, Denver, 2006; 494–499.

17. Karonis NT, Toonen B, Foster I. MPICH-G2: A grid-enabled implementation of the message passing
interface. Journal of Parallel and Distributed Computing May 2003; 63(5):551–563.

18. Woo N, Jung H, Shin D, Han H, Yeom HY, Park T. Performance evaluation of consistent recovery protocols
using MPICH-GF. EDCC, Lecture Notes in Computer Science, vol. 3463, Cin MD, Kaniche M, Pataricza
A (eds.), Springer, 2005; 167–178.

19. Bosilca G, Bouteiller A, Cappello F, Djilali S, Fedak G, Germain C, Herault T, Lemarinier P, Lodygensky
O, Magniette F, et al.. MPICH-V: toward a scalable fault tolerant MPI for volatile nodes. Supercomputing
’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, IEEE Computer Society Press:
Los Alamitos, CA, USA, 2002; 1–18.

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls



MPI SUPPORT ON OPPORTUNISTIC GRIDS 17

20. Hursey J, Squyres JM, Mattox TI, Lumsdaine A. The design and implementation of checkpoint/restart
process fault tolerance for Open MPI. Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE Computer Society, 2007.

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–16
Prepared using cpeauth.cls


