
An Interceptor Model to Provide Dynamic Adaptation in the
InteGrade Grid Middleware

Jesus José de Oliveira Neto, Fábio M. Costa

1Institute of Computing – Federal University of Goiás
Campus 2 - UFG, 74690-815 - Goiânia-GO, Brazil

{jesus,fmc}@inf.ufg.br

Abstract. Computer grids typically combine computational resources of diverse
types, such as storage, processing and scientific instruments, spread across dif-
ferent administrative domains. As a result, computer grids are a complex and di-
versified execution environment, which exhibit high variation of resource avail-
ability and node instability, among other problems. This paper presents a model
for dynamic interceptors and its use in InteGrade, an opportunistic grid middle-
ware. The use of interceptors aims to provide dynamic adaptation capabilities
to InteGrade through its underlying communications middleware, contributing
to make InteGrade able to deal with the highly variable execution environment
of opportunistic grids. The aim is to show that existing dynamic adaptation ca-
pabilities, a common feature of modern distributed systems middleware, can be
used to provide a significant level of flexibility to grid computing middleware,
mostly displacing the need to (re-)implement specific adaptation mechanisms
for the latter kind of middleware.

1. Introduction
The wide availability of middleware technologies, used to support numerous applications
and services, resulted in considerable maturity in this area. In particular, applications that
need to adapt to variations in the execution environment and in the user/device’s context
have become more common. Mobile and distributed multimedia applications are well-
known examples of this trend. Such applications demand a high level of flexibility and
adaptability from the middleware platform, which must be able to self-adjust themselves
in response to dynamically changing application requirements.

More recently, computing grids [Foster and Kesselman 2004] have appeared as
another example of distributed computing environment with a high degree of dynamism.
This is particularly true regarding opportunistic grids, where resource availability is con-
stantly changing. Appropriate, flexible, middleware support, matching such dynamism,
is an essential feature to enable the development of effective grid computing applications.

This paper presents an approach to provide such flexibility to grid computing mid-
dleware, by means of an interceptor model present at the level of the underlying communi-
cations middleware. Such interceptors enable runtime adaptation of the behavior of both
middleware and application components. We argue that the adaptation features that have
become common in distributed systems middleware are sufficient for most of the flex-
ibility needs of grid middleware, which can use those features as the building blocks to
compose sophisticated dynamic adaptation features. This obviates the need for adaptation



mechanisms that are specific for grid computing middleware, further leveraging existing
research on adaptable and reflective middleware.

The interceptor model was applied in InteGrade [Goldchleger et al. 2004], an op-
portunist grid middleware with no previous support to deal with the high dynamism that
occurs in computer grids. Interceptors were implemented in OiL [Maia et al. 2005], a
highly dynamic middleware that serves as one of InteGrade’s underlying communica-
tions middleware platforms. Using such interceptors, the components of InteGrade can
be adapted at runtime, effectively changing the grid’s overall behavior. The approach has
been demonstrated by means of two applications: dynamic deployment of firewall traver-
sal mechanisms and dynamic adaptation of the grid’s resource management protocol.

This paper is organized as follows. Section 2 presents the InteGrade grid mid-
dleware and its main components. Section 3 describes the main characteristics of the
dynamic interceptor model. Section 4 presents two applications of the interceptor model
in InteGrade, while Section 5 discusses related work. Finally, Section 6 presents the con-
clusion and future work.

2. InteGrade - Opportunistic Grid Middleware
InteGrade [Goldchleger et al. 2004] is an opportunistic grid middleware with support
for the development of applications that use idle resources available in computer net-
works. It uses two different CORBA-compliant ORBs, JacORB [Spiegel 2005] and
OiL [Maia et al. 2005], as communications middleware to abstract away the details of
remote interaction among its components. These ORBs allow the integration of compo-
nents that have been implemented in different languages, running on diverse hardware
and software platforms. In particular, the design of InteGrade requires support for the
integration of components written in Java, C/C++ and Lua. The main components of the
InteGrade architecture are:

• Application Submission and Control Tool (ASCT): a graphical user interface that
allows users to submit applications and control their execution;

• Application Repository (AR): stores the code of applications that are executed on
the grid nodes;

• Local Resource Manager (LRM): runs on each grid node and is responsible for
loading and executing applications scheduled for that node. It is also responsible
to inform GRM about local resource availability;

• Global Resource Manager (GRM): manages the resources on a cluster; it receives
notifications of resource availability from the LRMs (through an information up-
date protocol), and runs a scheduler that allocates tasks to nodes based on resource
requirements and availability;

• Execution Manager (EM): keeps information about each running application, such
as its state, executing nodes, input and output parameters. It also coordinates the
application recovery process in case of failures.

3. The Dynamic Interceptor Model
Interceptors are a mechanism commonly used to extend the basic middleware functional-
ity, modifying its behavior regarding non-functional properties. They can be used to insert
and configure non-functional properties, such as fault tolerance and quality of service, in



a transparent way, without changing the middleware architecture. There are two ways to
activate interceptors in a middleware platform:

• Static: the decision to use interceptors is made at compile time, before initializa-
tion of the platform. The Portable Interceptors defined in the CORBA specifica-
tion [OMG 2008] are an example of this.

• Dynamic: the decision is made at runtime, thus enabling interceptors to be acti-
vated after initialization of the platform. CORBA’s portable interceptors can also
be activated in this way, although their installation must be decided prior to the
beginning of ORB execution.

Our interest in this paper, however, is on interceptors that can be installed and
made active at runtime, even though their use was not decided a priori.

3.1. Overall Approach

In this work, a dynamic interceptor model was developed at the communications mid-
dleware level to demonstrate its feasibility and benefits to provide dynamic adaptation
capabilities for the grid middleware.

Although InteGrade’s focus is on opportunistic grids, which are highly dynamic
environments, it is not currently capable of dynamic self-reconfiguration to deal with the
frequent changes that occur on the grid, such as the availability of resources and network
connectivity.

Figure 1 shows the approach followed in this work to circumvent this limitation.
Initially, InteGrade is seen as a static grid middleware that uses two underlying ORBs
(JacOrb and OiL) for the communications among its internal components. The dynamic
interceptor model is then introduced in the two ORBs. Using this dynamic adaptation
mechanism, the ORBs will be capable of manipulating their non-functional properties
to self-adjust to the changes that occur in the execution environment. Through this dy-
namic interceptor model, InteGrade will be able to dynamically modify the way as its
components interact. This means that InteGrade will be able to self-adjust, at runtime,
according to changes that occur in the non-functional requirements of its components.
For instance, this could be used to transparently create replicas of an application’s tasks
for fault-tolerance, by intercepting messages of the application execution protocol used
by the GRM component.

It is necessary to note that the dynamic interceptor model is not sufficient to make
InteGrade capable of structural adaptation (through the insertion, replacement or removal
of components). For instance, interceptors cannot be used to adapt the platform with new
functional features, such as by replacing the implementation of the component in charge
of task scheduling (GRM). Nevertheless, such features could be made available, using
the same overall approach advocated in this paper, by adopting architectural adaptation
mechanisms (as a complement to interceptors) if they are provided by the underlying
communications middleware.

3.2. Architeture

The architecture of the dynamic interceptor model is based on the Interceptor design
pattern [Schmidt et al. 2000], being composed of three components. The first component



Figure 1. Overall approach

is the Monitor, responsible for inspecting the execution environment and the internal state
of the ORB. In case some change occurs, either in the execution environment or inside
the ORB, the Monitor will decide which non-functional property must be used. When
the Monitor is called, a component named Context, described below, must be passed as
parameter. The Monitor, in turn, must forward this component to the Implementor. The
second component is the Implementor, which contains the implementation of mechanisms
that provide a given a non-functional property, which will be applied in response to some
change detected by the Monitor.

The third component is the Context, which allows the Monitor to have access
to internal information of the ORB. The component creation occurs when an interception
point inside the ORB is reached. The information type obtained from the Context depends
on the event that drove the ORB to invoke the Monitor at this point. This event can be,
for example, a client request being sent to a remote object, or a reply coming from this
same remote object. Thus, the Monitor would have information about the requests and/or
replies that had been sent and received. This information can be used by the Implementor
components to configure a non-functional property.

Figure 2 presents the architecture of the interceptor model. The Monitor can have
access to one or more Implementor components, each one implementing a given non-
functional property. The Context provides information about the ORB’s internal state at
the point where the interceptor is inserted; this information is accessed by the Monitor and
then forwarded to the Implementor. When changes occur inside the ORB or in the exe-
cution environment, the Monitor loads one of its Implementor components to adequately
deal with them.

An instance of the interceptor model can be inserted at different points inside the
ORB. At each interception point there is only one instance of the interceptor model. The
interception points inside the ORB invoke an interceptor whenever some type of event



Figure 2. Architeture of the Dynamic Interceptor Model

occurs. The interceptor then checks if there is need to apply a non-functional property.
The definition of the point inside the ORB where a non-functional property must be ap-
plied by the interceptor depends on the type of information about the ORB’s internal state
available at each interception point.

For example, for the introduction of fault-tolerance through replication, this non-
functional property must be put in the interception point of the ORB where it is possible
to have access to the requests that are being created. In an ORB client based on the
CORBA specification, this point would be between the Stub and the ORB Core. Thus,
the interceptor could replicate the requests and send them to all the remote replicas of the
object. If the original object fails, the interceptor would use the results provided by some
of the replicas.

3.3. Implementation
The dynamic interceptor model was implemented in the Lua lan-
guage [Ierusalimschy 2006] as an integral part of OiL. Using Lua’s reflective features,
the interceptor model is capable to dynamically activate non-functional properties by
loading and activating interceptor code at runtime.

In Figure 3, we show an example of sending a client’s request, passing through
the main components of OiL, until the request arrives at the server, and later following
the reverse path for the server’s reply. Along this path, both for request and reply mes-
sages, interception points are implemented enabling adaptation of the mechanisms used
to handle them.

As mentioned in the previous section, the points inside the ORB where non-
functional properties must be applied is determined by dynamic interceptors based on
information about the ORB’s internal state in those points. The interception points shown
in Figure 3 are described below:

• The Send Request and Receive Reply points on the client side and the Send Reply
and Receive Request points on the server side are used to have access to request
parameters and results.

• The Access IOR Socket point inside the GIOP/IIOP Client component is used to
have access to an IOR [OMG 2008] obtained by OiL on the client side. This point
also allows access to the socket used to connect to the ORB server.

• The Create IOR point inside the GIOP/IIOP Server serves to access the IORs
generated by OiL on the server side.

• The Output Stream Client and Input Stream Client points on the client side and
the Output Stream Server and Input Stream Server points on the server side can
be used to access the data stream sent and received via the network.



Figure 3. Interception Points inside OiL

4. Applications Cases for the Interceptor Model

4.1. Firewall/NAT Traversal

The resources and services provided by computer grids generally are distributed through-
out multiple administrative domains, present in several locations around the world. Due
to this high dispersion, often there are diverse academic or corporate institutions that are
responsible for the domains that constitute a grid.

The policies and restrictions defined in these administrative domains have the goal
to provide greater control and security over resources and services. Firewalls are an ex-
ample of this. However the use of firewalls limits the connectivity of computers on the
network. This limitation hinders the capability of grid middleware systems to integrate
resources from different administrative domains.

Other mechanism frequently used in many administrative domains and which can
hinder grid middleware is Network Address Translation (NAT). This service creates a
private IP address space inside the internal network and forbids these addresses to be
accessed from the external network. When a computer in this internal network has to
send external messages, the NAT server converts its local address to some public address
belonging to the administrative domain of the institution [OMG 2004].

In InteGrade, this problem occurs, for example, when a parallel application is
executed by a set of nodes on a grid belonging to different organizations. These nodes,
in order to communicate with each other, need to know their respective addresses, but
if some of them happen to be on a NAT network, their internal addresses will not have
external meaning, since they are not public addresses, hindering access from external
networks.

To deal with these problems, the OMG approach for NAT/Firewall traver-
sal [OMG 2004] was implemented through the dynamic interceptor model, making pos-
sible for InteGrade components to communicate even though they might be on distinct
networks protected by such devices.



However, if we had strictly followed the OMG specification to implement firewall
and NAT traversal, an ORB client would need a number of modifications to be capable of
knowing when connecting to one or more application proxies, thus knowing whether the
server objects are behind a protected network, which undermines transparency. An ORB
server, in a protected network with firewall and NAT, also would have to be modified to
inform that its external access must be made through a proxy.

In contrast, the use of dynamic interceptors allows the OMG approach to be imple-
mented in a ORB with only small changes in the code of the client and server-side com-
ponents, in a way that is largely transparent to client and server objects. These changes
basically consist in the inclusion of simple calls for the Monitor component at different
points of the request-reply path. Importantly, the firewall and NAT traversal feature is
loaded and activated only at runtime and when needed, a feature that is natural when
using the interceptor model.

4.1.1. Typical Scenario

Figure 4 illustrates the use of firewall and NAT traversal in InteGrade using dynamic
interceptors. In this example, one of the LRMs is on network A, which does not have
firewall and NAT. This LRM tries to connect to the Cluster Manager (GRM), which is
located on another network, B, protected by firewall and NAT.

Figure 4. Using the Interceptor Model for firewall/NAT traversal.

The steps for LRM to connect to the Cluster Manager via an application proxy in
this scenario are described below:

1. LRM tries to connect to the Cluster Manager through OiL’s services, as usual;
2. the Monitor component searches for a configuration file that contains the applica-

tion proxy address;
3. after verifying the existence of the configuration file, the Monitor activates the

Implementor that deals with firewall/NAT traversal;



4. next, the Implementor redirects the connection to the application proxy. As shown
in the figure, the listening port used by the proxy must be open on the firewall to
receive external connections. Only then the LRM is able to communicate with the
proxy. Note that for this scheme to work with NAT, the application proxy must be
on a machine with a valid IP address.

The implementation of firewall/NAT traversal in this work served as a means to
demonstrate the use of the interceptor model rather than an end in itself. The goal was to
show that the traversal mechanisms can be dynamically deployed. Nevertheless, there is
still the need to configure an open port on the firewall by some external means. Removing
this limitation could be the subject for further work.

4.1.2. Experimental Results

In this section, we provide evaluation results obtained using the interceptor model for a
simplified version of the firewall traversal case. The environment used for the tests is the
same described in the previous subsection. Thus, the Cluster Manager and application
proxy had been instantiated on two machines that are on a network protected behind a
firewall. However, this network does not use NAT. The LRM was placed on the third
machine that is part of a common network without firewall. Table 1 details the hardware
and software characteristics used for the experiments.

Table 1. Description of the experimental environment
Processor Pentium IV 3.2 GHz HT

Memory RAM 1024 MB
Hard Disk 160 GB

Network Interface Realtek 8169
Operating System Linux Slackware Version 11.0.0 i386 Kernel 2.6.18

InteGrade Version 0.3-RC1
OiL Version 0.3.1-Alpha

Lua Language Version 5.0.2

The network topology used for the tests is shown in Figure 5. As we can see, the
machines of network A are connected with the machines of network B through a switch.
However, between this switch and network B machines, there is a firewall.

Figure 5. Network Topology used in the experimental tests

The measurements of the overhead of the interceptor model were obtained through
the analysis of two LRM common operations: inicialization and the request for execution
of a simple application. In each one of these operations, three tests were conducted, as
described below.



• Test I: Execution of an operation in the LRM without dynamic interceptors in-
serted in the ORB.

• Test II: Execution of an operation in the LRM with the dynamic interceptor model
loaded, but with no extra non-functional property, i.e., with no active interceptors.

• Test III: Execution of an operation in the LRM with the dynamic interceptor model
and also with the firewall and NAT traversal implemented through an application
proxy.

The test results for the LRM initialization operation are shown in Table 2. For each
test, 50 calls were made. This table shows the maximum time, the mininum time and the
average time for the LRM initialization. The measurement was taken in milliseconds
(ms).

Table 2. Overhead Measurement for LRM Initialization
Maximum Time Average Time Mininum Time

Test I 820 ms 810 ms 800 ms
Test II 880 ms 850 ms 830 ms
Test III 910 ms 860 ms 840 ms

In its turn, the test results for requesting the execution of a simple application are
shown in Table 3. For each one of these tests, 50 calls were made and, in the same way,
this table shows the maximum time, the mininum time and the average time for execution
of a simple application.

Table 3. Overhead Measurement for requesting a execution of a simple applica-
tion (in ms)

Maximum Time Average Time Mininum Time
Test I 20 ms 10 ms 0 ms
Test II 20 ms 10 ms 0 ms
Test III 50 ms 20 ms 0 ms

From these experiments, we observed that there was an increase in the initializa-
tion time for LRM when the dynamic interceptors model is inserted. With firewall and
NAT traversal, the initialization time increased a little more.

Table 2 shows that the increase caused by the interceptor model and also by the
implementation of the firewall and NAT traversal was small. For example, in the third
test, the increase in the average initialization time was only 6% in relation to the first test.

According to Table 3, the mere presence of the interceptor model alone did not
cause a time increase for requesting the execution of a simple application, as shown in the
second test. However, there was a larger time increase when the application proxy is used
for firewall and NAT traversal. Although this increase was high, the overall execution
time for this operation was kept relatively small. Thus, we observe that the increases
caused by the interceptor model and the firewall and NAT traversal implementation cause
a small impact in the performance of InteGrade.

Nevertheless, if the interceptor model and the firewall/NAT traversal implementa-
tion are used in an large scale environment, with some LRMs trying to communicate with
a Cluster Manager placed on a protected network, the network performance will possibly



decrease. This situation can happen if only one application proxy is responsible for data
transmission. Thus, this proxy will cause a ”bottleneck” in the network. To prevent this,
replicated application proxies can be provided.

4.2. Frequency of Resource Usage Update Messages

InteGrade is an opportunistic grid middleware and, therefore, must be constantly informed
of resource availability on the machines that compose the grid. Part of this information,
such as the amount of free memory, varies throughout the grid’s lifetime.

Thus, the LRMs on the machines that share resources with the grid need to inform
GRM about resource availability on a regular, periodic, basis, as well as when there are
sudden significant changes.

The frequency of such updates must be determined according to a tradeoff. In case
the frequency is too high, there will be a significant communications cost, but resource
availability information will be the most current. On the other hand, if the update fre-
quency is too low, fewer messages will be needed, but at the risk that GRM will perform
application scheduling based on outdated resource availability information.

In addition, other factors may affect the update frequency. For example, if an
LRM is running on a mobile device, like a PDA or laptop, one such factor would be the
energy level of the battery, since wireless network communication is known to consume
significant energy. Thus, when running at low energy levels, it would be convenient to
reduce the update frequency in an effort to help extend battery life.

We have successfully used the dynamic interceptor model to modify the update
frequency in a transparent and dynamic way. The level of energy of the battery is the
information used by the Monitor to decide when the appropriate interceptor must be in-
stalled and activated. Nevertheless, as the LRM implementation has not yet been ported
to small-form-factor mobile devices, test were only carried out on more capable laptop
computers, leaving open the question as to whether this feature will have a significant
impact on small devices.

5. Related Work
AutoGrid [Sallem et al. 2007] has similar objectives to our dynamic interceptors model,
as both deal with the introduction of dynamic adaptation mechanisms on InteGrade. How-
ever, there are differences in the way they enable InteGrade to deal with the dynamism of
opportunistic grids.

AutoGrid intends to create an autonomic grid middleware from InteGrade through
the addition of new components in its infrastructure. For that reason, the InteGrade ar-
chitecture has been modified to accommodate these new components. The model of dy-
namic interceptors, on the other hand, only modifies the underlying ORB OiL. In this
way, there was no need to change the InteGrade architecture itself. AutoGrid, however,
deals with the dynamic adaptation of structural (as opposed to behavioral) features, such
as the scheduling algorithms employed by GRM. Thus, it is reasonable to consider both
works as complementary solutions to achieve a high degree of dynamism on InteGrade.

We argue, however, that structural (architectural) adaptation mechanisms pro-
vided by an underlying component-based communications middleware, such as Meta-



ORB [Costa and Santos 2004] could also be used with similar effects, thus preventing
adaptation mechanisms to be re-implemented at the grid middleware level. This is a
promising subject for future research.

AutoMate [Agarwal et al. 2003] is a framework for autonomic grid middleware
based on the OGSA standard [Foster and Kesselman 2004]. It is capable of supporting
autonomic applications with dynamic auto-adaptation features. The dynamic interceptors
model, on the other hand, has similar goals in the context of InteGrade. As it is imple-
mented in the OiL middleware, thus not changing the programming model of InteGrade,
there is no need to create grid applications by following a standard defined by some frame-
work, which is the approach followed in AutoGrid. The major difference between the two
works is the implementation approach. AutoMate is implemented as a layer between the
grid middleware and the application. Our model of dynamic interceptors, in contrast, is
implemented on the layer below the grid middleware, more specifically in the communi-
cations middleware, thus providing greater transparency for the applications programmer.

6. Conclusion and Future Work
In this paper, we presented a model of dynamic interceptors used to provide runtime
adaptation capabilities to the InteGrade grid middleware. This is achieved by introducing
behavioral reflection, through interceptors, at the level of the communications middleware
that enables interaction among InteGrade’s components.

The dynamic interceptors introduced in OiL enabled this ORB to manipulate its
non-functional properties according to variations in the execution environment. Using
this dynamic adaptation feature, InteGrade can optimize its behavior in a dynamic way.

However, only the InteGrade components that use OiL for communication, such
as LRM and GRM, can make direct use of such feature. Thus, for InteGrade to take full
advantage of dynamic interceptors, this adaptation mechanism must also be present in
JacORB, which is used by the components written in Java.

To demonstrate the benefits of the model, two non-functional properties were im-
plemented. The first one consists of using interceptors to transparently redirect the con-
nections made by LRMs, which, instead of being made directly to the Cluster Manager
or to other LRMs, are directed to an application proxy through interceptors. Through
this proxy, LRMs can communicate with the Cluster Manager or other LRMs, even when
these nodes are on administrative domains that are protected by firewall and NAT.

The second non-functional property implemented in this work consists of modi-
fying the frequency of update messages from the LRM to the Cluster Manager, based on
the energy level of the battery.

From these experiments, we have shown that static grid middleware, such as Inte-
Grade, can be made to provide dynamic adaptation features without the need to add new
components and mechanisms to the architecture or even to modify the existing compo-
nents. The only change that was needed was the introduction of dynamic interceptors
in the underlying communications middleware. We acknowledge that an extra degree of
adaptability, mainly related to the structure of the middleware, will require further adapta-
tion mechanisms. However, for simpler behavioral adaptations, the interceptor approach
has significant advantages in terms of transparency.



For the next stages of this work, we intend to implement further non-functional
properties that enable InteGrade to adapt with respect to other dynamic aspects of the
grids, such as security and fault tolerance. Another goal consists in the implementation
of the dynamic interceptors model in JacORB. In this way, the components that use this
ORB (i.e., those written in Java) will also be able to take advantage of the dynamic adap-
tation features. Finally, we aim to apply the same approach to structural adaptation of
the grid middleware, by using architectural reflection mechanisms provided by a newer,
componentized version of OiL [Nogara 2006].

Acknowledgements
This work has been partly supported by CNPq-Brazil (grant number 55.0895/2007-8) and
by FAPEG (Call 02/2007).

References
Agarwal, M., Bhat, V., Liu, H., Matossian, V., Putty, V., Schmidt, C., Zhang, G., Zhen,

L., and Parashar, M. (2003). Automate: Enabling autonomic grid applications. In
In the Autonomic Computing Workshop, 5th Annual International Active Middleware
Services Workshop (AMS2003.

Costa, F. and Santos, B. (2004). Structuring reflective middleware using meta-information
management: The Meta-ORB approach and prototypes. Journal of the Brazilian Com-
puter Society, 10(1):43–58.

Foster, I. and Kesselman, C. (2004). The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco, CA, USA.

Goldchleger, A., Kon, F., Goldman, A., Finger, M., and Bezerra, G. C. (2004). InteGrade:
Object-Oriented Grid Middleware Leveraging Idle Computing Power of Desktop Ma-
chines. Concurrency and Computation: Practice and Experience, 16(5):449–459.

Ierusalimschy, R. (2006). Programming in Lua, Second Edition. Lua.Org.

Maia, R., Cerqueira, R., and Kon, F. (2005). A Middleware for Experimentation on
Dynamic Adaptation. ARM’05.

Nogara, L. G. C. (2006). Um Estudo Sobre Middlewares Adaptáveis. Master thesis,
Pontifı́cia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.

OMG (2004). CORBA Firewall Traversal Specification.
http://www.omg.org/docs/ptc/04-03-01.pdf, accessed: January 2008.

OMG (2008). Common Object Request Broker Architecture: Core Specification, Version
3.1. Object Management Group.

Sallem, M. A. S., de Sousa, S. A., and da Silva e Silva, F. J. (2007). AutoGrid: To-
wards an Autonomic Grid Middleware. In Enabling Technologies: Infrastructure for
Collaborative Enterprises - WETICE 2007, pages 223–228.

Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects Volume 2. John Wiley
& Sons, Ltd, New York, NY, USA.

Spiegel, A. (2005). JacORB - The free Java implementation of the OMG CORBA Stan-
dard. http://www.jacorb.org.


