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SUMMARY

Scheduling parallel and distributed applications efficiently onto grid environments is a difficult task and
a great variety of scheduling heuristics has been developed aiming to address this issue. A successful
grid resource allocation depends, among other things, on the quality of the available information about
software artifacts and grid resources. In this article, we propose a semantic approach to integrate selection
of equivalent resources and selection of equivalent software artifacts to improve the scheduling of resources
suitable for a given set of application execution requirements. We also describe a prototype implementation
of our approach based on the Integrade grid middleware and experimental results that illustrate its benefits.
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1. INTRODUCTION

Computational grids are dynamic and heterogeneous environments that should deal efficiently with
the coordinated sharing of resources for the solution of computational problems. A central issue
in grid environments is the appropriate match of grid resources with application requirements.
Well-known grid resource management systems focus their approaches to match grid resources
and application requirements based only on resource descriptions. Resource management engines
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get resource requests from applications and try to find a suitable resource or a set of suitable
resources over which applications can run. In general, resource discovery mechanisms, perform an
exact matching of application requirements with attribute-based resource descriptions. More flexible
mechanisms, as shown in [1], allow asymmetrical matching of inexact or incomplete application
requirements with ontology-based resource descriptions.
A successful grid resource allocation depends, among other things, on the quality of the available

information about software artifacts and grid resources. Strategies for application scheduling and
scheduling algorithms are based on descriptions of resource attributes and application requirements
and preferences. So, the way how this information is captured, stored, organized, and made available
plays a relevant role in resource matching activities. Each of these tasks is built around the available
grid resource and application metadata. Grid metadata permeates and connects them. From our point
of view, the grid metadata design can affect the execution of tasks in different and relevant ways.
To face this problem, we propose a semantic approach based on ontologies, whose objective is the
efficient distribution of applications throughout the grid.
Ontologies can improve the quality of information about grid software and resources and this

can help to increase the efficiency of software and resource management on the grid. A useful grid
ontology should comprise a taxonomy of grid concepts, properties, and axioms that can be reused
in different contexts and by other ontologies. Such ontology, used in conjunction with inference
tools, provides a flexible and powerful way of reasoning about grid elements.
In this article, we present a set of related extensible grid ontologies and describe how this se-

mantic approach may be used on grid environments, highlighting resource matching for scheduling
application execution. Our prototype implementation uses the Integrade grid middleware [2]. In-
tegrade follows an opportunist approach, taking advantage of idle computational resources for
executing computationally intensive parallel applications. We describe how our semantic approach
could be integrated to Integrade to allow better management and effective reuse of software and
grid resources.
We also performed experiments, comparing the results of the conventional resource matching

approach with the semantic one. The results sustain our claim that semantics improve the reuse,
sharing, and integration of software and computational resources on grid environments.
This article is organized as follows: Section 2 introduces relevant semantic grid concepts and

technologies. Section 3 presents a set of grid ontologies and their relationship for composing a grid
knowledge base. Section 4 explores the use of semantics on grid environments considering two
usage scenarios. Section 5 describes a proposed architecture for providing semantic services for
grid environments and an implemented prototype based on the Integrade grid middleware. Section 6
describes experiments performed for evaluating our semantic approach for resource matching in
comparison with the Integrade conventional one, as well as a performance evaluation of queries and
inference on the knowledge base. Section 7 describes relevant related works, comparing them with
our approach, while Section 8 presents our conclusions and describes future directions of this work.

2. SEMANTIC GRID BACKGROUND AND TECHNOLOGIES

de Roure et al. [3] define semantic grid as ‘an extension of the current grid in which information
and services are given a well-defined meaning, better enabling computers and people to work in
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cooperation’. Semantic grids, as Semantic Web technologies, enable integration of applications,
data, resource, and users in specific domains on the grid and eases automation of middleware
tasks, such as selecting grid resources for application execution based on their requirements [4].
Additionally, such technologies also enable the interoperability between grid systems, since they
can provide mappings between different grid middleware infrastructures.
Ontology is defined by Swartout and Tate [5] as an explicit representation of domain concepts that

provides a basic structure around which knowledge bases can be built. Ontologies, as pointed out by
Chandrasekaran et al. [6], can improve the quality of information about grid software and resource.
They enable the reuse of domain knowledge, the sharing of common understanding about domain
concepts, explicit definition of domain assumptions, and interoperability enhancement among other
important features, in different grid domains.
Technologies applied on semantic grids are closely related to the ones applied on the Semantic

Web. They are evolved from using languages such as the Resource Description Language (RDF) [7]
to more complete approaches, such as theWeb Ontology Language (OWL). RDF is a W3C standard
for knowledge representation on the Semantic Web that does not enable the definition of resource
meaning. RDF Schema (RDFS) [8] is a semantic extension of RDF, which defines classes and
properties that can be used to describe other classes, properties, and resources on specific domains.
A more complete approach for describing ontologies is through the use of OWL [9]. OWL extends
RDF [10] and is derived from DAML+OIL [11] to represent ontologies.
OWL embodies the so-called Classical Paradigm: a modeling paradigm based on characteristics

appropriate to the open environment of the Semantic Web [12]. In this article, we explore cases of
inferencing and querying a grid ontology based on OWL-DL, a sublanguage of OWL. Ontologies in
OWL-DL can be processed by a reasoner, through inference, to meet different goals. Conclusions not
explicitly presented in the knowledge base can be inferred from rules and axioms in this base, finding
what is necessarily true and consistent with the system axioms. Subsumption inference tasks produce
a class hierarchy based on the class descriptions. It enables one to construct an asserted hierarchy and
let a reasoner engine infer and maintain any additional inheritance relation. Such task is related to
the domain definition knowledge and, in general, is useful to perform most subsumption inferences
in advance, since they will apply to a domain as a whole. Additionally, performing this inference
in advance enables us to submit queries over an inferred, i.e. updated ontology set. The reasoner
can also perform consistency checking, and computation of inferred types, inferring whether or not
it is possible for the class to have any instance, based on the description of a class [13].

3. GRID ONTOLOGIES

We used the Protégé-OWL tool [14] to enter the proposed set of grid ontologies and to work on refin-
ing it. This tool enables the creation of an extensible OWL ontology, including classes, properties,
restrictions on classes, and individuals (instances). Additionally, reasoning to check consistency
and to infer class hierarchy was performed through a connected Pellet [15] reasoning tool.
We defined our system architecture based on the grid system ontology described in [16], which in-

cludes a large and unordered variety of different, although related, concepts, properties, and axioms.
That ontology was an exploratory approach to expose the taxonomic and reasoning possibilities
on the grid domain. To improve the knowledge base maintenance and scalability, we separated
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the original ontology in a set of related ontologies of three types: upper-level ontologies, ancillary
ontologies, and concrete ontologies.
A upper-level ontology or top-level ontology, as defined in [6], is an ‘ontology that describes

knowledge at higher levels of generality’. In general, upper-level ontologies are used to describe ba-
sic concepts that can be extended in more specific ontologies. Ancillary ontologies contain domain-
specific concepts. We consider as ancillary an ontology that supports another one, but performing a
less important role. Concrete grid ontologies extend the upper-level ontologies to describe specific
grid concepts, reusing the top ontologies. These different ontologies can be connected through an
import mechanism.
The import mechanism allows an ontology to import other ontology. This mechanism permits

referring and extending all concepts and properties of the imported ontology, enhancing knowledge
reuse and sharing. Concepts and properties from the imported ontology receive a prefix referring
to the related name space. Other known mechanisms to relate ontologies, not explored in this
work, are the so-called mapping and e-connection mechanisms. These approaches are relevant to
improve the knowledge base scalability. In our knowledge base prototype, we have one upper-level
ontology, which is called the Grid Base Ontology, one ancillary ontology, the Platform Ontology,
and a concrete grid ontology, the Grid Resource Management Ontology. The acronyms po and gbo
are, respectively, namespaces of the Platform Ontology and the Grid Base Ontology, imported by
the Grid Resource Management Ontology.
Figure 1 shows the asserted class hierarchy of a specific Platform Ontology branch, the operating

system branch. The Platform Ontology contains a short class hierarchy and related properties about
the computational platform domain. It includes, among others, concepts such as operating systems,

Figure 1. Platform ontology—OS branch.
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Figure 2. Platform ontology—processors.

architectures, and processors. This hierarchy can be extended with new concrete concepts, allowing
to obtain new knowledge from incomplete asserted information and based on axioms defined in
the ontology. Figure 2 presents the asserted class hierarchy of another specific Platform Ontology
branch, the processor branch.
According to Rector et al. [17], Defined classes are classes for which there is at least one set of

necessary and sufficient conditions.We use OWL properties to state the necessary and sufficient con-
ditions for class membership. For example, a class named ComputerLinux64bits could be defined,
through the property hasProcessor, as related to the class Processor64bits, and through the property
hasOS as related to the Linux class. Consider an individual named Corel2Duo2.6GHz, which is an
instance of the Processor64bits class and an individual named Ubuntu8.0, which is an instance of
the Linux class. An individual of theComputer class that is related to theCorel2Duo2.6GHz instance
and to the Ubuntu8.0 instance is inferred to be an instance of the ComputerLinux64bits class. This
inferred classification can be used to identify grid machines belonging to the ComputerLinux64bits
class even if the individual was not explicitly asserted as an instance of this class, allowing for the
automatic discovery of suitable grid nodes for executing any application implemented for the Linux
64 bit platform.
The Grid Base Ontology initially acts as a fundamental taxonomy encompassing the main con-

cepts related to grid systems. It contains concepts, properties, and axioms that can be considered
common to grid domain applications and users. Figure 3, generated by the Protégé-OWL tool,
shows the asserted class hierarchy of the Grid Base Ontology. The class hierarchy is based on two
root concepts:Grid Software Concepts andGrid Resource Concepts. The former encompasses other
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Figure 3. Grid base ontology.

Figure 4. GRM ontology—software concepts.

related concepts, such as Domain, Problem, Approach, Algorithm, Application, Software Artifacts,
and so on. These concepts are sufficiently high level to be extended by Grid Application Developers
to describe more specifically their domains, problems, and related software solutions.Grid Resource
Concepts encompasses concepts related to grid computational resources, such as Computer, Clus-
ter, DiskSpace, MemorySpace, and Platform. These concepts, in turn, can be extended by the Grid
Manager to describe a concrete computational grid infrastructure. The upper-level ontology imports
an ancillary ontology, the Platform Ontology, and reuses its concepts and properties.
An example of a more specific grid ontology is the Grid Resource Management Ontology. To

improve visibility, we separated parts of this ontology into two distinct figures. A set of more
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Figure 5. GRM ontology—software artifacts.

general software related concepts is presented in Figure 4, while some concepts related to software
artifacts are shown in Figure 5. This ontology imports the Grid Base Ontology showed in Figure 3.
The set of described concepts includes a specific domain, Data Mining Domain, and some of its
specific related concepts, also derived from theGrid Base Ontology, such asData Mining Problems,
Classification Approaches, and so on. Other different domains and their related concepts can be
created as extensions of the Grid Base Ontology, such as Mathematic and Biology. The complete
set of ontologies is available for download at http://www.deinf.ufma.br/∼vidal/gbos.html.

4. GRID ONTOLOGIES CASE STUDY

This section describes two scenarios of exploring the ontologies to improve resource management
on grid environments. Initially, we discuss how grid scheduling can take advantage of a semantic
resource pre-selection. Afterwards, we describe how the proposed ontologies can leverage the grid
usage as a distributed and integrated application repository.
For both the scenarios, we adopted an inference in advance policy, for the whole set of involved

ontologies. A subsumption inference updates the knowledge base in a suitable frequency. The
inferred knowledge base contains new inheritance relationships, extending the available metadata
with new semantic information.

4.1. Semantic grid scheduling

According to [18], a schedule is a mapping of tasks to time and computational resources and the
scheduling problem consists in computing a schedule that optimizes a certain metric. Grid resource
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and application metadata play a crucial role in such scheduling task, since they describe resourcex
features and application requirements in the grid context.
Grids are heterogeneous environments. In the same way, grid metadata themselves are also

heterogeneous, making it difficult to explore grid resources efficiently. For example, different virtual
organizations may employ distinct terminologies to describe the same grid resource. As a result,
the integration of related grid resources is not an easy task. A semantic approach can mitigate this
problem enabling the identification of related resources based on ontologies concepts and axioms.
In general, whenever a grid user requests an application execution, the grid middleware schedules

a set of resources for performing the computation. A semantic approach can also achieve better
resource matching than an approach based on exact matching of metadata attributes, leading to
more alternative nodes for scheduling the application. This is due to the fact that, through an
inference policy, which extends the set of selected resources, the grid middleware can discover
interchangeable or equivalent resources, considering the user restrictions for a given application
submission (such as the required minimum memory and processing power).

4.2. Semantic application repository

Computer grids have been used to solve problems in several areas of scientific, enterprise, and in-
dustrial activities, such as computational biology, image processing for medical diagnosis, weather
forecast, high energy physics, marketing simulations, and oil prospection. Grid computing em-
powers the conception of a new generation of applications that allow combining computations,
experiments, observations, and data collected in real time. The phenomena modeled by these
applications require diverse software components whose compositions and interactions are ex-
tremely dynamic. Under particular conditions, application executables in a domain can be inter-
changeable and software components can be reused in different domains. We propose to leverage
the grid usage as a distributed and integrated repository of software artifacts through the use of
metadata.
To be able to select the best application component for each situation, it is important to have

the means to classify these software artifacts and be capable of explicitly reasoning about them.
The search mechanism for a software artifact should also be flexible allowing to obtain equivalent
alternatives for a proposed query.
Using our proposed ontologies, each virtual organization could feed the knowledge base during

the application registering process, either extending the hierarchy of software concepts or creating
individuals ones to represent the software component. Later on, the knowledge base could be
enhanced through a subsumption inference. Bulk policies can be adopted, to reduce the reasoner
cost. Our semantic data structure privileges the class hierarchy and the subsumption inference, since
both abstractions are central in ontology-based approaches.
While our approach focuses on enhancing application selection for executing a given user task,

future developments could embody advances from the automated semantic software composition
field [19] that encompass additional challenges such as the definition of extensible ontologies to
define software components, their interfaces, granularities, requirements, restrictions, and policies
for interchangeable use. Those extensions could be used in areas of related domain such as grid
workflow composition and grid and grid services discovery and composition [20].
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5. INTEGRADE KNOWLEDGE ARCHITECTURE

This work was developed in the context of the Integrade project‡. [2], a multi-university effort to
build a novel grid computing middleware infrastructure to leverage the idle computing power of
personal workstations for the execution of computationally intensive parallel applications.
We defined a general architecture for enabling the grid middleware and its users to take advantage

of semantic services, improving grid utilization. While we developed a prototype based on the
InteGrade middleware, our knowledge architecture is independent of the grid platform, allowing it
to be reused on other grid projects.
This section presents a brief overview of the InteGrade grid middleware, describes the proposed

grid knowledge architecture, the implementation of the architecture components, and the required
InteGrade extensions for using the supplied semantic services.

5.1. InteGrade architecture overview

The basic architectural unit in an InteGrade grid is the cluster, a collection of machines usually
connected by a local network. Clusters can be organized in a hierarchical federation, allowing the
aggregation of a large number of machines. Each cluster contains a Cluster Manager node that
executes InteGrade components responsible for managing the cluster computing resources and for
inter-cluster communication. Other cluster nodes are called Workstations, which export part of its
resources to Grid users. They can be shared or dedicated machines.
InteGrade currently allows the execution of three application classes:

1. Regular sequential applications: The application executable code is assigned to a single grid
node.

2. Parametric or bag-of-task (BoT) applications: Several copies of the application executable
code is assigned to different grid nodes. Each node receives a subset of the application
input data and computes the results in parallel with the other ones. In this case, there is no
communication between the nodes.

3. Parallel applications that follow the bulk synchronous parallel (BSP) or message passing
interface (MPI) models: several nodes are assigned for application execution. Computations
take place on every participating node and processes exchange data between themselves.

The InteGrade architecture comprises several components. The most fundamental ones, which
enable application execution, are:

• Application Repository (AR): Before being executed, an application must be previously reg-
istered with the Application Repository. This component stores the application description
(metadata) and executable code.

• Application Submission and Control Tool (ASCT): A graphical user interface that allows users
to browse the content of the Application Repository, submit applications, and control their
execution. It is available both as a Web portal and as a stand-alone application.

‡Homepage: www.integrade.org.br
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Figure 6. Semantic grid integration architecture.

• Local Resource Manager (LRM): A component that runs in each cluster node, collecting
information about the state of resources such as memory, CPU, disk, and network. It is also
responsible for instantiating and executing applications scheduled to the node.

• Global Resource Manager (GRM): Manages cluster resources by receiving notifications of
resource usage from the cluster LRMs (through an information update protocol) and runs the
scheduler that allocates tasks to nodes based on resource availability; it is responsible for
communication with GRMs in other clusters for inter-cluster application execution.

• ExecutionManager (EM):Maintains information about each application submission, such as its
state, executing node(s), input and output parameters, submission, and termination timestamps.
It also coordinates the recovery process in case of application failures.

5.2. InteGrade knowledge architecture goals

We defined a general architecture for enabling the grid to take advantage of the semantic approach.
The main purpose of such architecture is to improve grid utilization. The defined architecture is
based on the following requirements:

1. The architecture must be independent of the grid platform. While we developed a prototype
based on the InteGrade middleware, the architecture components can be reused on other
grid software infrastructures, since they provide semantic-based services consumed by grid
components, such as its scheduler (for providing a better resource matching mechanism) or
the grid application submission tool, which allows the user to browse the knowledge base for
application discovering.

2. It must provide the means to create and maintain an extensible grid knowledge base.
Knowledge base extension involves the extension of the concepts asserted in the upper-level
ontologies and instance creation of specific classes in concrete ontologies.

3. The reasoning mechanisms and policies must infer knowledge from incomplete asserted
information.

4. It must provide the means to enable grid users to perform queries on the knowledge base,
enhancing application, and grid resource discovery.
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5.3. Proposed Grid Knowledge Architecture

We developed a prototype of a Semantic Grid Integration Architecture depicted in Figure 6. Its
main component is the SGIC Semantic Grid Integration Component, which is a facade module
that uses other more specific components to provide its service. SGIC uses the OWL-API and
implementation [21] for manipulating the content and structure of the knowledge base, performing
tasks such as creating classes and instances, and executing queries. It also uses the Pellet reasoner
for performing inference tasks, such as classifying registered applications based on the Grid Man-
agement class hierarchy. An SGIC internal component encapsulates all interactions between the
proposed Semantic Grid Architecture and the underlying grid infrastructure.
Figure 7 shows SGIC internal components (SGRM, SMM, SSM, and UI) and their connection

with InteGrade components, the AR and the global resource manager (GRM). The semantic grid
resource manager (SGRM) mediates interactions between grid users, the integrade middleware, and
others SGIC components. The SGRM uses the semantic metadata manager (SMM) for maintaining
the semantic metadata repository comprising grid ontologies, classes, and instances and the semantic
services manager (SSM) for performing inference tasks, such as concept hierarchy classification,
ontologies consistency check, and computation of inferred types. Both SSM and SMM use the
OWL-API, while the SSM also uses the Pellet reasoner.
A grid user registers an application on the grid through an User Interface (UI) that calls the

SGRM component. The latter uses the SMM to store metadata about the registered application
on the knowledge base and uses the InteGrade AR for storing the application executable files.
Application metadata include the application name, which algorithm it implements, which platform
it runs on, and its type (Regular, BoT, MPI, or BSP). The system then uses inference mechanisms
to relate the application metadata to the existing software concepts hierarchy and their individuals.
The SSM component infers new class hierarchies and types of registered instances. The inferred

data are used as a base for subsequent queries submitted by grid users. For example, the inferred
metadata is used to assist the user on selecting the appropriate application for performing a desired
task. Given an application submission, inferred data concerning interchangeable binaries and grid
nodes architecture are used for enlarging the set of grid nodes capable of executing the requested
application.
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Figure 8. Sequence diagram—Selecting resources before application execution.

The sequence diagram in Figure 8 shows how one can use the semantic grid enhancements for se-
lecting an application for executing a desired task and for submitting an execution request to the grid.
Via the UI component one initiates an interactive loop through the SGRM:selectApplication()
method which, in its turn, calls SMM:selectApplication(). The interaction loop follows a refine-
ment process until an specific application that matches the user requirements (desired task) is se-
lected. The user then submits an execution request, calling the SGRM:executeApplication() method.
The SGRM calls the SMM:selectResources() method that uses the inferred knowledge base for dis-
covering the grid nodes capable of executing the requested application. The resource set is then
forwarded to the grid scheduler (the GRM component on InteGrade) for performing the appropri-
ate resource mapping.
While the described prototype was based on the InteGrade grid middleware, our Semantic Grid

Integration Architecture was designed to be sufficiently general to be ported to other grid software
infrastructures with minimum effort. This requirement is supported mainly by the SGRM com-
ponent, since it encapsulates all interactions between the proposed semantic architecture and the
underlying grid middleware. It also only requires concrete implementations of two abstractions
commonly available on grid environments: an application repository and the scheduler. The inter-
actions with these two grid components are provided through two abstract classes that must be
specialized for the specific grid middleware being used.

6. MODEL EVALUATION

To evaluate our approach and demonstrate its usefulness, we performed experiments in a scenario of
resource scheduling for application submissions, comparing the result of the conventional InteGrade
resource selection with the one obtained with our semantic enhancements.
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6.1. Resource matching

The grid environment hardware considered on the experiments is described on Table I. Platforms
P1, P2, P3, P6, and P7 execute the i686 GNU/Linux operating system, platforms P4 and P5 the
amd 64 GNU/Linux, and platform P8 the PowerPC Darwin operating system. From the application
execution perspective, platforms P1, P2, P3, P6, and P7 are equivalents and they correspond to 19
grid nodes. Platforms P4 and P5 are also equivalent and the grid environment has one node of
each type, comprising two grid nodes. Only one grid node follows platform P8, which has no other
equivalent platforms.
For performing the experiments, we used several software artifacts consisting of a set of algo-

rithms for Image Texture Analysis (ITA) related to the Pattern Recognition domain. The algorithms
describe conventional texture analysis methods, e.g., the Gray-Level Run-LengthMethod (GLRLM)
and the Spatial Gray Level Dependency Method (SGLDM), used to extract characteristics from
a given image. The algorithms can be used in different horizontal domains, such as aerial photo
image analysis for geographic research and tomography image analysis for cancer diagnosis.
The methods used by the different algorithms lead to different CPU and memory requirements

but, under a specific context, these algorithms could replace each other. Table II shows the used set of
algorithms and applications and the suitable platforms for executing each one of them, considering
the available executable binaries.
On InteGrade, during the submission process, the user can either select a specific application

executable binary or an application, in a more general sense, to be executed by the grid. In the first
case, the middleware will try to identify the nodes on the local cluster whose platforms are described
exactly as the platform description of the correspondent binary. The second case is more flexible,

Table I. Hardware platform types.

Type Platforms

P1 Intel(R) Pentium(R) 4 CPU 3.00GHz
P2 AMD Athlon(tm) XP 2800+
P3 Intel(R) Xeon(TM) CPU 3.00GHz
P4 AMD Athlon(tm) 64 Processor 3200+
P5 AMD Athlon(tm) 64 Processor 3000+
P6 Intel(R) Pentium(R) 4 CPU 2.80GHz
P7 Intel(R) Pentium(R) D CPU 2.80GHz
P8 Power PC G4

Table II. ITA available software artifacts.

Application Platforms #Nodes

Suitable platforms and nodes
SGLDM App P1 8
GLRLM App P5 and P8 2
GLDM App P4 1
PSM App P4 1
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Table III. Comparison of scheduling approach results.

#Selected nodes by approach

Semantic

Application InteGrade First case Second case

SGLDM App 8 19 22
GLRLM App 2 3 22
GLDM App 1 2 22
PSM App 1 2 22

in the sense that the middleware will try to first discover all available executables of the selected
application. Such an approach increases the set of suitable platforms to execute the application and,
potentially, will increase the number of available machines for application execution.
The experiment consists of submitting a user request for each ITA application (SGLDM, GLRM,

GLDM, and PSM) for the conventional InteGrade middleware and for our semantics-based extended
version, comparing the resource matching results obtained by both approaches. For the conventional
InteGrade, we used the more general case of submitting an application, since it increases the set of
suitable platforms to execute the application, as explained previously.
Table III shows the results obtained. The conventional InteGrade discovered 8, 2, 1, and 1 nodes

available for executing applications SGLDM, GLRM, GLDM, and PSM, respectively, considering
the grid hardware described in Table I. The second column of Table III (first case) shows the results
obtained with our semantic approach using the equivalence relationships between platforms asserted
with the Platform Ontology. The third column of Table III (second case) shows the results obtained
when our semantic approach also considers the use of equivalent applications related to a set of
equivalent algorithms, defined on the Grid Management Ontology. The better results are due to the
fact that algorithms described through the assertion gbo:describes some TextureAnalysisApproach
are inferred to be also subclass of the class TextureAnalysisApproach. This happens because the class
TextureAnalysisApproach is a subclass of the class Algorithm and is also defined by the assertion
gbo:describes only TextureAnalysisApproach.
As the experimental results demonstrated, the use of semantics can increase the amount of

possibilities for executing a given user application request, since each application can be related to
different but equivalent executables. In the same way, each executable can be related to different
but equivalent platforms, leading to better resource matching results.

6.2. Query and inference performance analysis

We executed two experiments with the goal of evaluating the cost of performing queries and
inferences over the proposed grid ontology. In the first experiment, 100 different SPARQL[22]
queries were built around applications and computing resources selection on the grid.
The generated queries were executed through an application based on the OWL-API. We executed

each query on a database with different amounts of individuals (1000, 5000, and 8000 individuals),
measuring the query execution time. Table IV presents the maximum, minimum, and average
execution time of the 100 queries for each database size. The experiment was executed on an Intel
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Table IV. Query execution time in ms.

#Instances Tmax Tmin Average Standard deviation

Queries on the platform ontology
1000 2.39 0.35 0.55 0.39
5000 3.15 0.34 0.57 0.50
8000 3.48 0.36 0.59 0.48

Table V. Class inference execution time in seconds.

#Instances Time

Inference on platform ontologies
1000 4.64
5000 4.77
8000 4.94

Pentium M machine with 1.70GHz, 496MB of RAM, running the Ubuntu 7.04 (feisty) Linux
distribution.
The average execution time spent on each query was a little more than 0.5ms, which is an

irrelevant overhead for a typical grid application that normally requires several hours or even days
to be executed. The main reason for this small execution time is that the SPARQL queries did not
need to perform inferences over the knowledge base, since they were realized over a previously
inferred knowledge base.
We executed a second experiment that evaluated the inference mechanism cost. In this experiment,

we executed the inference of class hierarchy for databases with the same amount of individuals
as used on the query experiment (1000, 5000, and 8000 individuals). Table V shows the results
obtained, in seconds.
The results highlight the need for a well-defined execution policy for the inference mechanism,

since this task has a considerable computational cost, which makes it not practical to execute it
for every new query on the knowledge base. Our approach is to execute the inference mechanism
whenever the knowledge base is modified only at specified time intervals, defined by the grid
administrator or when the grid is underloaded, an information obtained through the InteGrade
Execution Manager component.

7. RELATED WORK

The core grid ontology (CGO), described in [23], provides a common knowledge base about
grid systems. In this sense, our approach is similar to the one presented in this article. CGO is an
extensible grid system ontology that expresses fundamental grid-specific concepts and relationships,
without exploring inference mechanisms. However, our focus is on improving grid uses, such as
application selection and execution, while exploring reasoning capabilities and query languages.
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Cannataro [24] describes the Data Mining for Grid Programming project, which uses an ontology
(DAMON) for the data mining domain. It describes how the ontology is used to enhance the design of
distributed data mining applications. DAMON exploits only one specific grid application domain,
namely, data mining, while we propose a more general approach for the management of grid content
and resources, based on extensible ontologies for describing different application domains and grid
resources.
Matching of grid resources and application requirements is largely explored by semantic grid

applications. Brook et al. [25] propose a semantic approach to build a broker of resources described
by different grid middlewares. They aim to provide seamless access to resources on the grid. Tang-
munarunkit et al. [26] introduce a similar approach. In a similar way, Siddiqui et al. [1] describes
an asymmetric mapping between applications and resources based on incomplete application re-
quirement description. All of them propose an ontology-based matching of task requirements and
grid resource policies. Our work, in contrast, aims to integrate selection of equivalent resources
and selection of equivalent software artifacts, enhancing the scheduling of resources suitable for a
given set of applications.
In our application and resource matching perspective, we borrow the general idea of decoupled

scheduling from [18]. However, while they try to reduce the amount of selected resources, aiming
to optimize a scheduling algorithm, our work aims to identify the maximum amount of suitable
resources for satisfying a user request on a grid.

8. CONCLUSIONS

This article explores the use of ontologies to describe core concepts related to grid applications and
resources. Such ontologies are composed with an import mechanism and can be extended either
by adding new classes and individuals to a specific ontology or by connecting new ontologies de-
rived from the original top-level ontologies. We described some important scenarios for exploring
the knowledge base that can be constructed through the use of the proposed ontologies and the
inference mechanisms that can improve the performance of grid scheduling and leverage the grid
usage as a distributed and integrated application repository, leading to better discovery and com-
position of software artifacts. We propose a Semantic Grid Integration Architecture based on the
OWL-API and the Pellet reasoner to be used for grid knowledge base maintenance and to explore
the described scenarios. A prototype was developed using the InteGrade grid middleware as its
base.
We also evaluated our approach, comparing the resource matching results for application sub-

missions obtained with and without the use of semantics. This evaluation led to the conclusion that
the use of semantics can bring substantial gains in resource management on grid environments and
that, if proper care is taken, the performance overhead is negligible.
Future directions of this work include the investigation of the semantic relations between on-

tologies that have intersection, mapping [27], and between disjoint ontologies, e-connections [28],
which comprehends a relevant aspect to improve the scalability of the knowledge base. Another
interesting work would be to implement the proposed architecture on a different grid middleware,
evaluating how much of the implementation source code could be effectively reused.
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