A Study of the Relationships between Source Code
Metrics and Attractiveness in Free Software Projects

Paulo Meirelles, Carlos Santos Jr., Jodo Miranda, Fabio Kon

FLOSS Competence Center
Institute of Mathematics and Statistics
University of Sao Paulo, Brazil
(CCSL-IME/USP)

Antonio Terceiro, Christina Chavez
Department of Computer Science
Federal University of Bahia, Brazil
(DCC-UFBA)
{terceiro,flach} @dcc.ufba.br

{ paulormm,denner,joaomm,fabio.kon } @ime.usp.br

Abstract—A significant number of Free Software projects has
been widely used and considered successful. However, there
is an even larger number of them that cannot overcome the
initial steps towards building an active community of users and
developers. In this study, we investigated whether there are
relationships between source code metrics and attractiveness, i.e.,
the ability of a project to attract users and developers. To verify
these relationships, we analyzed 6,773 Free Software projects
from the SourceForge.net repository. The results indicated that
attractiveness is indeed correlated to some source code metrics.
This suggests that measurable attributes of the project source
code somehow affect the decision to contribute to and adopt
a Free Software. The findings described in this paper show
that it is relevant for project leaders to monitor source code
quality, particularly a few objective metrics, since these can have
a positive influence in projects chances of forming a community
of contributors and users around their software, enabling further
enhancement in quality.

I. INTRODUCTION

The adoption of Free and Open Source Software! has
significantly increased in the last decades to the point of
becoming influential to the global economy [1]. Although
Free Software has emerged as a movement supported by
volunteer developers, many large companies are now involved
in it [2], [3]. According to a Forrester Consulting survey, which
compared large companies in Europe and North America [4],
the usage of Free Software is currently widespread in the
back-end, middleware, office productivity tools, and business
applications software categories. Moreover, this survey states
that 92% of the senior business and IT executives say that Free
Software products have met and, in some cases, exceeded their
quality expectations.

This satisfaction and quality is usually achieved thanks to
the collaboration of a large user and developer community
who reports failures, fixes bugs and adds features. In fact, the
Free Software development model is said to offer two main
advantages: the potential for peer-review and the possibility
of attracting developers from different parts of the world [5].
Hence, an important issue for Free Software projects is to
attract volunteers [6].

'In this study, we consider the terms Free Software and Open Source
Software (OSS) equivalent.

However, not all Free Software projects reach success and
high quality [5]. The amount of inactive projects is undoubt-
edly higher compared to the number of active projects. To
illustrate this scenario, consider the data extracted in Novem-
ber, 2009, from Sourceforge.net, one of the most popular Free
Software repositories. Out of its 201,494 projects, only 60,642
had more than one release, 40,228 had been downloaded more
than once, and 23,754 had more than one member. Finally,
only 12,141 projects matched all these criteria simultaneously.
This may indicate that no more than 6% of the projects on
SourceForge.net are able to have a healthy community of users
and developers benefiting from a Bazaar style of development
[7].

Santos Jr. et al. [8] defined a theoretical model for attrac-
tiveness as a crucial construct for Free Software projects,
proposing their (i) typical origins (e.g., license type and
intended audience); (ii) indicators (e.g., number of members
and downloads); (iii) consequences (e.g, levels of activity and
time for task completion). They suggested that the success of
any project depends on its level of attractiveness to potential
contributors and users. Based on this model, our study ex-
plored some of the factors that may enable projects to build
a community by attracting users and developers. Specifically,
our focus rests on objective factors: we investigated whether
attractiveness can also be influenced by measurable source
code attributes — structural complexity and size.

Although source code metrics have been proposed since
the 1970s [9], their potential use as guidelines for software
development has not been fully explored yet [10]. In particular,
we have observed that many Free Software projects do not
practice source code quality evaluation and have no tools
available to do so. This lack of systematic code evaluation
leaves a lot of room for improvement in Free Software
projects’ processes and practices [S].

In general, despite the high importance of source code in
the Free Software community, called the “show me the code”
culture, source code metrics are often not perceived as an
indicator of quality. To address this apparent contradiction,
we argue, theoretically, that source code metrics are related
to project attractiveness and, thus, influence its success. To
verify these ideas empirically, we analyzed 6,773 projects

written in the C language from SourceForge.net. We show that,
considering such a sample, one structural complexity metric
and two size metrics play an important role in explaining
attractiveness, here represented by the number of downloads
and the number of project members.

The remainder of this paper is organized as follows: Sec-
tion II presents the theoretical foundations of source code
metrics and attractiveness. Section III presents our hypotheses
and shows the selection criteria and definition for the vari-
ables used in our study. Section IV evaluates the hypotheses
and discusses their results. Section V reviews related work.
Conclusions and future research directions are discussed in
Section VI.

II. THEORETICAL BACKGROUND

In this section we present the definitions of the selected
source code metrics (Section II-A) and the attractiveness con-
cept, including its proxies (Section II-B). These were chosen
to build a statistical model that represents the relationships
proposed.

A. Source code metrics

For our subset of source code metrics, we used the “module”
concept as a general term for the different types of structures
used in software development. Therefore, it stands for classes,
abstract data types and source files. Specifically in this study,
we consider a C source file as a “module”.

Similarly, we generalized the concept of “method” to “func-
tion”, denoting a portion of source code that performs a
specific task.

The most commonly used metric to measure software size
is Lines of Code (LOC), which indicates the number of non-
blank and non-comment source code lines. Using the LOC
metric as a basis for comparison between projects requires the
projects to be written in the same programming language [11].

On the other hand, Number of Modules is another useful
size indicator, which is somewhat less influenced by program-
ming languages and line-level coding styles. With that being
said, it can be used to compare projects written in different
languages [10].

When considering characteristics such as maintainability,
flexibility, comprehension effort, and source code quality in
general, one has to take into account not only the size metrics
described above but also structural metrics, such as the ones
that follow.

Number of Functions (NOF) is used to measure module size
in terms of the operations it implements. This metric is used
to help identify the reuse potential of a module. In general,
modules with a large number of functions are more difficult
to reuse because they tend to be less cohesive [12]. Hence, a
module should not have an excessive number of functions [13].

Number of Public Variables (NPV) and Number of Pub-
lic Functions (NPF) are metrics related to module encap-
sulation. They measure the potential communication among
modules [14]. Once good programming practices recommend

that module variables should be only manipulated via ac-
cessor functions [13], module variables should be private,
indicating that the optimal number for this metric is zero.
The number of public functions in a module represents the
size of the “module interface”. Functions are directly related
to the operations provided by their module. High values for
this metric indicate that a module has a lot of functions
and, probably, many responsabilities, conflicting with good
programming practices [13].

Cohesion is a measure of the diversity of “topics” that a
module implements. High cohesion values indicate whether
a module focus on a single aspect of the system, while low
indicates it deals with several different aspects. In terms of
undestanding, modification and maintainability, highly cohe-
sive modules should be seeked. A metric commonly used for
cohesion is Lack of Cohesion of Methods (LCOM), originally
proposed by Chidamber and Kemerer [15]. High LCOM
values indicate low cohesion, while low LCOM values indicate
high cohesion.

The first LCOM definition, called LCOMI1, corresponds to
the number of function pairs of a module which manipulate the
same module variables. Once it has received several criticism
and revision proposals, through this study we used the revised
definition by Hitz and Montazeri, known as LCOM4 [16]. In
order to calculate LCOM4 of a module, it is necessary to build
an undirect graph in which the nodes are its functions and
variables. For every function, there should be an edge between
it and another function or variable it uses. The LCOM4 value
is the number of weakly connected components of this graph.

Coupling is a measure of how one module is connected
to other modules in the project. High coupling indicates a
greater difficulty to change the modules of the system, since a
change in one module may have an impact in all other modules
that are coupled to it. In other words, if coupling is high,
the software tends to be less flexible, more difficult to adapt,
and more difficult to understand. A straightforward method to
measure coupling is Coupling Between Objects (CBO), once
again proposed by Chidamber and Kemerer. CBO measures
how many modules are used by the one being analyzed [15].

The more complex a piece of software, the more challenging
it is to change and evolve it. Coupling and cohesion have been
described and discussed in many works as essential indicators
of structural complexity [17]. Moreover, it is widely known
that to build high-quality and flexible software, it is advisable
to seek low coupling and high cohesion [18].

In fact, Darcy et al. [17] showed that, individually, neither
coupling nor cohesion are related to a software maintenance
effort. Both must be considered together. When combined, the
product of coupling and cohesion as a metric is positively
correlated to the maintenance effort.

In conclusion, seven source code metrics, selected according
to criteria shown in Section III, were used on the statistical
model for our study. In particular, we use the product of
coupling (CBO) and cohesion (LCOM4) as our metric of
structural complexity (SC) [17].

Project

Al Indicators
Characteristics

License
type

Intended
Audience

Type of
Project

Development
Status

Hits

Fig. 1.

B. Attractiveness

Attractiveness is the capacity of bringing users and devel-
opers to a project. A Free Software project is as attractive
as it has the ability to be appealing to potential users and
developers. They will later use the software and, ultimately,
participate on tasks to improve the project [8].

In our study, the concept of attractiveness and its proxies
are based on Santos Jr.’s attractiveness model [8], one of
our previous works. In that work, we presented a research
model for attractiveness, shown in Figure 1. We now intend
to expand and adapt it to our hypotheses about source code
attributes and attractiveness, as emphasized also in Figure 1.
This model specifies project characteristics that influence its
attractiveness, and the consequences of attractiveness (e.g.,
levels of activity, efficiency, likelihood of task completion,
time for task completion, and quality perception) [8].

Originally, the project characteristics proposed were:

e License Type under which a program is available, such as
GPL, BSD, and Mozilla Public. The license influences the
use and distribution of a project, and defines the rules for
creating derivative works, regulating what can and cannot
be done with the source code [8]. These restrictions
impact people’s motivations to use and develop Free
Software.

e Intended audience is the type of users (e.g., beginner,
advanced) and members (e.g., system administrator, Java
programmers) a project aims at. Audience can influence
the number of potential developers for it expands or
shrinks the target population size [19]. Moreover, specific
types of users attract specific members, which define their
expertise and likelihood to contribute [8].

e Type of project refers to the specific area to which a
project is related, such as genealogy, payroll, browsing,

Consequences
— Open Tasks I
|

— Closed Tasks

Tasks Closed /
Total #of Tasks

Likelihood of
Task Completio

|
|
R
| Quality
Perception

Average Time
to Close Tasks | |

Time for Task
Completion

Attractiveness research model — adapted from Santos Jr. et al [8].

games, scientific, etc [20]. This represents the applica-
tion domain and influences attractiveness for marketing
reasons normally known as niches. Some niches have
more volunteer labor (and user base) available than
others. Moreover, some application domains have more
competing (similar) projects than others, making it harder
for a project to stand out as a viable option for use [19].

o Development status — life-cycle status — refers to the
current available versions of the software. This could be,
for example, testing, beta, stable, production, and mature.
This status can influence a developer’s decision to join
and contribute to a project, as well as a user’s decision
to adopt its software [8]. It also can affect members’
motivations to work in order to release a new version,
affecting productivity rates [21], [6].

We propose to insert source code attributes as a project
characteristic in this theoretical cause and effect model of
Free Software attractiveness, shown in Figure 1. To achieve
this, we defined a simple (intermediary) attractiveness model
to observe the individual influence of source code attributes on
Free Software attractiveness — a subset of variables highlighted
in Figure 1. In short, we propose a new element that can
explain attractiveness partially. We did not deal with the
consequences to attractiveness when we added source code
attributes as an influence. However, we expect that they would
work in the same causal chain manner as shown in Figure 1.

Before a Free Software project can receive failure reports,
bug fixes, and new features, it should be attractive to volun-
teers, who normally first use and join the project, providing
contributions later. Over time, these contributions affect the
number of downloads and bring more members, creating
a positive feedback loop. Thus, we estimated attractiveness
based on two of its empirical indicators:

1) number of downloads as registered for SourceForge.net

projects, which represents the number of people inter-
ested in using the software.

2) number of members as registered for SourceForge.net
projects, which represents the number of contributors to
the project.

One should note that the numbers of downloads and mem-
bers at SourceForge.net are proxies to the actual numbers of
users and developers of the project, respectively. This study
explored a large number of projects and applied the same
criteria uniformly to all of them. Although we recognize that
using these proxies is a limitation, we did not find in previous
works better proxies that could represent more faithfully the
number of users and number of developers in a large sample
of projects.

The meaning of “success” to Free Software projects was
discussed from different perspectives in previous research:
(i) source code modularity [22]; (ii) number of lines of
code generated [23]; (iii) velocity of closing bugs [6]; (iv)
ability of a project to advance through development phases
(e.g., from alpha to beta to stable) [21], [20]; (v) number of
downloads [24]; (vi) number of members [25].

In our understanding, these measures, when individually
used, do not indicate fully a successful Free Software project;
but, when analyzed together, they offer the means to help
achieve success, or keep it [8]. Additionally, the vast majority
of collaboration for a Free Software project lies on its source
code, which is the most important “artifact” generated and
managed by and for its community. Therefore, we propose to
insert in the attractiveness model the source code attributes —
obtained for source code metrics — as one of the attractiveness
origins. In summary, some source code characteristics can lead
to more contributions for a project, which may attract more
users and developers — our hypothesis are based on this idea.

III. RESEARCH DESIGN

Initially, this Section presents a source code analysis tool
under development by our group called Analizo (Sec-
tion III-A). It was used to calculate source code metric of
6,773 Free Software projects from SourceForge.net. Later,
Section III-B presents the criteria used for sample and data
collection. Finally, Section III-C shows the multiple regression
model defined to test our hypothesis, which are discussed in
Section III-D.

A. The Analizo Tool

Analizo? is a multi-language source code analysis tool.
Its architecture was designed to support source code parsing
in different languages and to report useful information about
it.

A basic requirement of our source code analysis tool was the
ability to analyze source code written in multiple languages.
Most existing tools use object code to extract data, making
it impossible to process projects that do not compile due to
failures in either the source code or in its dependencies [26].

2softwarelivre.org/mezuro/analizo

In addition, tools based on object code are not capable of ana-
lyzing features present only in the source, such as comments.
To avoid these problems, Analizo is designed to extract the
information directly from source code files.

Analizo uses Doxyparse’, a multi-language source
code parser based on Doxygen’s internals, to parse the source
code. This feature provides Analizo with the potential
ability to parse all the languages supported by Doxygen®.
So, up to the moment, it has been tested only with C, C++,
and Java source code, supporting the computation of fourteen
metrics:

o Afferent Connections per Class (ACC),

o Coupling between Objects (CBO),

o Coupling Factor (COF),

o Depth of Inheritance Tree (DIT),

o Lack of Cohesion on Methods/Functions (LCOM4),

e Lines of Code (LOC),

o Lines per Method/Function (AMZ_Size),

o Number of Attributes/Variables (NOV),

o Number of Children per Class (NOC),

o Number of Methods/Functions (NOF),

o Number of Classes/Module (NM),

o Number of Public Attributes/Variables (NPV),

o Number of Public Methods/Functions (NPF),

e Response for Class (RFC).
The correctness of the metrics computation was evaluated
by comparing the results provided by Analyzo and other

existing tools such as CCCC>, Cscope®, Eclipse-Metrics’, and
Macxim/Spago4Q®.

B. Sample and Data Collection

SourceForge.net shares its data to support Free Software
researchers. In this study, we used the data available in a
database managed by the University of Notre Dame® and an-
other one provided by the FLOSSMole project'?. We accessed
these databases in November, 2009 and collected data about
all the projects that matched the following criteria:

o Source code written in the C language. While the vast
majority of Free Software applications is written in C
[27], a large amount of research work focuses their
analyzes in projects written in Java (e.g., the related work
reported in section V). Given this disparity between the
actual Free Software ecosystem and the research that
addresses it, and our previous experience with analysis of
Free Software written in C [28], we chose to focus the
analysis in this work to such projects as well. This is our
first study relating source code metrics and attractiveness,
and in the future we plan to include other programming

3softwarelivre.org/mezuro/doxyparse
4doxygen.org

cccc.sourceforge.net
cscope.sourceforge.net
metrics.sourceforge.net
8qualipso.dscpi.uninsubria.it/macxim
’nd.edu/~oss/Data/data.html
10flossmole.org

5
6
7

TABLE I
DESCRIPTIVE STATISTICS

Raw Logarithm
Metric Minimum Maximum Mean | Std. Deviation | Mean | Std. Deviation
(Average) Coupling Between Objects 0.0015 711.50 2.26 9.04 0.35 0.98
(Average) Lack of Cohesion on Methods 0.0004 262.00 4.77 12.00 1.01 1.09
(Average) Structural Complexity 0 4,940.00 15.79 114.69 1.37 1.57
(Total) Number of Modules 1 7,177.00 74.98 276.54 3.08 1.39
(Total) Lines of Code 11 2,983,103.00 17,722.23 91,614.70 8.28 1.58
(Total) Number of Public Variables 1 516034.00 994.80 8850.44 491 1.80
(Total) Number of Functions 1 99468.00 612.54 2987.28 4.92 1.63
(Total) Number of Public Functions 1 99468.00 642.12 3025.94 5.02 1.58
(Total) Number of Members 1 288.00 2.90 6.19 0.59 0.79
(Total) Number of Downloads 6 | 941,498,760.00 | 956,674.26 17,760,732.37 8.20 2.66

languages (e.g., C++, Java), as well as trying to identify
similarities and discrepancies among projects written in
different languages.

e More than one download. Projects with no downloads
are probably either non-development projects, or projects
that have just started, or are other special cases.

This provided us with a list of 11,433 projects. After this
preliminary sampling, the following steps were automatically
executed by scripts developed by our group, to perform data
collection:

1) Download the code of all the projects. This resulted
in the source code for 10,128 projects since some of
them had no available files (empty “files” section in the
SourceForge.net project pages);

2) Run Analizo sequentially for all projects and store the

computed metrics in a single database.
The metrics were successfully computed for 6,773
projects only, because (i) some downloaded files did not
contain source code (e.g., binary-only downloads), (ii)
the source code was not written in C, (the project was
incorrectly classified as being written in C), or (iii) some
files could not be processed by Analizo due to severe
errors in the source code (e.g., syntax errors);

3) Cross-join the two datasets. Finally the two datasets —
the SourceForge.net data available from the University
of Notre Dame and FLOSSMole on the one side and
the source code metrics calculated by Analizo on the
other side — were cross-joined so that we could perform
the needed statistical analysis.

Table I summarizes our sample, but the complete data set
used for this study is available on the Web !'. Section III-C
discusses in detail how we selected the variables presented
in Table I. This table shows natural values of minimum,
maximum, arithmetic mean, and standard deviation for each
variable, indicating the characteristics of our sample.

We analyzed our selected variables in their natural form
(Raw) to verify their distribution, which is presented in the
first part of Table I. Thereby, we observed that the Skewness
and Kurtosis probability distribution showed high values, indi-
cating non-normality [29]. Because of this non-normality, we
transformed the variables to a logarithm scale for linearization,

Heesl.ime .usp.br/mangue/data

which reduced the Skewness and Kurtosis values and made
them proper to run multiple regressions [20]. The arithmetic
mean and standard deviation of the logarithm values can be
seen in the second part of Table 1.

C. Variables

Among the fourteen source code metrics that Analizo
provided, we selected seven for our initial analysis: total LOC,
total NM, total NOF, total NPV, total NPF, average LCOM4,
and average CBO. To be able to apply to the procedural
paradigm of the C language some metrics that area widely-
used in the literature such as NOF, NPV, NPE, LCOM4,
and CBO, we assumed a mapping of the object concepts of
“class” and “method” to the C concepts of “source file” and
“function”.

In this first study, we limited the scope of metrics used to
be able to reach a simple yet comprehensive model to relate
source code and attractiveness. Thus, the ACC, AMZ_Size,
COF, DIT, NOC, NOV, and RFC metrics were left out of the
scope of this study.

Nevertheless, in the first stage of our statistical analysis,
the LOC, NOF, NPV and NPF metrics showed a high corre-
lation between each other, according to Pearson’s parametric
correlations as shown by the bold numbers in Table II. Highly
correlated variables indicate that they are representations of a
same attribute, making it unnecessary to use more than one.
Since all these metrics represent a similar concept, we selected
one of them — LOC - for our statistical analysis to reduce
multicollinearity.

We have also analyzed the Spearman and Kendal non-
parametric correlations (see Table III and Table IV, respec-
tively) given that some of our variables are not normally dis-
tributed. In our analysis, we observed that after transforming
our variables in their logarithmic form, Pearson correlations
performed just as well as the non-parametric indices. Thus, we
chose the Pearson parametric correlation because it represents
the most commonly used form of correlation index, and it also
provides the basis for the regression analysis we performed
later. That way, we could maintain consistency once multiple
regression techniques are based on parametric indices [29].

According to the analysis described above, we ended up
considering LOC and NM as size metrics. Theoretically, the
more LOC, the more NM. However, it is possible to have

TABLE II
PARAMETRIC CORRELATIONS: PEARSON

Variable CBO | LCOM4 SC NM LOC NPV NOF NPF Mbrs DLs
Coupling Between Objects - 0.141 0.723 | 0.380 | 0.608 | 0.423 | 0.434 | 0.492 | 0.113 | 0.129
Lack of Cohesion on Methods | 0.141 - 0.786 | 0.019 | 0472 | 0.102 | 0.311 | 0.361 | 0.080 | 0.107
Structural Complexity 0.723 0.786 - 0.254 | 0.666 | 0.338 | 0.493 | 0.564 | 0.127 | 0.156
Number of Modules 0.308 0.019 0.254 - 0.799 | 0.730 | 0.815 | 0.827 | 0.311 | 0.344
Lines of Code 0.608 0.472 0.666 | 0.799 - 0.872 | 0.923 | 0.927 | 0.328 | 0.410
Number of Public Variables 0.423 0.102 0.338 | 0.730 | 0.872 - 0.756 | 0.761 | 0.303 | 0.386
Number of Functions 0.434 0.311 0.493 | 0.815 | 0.923 | 0.756 - 0.886 | 0.320 | 0.380
Number of Public Functions 0.492 0.361 0.564 | 0.827 | 0.927 | 0.761 | 0.886 - 0.308 | 0.365
Number of Members 0.113 0.080 0.127 | 0.311 | 0.328 | 0.303 | 0.320 | 0.308 - 0.676
Number of Downloads 0.129 0.107 0.156 | 0.344 | 0.410 | 0.386 | 0.380 | 0.365 | 0.676 -
TABLE III
NON-PARAMETRIC CORRELATIONS: SPEARMAN
Variable CBO | LCOM4 SC NM LOC NPV NOF NPF Mbrs DLs
Coupling Between Objects - 0.340 0.803 | 0.473 | 0.662 | 0.523 | 0.518 | 0.566 | 0.156 | 0.169
Lack of Cohesion on Methods | 0.340 - 0.773 | 0.213 | 0.490 | 0.348 | 0.478 | 0.516 | 0.129 | 0.162
Structural Complexity 0.803 0.773 - 0.370 | 0.685 | 0.478 | 0.571 | 0.631 | 0.164 | 0.196
Number of Modules 0.473 0.213 0.370 - 0.793 | 0.718 | 0.818 | 0.828 | 0.284 | 0.320
Lines of Code 0.662 0.490 0.685 | 0.793 - 0.863 | 0.918 | 0.922 | 0.307 | 0.392
Number of Public Variables 0.523 0.348 0478 | 0.718 | 0.863 - 0.758 | 0.765 | 0.280 | 0.363
Number of Functions 0.518 0.478 0.571 | 0.818 | 0.918 | 0.758 - 0.895 | 0.300 | 0.362
Number of Public Functions 0.566 0.516 0.631 | 0.828 | 0.922 | 0.765 | 0.895 - 0.288 | 0.347
Number of Members 0.156 0.129 0.164 | 0.284 | 0.307 | 0.280 | 0.300 | 0.288 - 0.598
Number of Downloads 0.169 0.162 0.196 | 0.320 | 0.392 | 0.363 | 0.362 | 0.347 | 0.598 -
TABLE IV
NON-PARAMETRIC CORRELATIONS: KENDALL

Variable CBO | LCOM4 SC NM LOC NPV NOF NPF Mbrs DLs
Coupling Between Objects - 0.244 0.650 | 0.341 | 0.483 | 0.377 | 0.373 | 0.410 | 0.118 | 0.114
Lack of Cohesion on Methods | 0.244 - 0.597 | 0.148 | 0.341 | 0.240 | 0.333 | 0.362 | 0.097 | 0.109
Structural Complexity 0.650 0.597 - 0.262 | 0.497 | 0.345 | 0413 | 0.460 | 0.124 | 0.132
Number of Modules 0.341 0.148 0.262 - 0.605 | 0.546 | 0.641 | 0.648 | 0.217 | 0.219
Lines of Code 0.483 0.341 0.497 | 0.605 - 0.660 | 0.763 | 0.771 | 0.233 | 0.270
Number of Public Variables 0.377 0.240 0.345 | 0.546 | 0.660 - 0.588 | 0.596 | 0.213 | 0.249
Number of Functions 0.373 0.333 0413 | 0.641 | 0.763 | 0.588 - 0.864 | 0.228 | 0.248
Number of Public Functions 0.410 0.362 0.460 | 0.648 | 0.771 | 0.596 | 0.864 - 0.219 | 0.237
Number of Members 0.118 0.097 0.124 | 0.217 | 0.233 | 0.213 | 0.228 | 0.219 - 0.471
Number of Downloads 0.114 0.109 0.132 | 0.219 | 0.270 | 0.249 | 0.248 | 0.237 | 0.471 -

more lines of code without having more modules, by adding
code into existing modules. Also, a software could have more
modules but keep the number of lines of code when refac-
toring is applied. Furthermore, we understood that number
of modules (NM) did not highly correlate with the others,
since we considered a high correlation when the Pearson’s
correlations values were approximately 0.9 or higher as our
criteria, emphasized in Table II.

In conclusion, LOC and NM were collected since they
measure different kinds of size metrics, more or less influenced
by programming languages and coding styles, respectively.
Finally, to obtain the value of our structural complexity metric
(SC), explained in Section II, CBO and LCOM4 were multi-
plied. These three metrics did not show high correlations with
other metrics. As expected, SC showed a positive correlation
with both. However, it was not as high as the others were,
because CBO and LCOM4 had a low correlation with each
other. This means that SC, statistically, represents different
attributes when compared to CBO and LCOM4, thus endorsing
the theory that CBO and LCOM4 together offer different
information.

In summary, our multiple regression model ended up with
the following variables:

« Independent variables (source code metrics)

— Structural Complexity (SC): The product of CBO and
LCOM4 metrics.

— Lines of Code (LOC), the sum of lines of code in all
modules of the project;

— Number of Modules (NM), the total number of all
modules of the project.

o Dependent variables (attractiveness)

— Number of Downloads: a proxy for the number of
users of the project;

— Number of Members: a proxy for the number of
developers in the project.

The model developed in this study revolves around attrac-
tiveness, aiming at the explanation of its causes. We defined
a multiple regression model that has attractiveness as its
dependent variable. It was measured through two indicators:
number of downloads and number of members. Thus, we have
two different regressions, one for each attractiveness indicator.

They are the variables explained by the source code attributes
proposed in our hypotheses. Consequently, the SC, LOC and
NM metrics, which represent the source code attributes, are
the independent variables — the influencers of attractiveness.

D. Research Hypotheses

In this first study about the relationships between source
code metrics and attractiveness, we investigated whether two
attributes — structural complexity and size — obtained via four
source code metrics might influence the attractiveness of Free
Software projects. Thereby, we can later observe whether
these attributes influence people’s perception of quality as
consequence of attractiveness. According to the metrics chosen
to represent structural complexity and size, we formulated
three hypotheses:

H1 - Free Software projects with higher structural com-
plexity have lower attractiveness. The higher the software
complexity, the more difficult it is to understand its source
code for maintenance and evolution purposes. This leads to an
increase in the maintenance effort, and makes it more difficult
to attract new members and users for the project. Over time,
with less members and users, the project may lose its ability
to add new features and fix bugs and, consequently, its ability
to evolve and meet the user’s changing requirements.

H2 — Free Software projects with more lines of code have
higher attractiveness. To some extent, lines of code reflect the
amount of features of the project and the amount of work that
have been put into it. Therefore, projects with more lines of
code will usually attract more users (since they have more
features) and developers — since they offer more opportunities
for contribution.

H3 — Free Software projects with a higher number of
modules have higher attractiveness. The number of modules
may indicate the project size and the possibility of working in
parallel in independent modules. More modules may indicate
a concern with good design and better modularization, which
facilitates contributions. This attracts more members, who can
write more features and fix more bugs, which would then
attract more users.

IV. HYPOTHESES TESTING

We specified a multiple regression model to explain the
relationships between the selected source code metrics and
attractiveness in Free Software projects. Before running this
model, we analyzed and applied statistical techniques on the
descriptive statistical values of our dataset presented in Table I,
discussed in Section III-B. With the results in hand, we
selected the variables of our regression model according to
our scope definition, the analysis of the Pearson parametric
correlations and Spearman and Kendal non-parametric corre-
lations, shown in Table II, Table III, and Table IV respectively,
and presented in detail in Section III-C. Finally, with the
linearized values of SC, NM, and LOC (independent variables)
and number of downloads and number of members (dependent
variables), we tested our hypotheses according to our statistical
multiple regression model compound for these variables.

Table V summarizes the regression results based on the
Pearson’s correlation values. These statistical results indicated
a linear dependency between our source code metrics and
each attractiveness variable. In this table, § is a coefficient
that indicates the size of the influence of each metric on each
attractiveness indicator.

As we can see in Table V, lines of code is more strongly
correlated to downloads and members than structural com-
plexity and number of modules, according to the standardized
beta (Std. (). Standardized betas are calculated to perform
comparisons between variables that are measured using dif-
ferent scales (e.g., lines of code and structural complexity).
One cannot compare regular beta coefficients without first
standardizing them.

Moreover, structural complexity has a negative correlation
with attractiveness, as expected. Noteworthy is that the T-
test and P (probability) values represent whether a source
code metric is a statistically significant predictor or influencer
of attractiveness indicators. For downloads, the number of
modules is not significant because its P-value is greater than
0.05. Finally, in the last line of Table V, R-squared values
indicate the percentage of attractiveness (users and developers)
variance that this set of source code metrics is capable of
explaining. So, roughly speaking, an R-squared of 20 percent
indicates that a set of predictors can explain 20 percent of a
dependent variable. We obtained the following equations:

downloads = 1.551 — 0.286 x log(SC)
10.856 x log(LOC) + 0.008 x log(N M)
members = —0.668 — 0.033 X log(SC)

+0.126 x log(LOC) 4 0.087 x log(N M)

Each equation has one R-value. The coefficient (/3) of each
variable is the size of influence that one of the source code
metrics (the independent variable) has on the attractiveness —
the dependent variable. So, one unit change in an indepen-
dent variable generates a (-size influence on the dependent
variable, on average.

The R-value represents the amount of the dependent vari-
ables that can be explained by that set of independent vari-
ables. In our analysis, the R-value indicated that source code
metrics explain 18% (R? = 0.180) of the number of down-
loads and 12% (R? = 0.121) of the number of members. These
are significant values for the social context that an adoption
or volunteering of a Free Software projects are involved.

A. Hypothesis 1

The data analysis supports our first hypothesis — Free
Software projects with higher structural complexity have lower
attractiveness. In fact, structural complexity has a negative
influence on attractiveness. When related to downloads, it
presents a -0.286 (3 coefficient and p < 0.001. This means that
structural complexity has an statistically significant impact on
user interest.

In the Free Software context, structural complexity may
indicate the difficulty to make improvements to the software,
such as new features and bug fixes. So, most users may loose

TABLE V
EQUATIONS AND PEARSON CORRELATIONS

Downloads Members
Metric B | Std. 3 | T-value | P-value B | Std. 8 | T-value | P-value
(Constant) 1.551 - 6.12 | <0.001 | -0.668 - -8.47 | <0.001
Structural Complexity (log) | -0.286 | -0,150 -8.616 | <0.001 | -0.033 | -0.058 -3.238 0.001
Lines of Code (log) 0.856 0.506 18.624 | <0.001 0.126 0.249 8.846 | <0.001
Number of Modules (log) 0.008 0.004 0.186 0.852 0.087 0.148 6.625 | <0.001
R 0.425 0.348
R? 0.180 0.121

interest in the software because another project may have a
greater capacity to meet their evolving needs. Therefore, a
smaller number of users, generating less reports could lead to
less bug fixes and new features, which in turn could lead to
less users in the future.

When related to members, structural complexity presents a
[of -0.033 with p = 0.001, indicating that developers avoid to
join projects with high structural complexity. A more complex
source code is more difficult to understand and, consequently,
to change. This may prevent new developers from joining the
project. With fewer members, the community around a project
is less active.

B. Hypothesis 2

The second hypothesis — Free Software projects with more
lines of code have higher attractiveness — is also supported by
our data. Lines of code has a positive influence on attractive-
ness.

For downloads, this metric has § = 0.856, with p < 0.001.
In this context, lines of code can be an indication of the amount
of software features and amount of work that have been put
into the project so far. The more features available, the more
users will become interested in the project. This may make
the software more famous and more useful, attracting new
members and users.

In addition, lines of code in relation to number of members
indicated that developers are interested in larger projects. The
3 coefficient of this metric for members is 0.126 (p < 0.001).
Therefore, for both downloads and members, lines of code is
the metric with the highest influence because it is associated
with software features and project size.

C. Hypothesis 3

The most interesting results were related to our third hy-
pothesis — Free Software projects with a higher number of
modules have higher attractiveness. For downloads, the data
does not support the hypothesis: the high p-value (p = 0.852)
does not allow us to claim that the number of modules has
any influence on the number of downloads. For members, on
the other hand, the hypothesis is confirmed: the number of
modules influences the number of members with 3 = 0.087,
and p < 0.001, which is statistically significant.

Both lines of code and number of modules are metrics that
represent software size. The fact that both influence number
of members, but only lines of codes influence the number of
downloads makes us wonder whether they represent different

characteristics of software size. In this context, lines of code
probably is related to the amount of features in the project,
which helps to attract both users and developers to the project.

However, when lines of code is kept constant, different
values in the number of modules represent different ways
of organizing these features over different modules. A higher
number of modules thus indicates a higher modularity, which
makes it easier for developers to work on the project and
requires less coordination effort. For users, on the other hand,
it is probably the case that it does not matter whether the
software is modular or not; they are only interested in the
provided features.

Finally, collaborators in Free Software projects often start
participating in the project as users, attracted by the software
features. After that, those users who have the potential to
become developers may begin to contribute with the code.
While a high number of lines of code (and thus of features) is
enough to attract users, project leaders should pay attention to
source code quality. To turn users into developers, the project
has to provide a source code that is easy to understand and
modify by keeping structural complexity as low as possible
and modularity at a good level.

V. RELATED WORK

Large Free Software projects such as Debian GNU/Linux,
GNOME, and KDE have invested in the creation of dedicated
teams for quality assurance. These efforts involve everything
from removing bugs and obsolete components to the definition
of standards and strategies to prevent bugs and improve quality
[5]. However, most projects do not have the resources to have
a dedicated quality team.

Michlmayr et al. [5] performed a study on quality assurance
problems in Free Software such as unsupported code, con-
figuration management, security updates, users not knowing
how to report bugs, the difficulty in attracting volunteers,
lack of documentation, and problems with coordination and
communication. None of these problems, however, are related
to the quality of the source code per se.

Barkmann et al. [30] analyzed 146 Free Software projects
written in Java, identifying the correlation between a set
of object-oriented metrics and their theoretical ideal values.
However, in their work the values of source code metrics were
not associated with problems or attractiveness of Free Software
projects.

Stamelos et al. [31] presented empirical results on the
relationship between the size of application components and

the delivered quality measured as user satisfaction. Quality
characteristics of 100 applications written for GNU/Linux
were compared to industrial standards. The results indicated
that the so-called structural quality (e.g., component size) of
an application is related to user satisfaction.

Midha [32] analyzed 450 projects from SourceForge.net and
verified that high values of MacCabe’s Cyclomatic Complex-
ity and Haltead’s Effort (complexity metrics) are positively
correlated with the number of bugs and with the time needed
to fix bugs. These metrics were also found to be negatively
correlated with contributions from new developers, i.e., more
complex code is less likely to attract new developers. How-
ever, Midha’s study used complexity metrics measured at the
subroutine level, while in our study we use complexity metrics
at the module level.

Capra et al. [33] have shown that open governance is asso-
ciated with higher software design quality on a study with 75
Free Software projects. They defined software design quality
in terms of 5 Object-Oriented metrics, of which only CBO
is used in our study. An open governance structure together
with the lack of formal management and strict deadlines
enables developers to enhance software design to have a high-
quality product, since they do not suffer pressure to release
the software [33]. Moreover, a better software design fosters a
more open governance by allowing developers to work in in-
dependent modules without the need for explicit coordination
activities. However, Capra’s study has not addressed the issue
of attractiveness.

Bargallo et al. [34] analyzed 56 Free Software projects,
studying the relationship between software design quality and
project success. They defined success in terms of downloads,
page views and development activity, and design quality in
terms of the object-oriented metrics CBO, DIT, MIF, and
NOC. They found that the most successful projects exhibited
lower design quality. They argue that perhaps in successful
projects the main developers tend to shift their attention to
lateral activities, such as replying to users in forums, instead
of focusing on enhancing the code quality. Our results seemed
to contradict theirs, but this is not the case. First, their concep-
tualization of success is different from our conceptualization of
attractiveness. Moreover, we considered structural complexity
in terms of CBO and LCOM4 metrics together, while they
used a different set of metrics to represent the notion of design
quality, having only CBO in common with the present study.
Therefore, a straightforward comparison between their study
and ours is not so simple.

VI. CONCLUSION

A systematic review of 63 empirical studies showed that
there is little research addressing the characteristics or prop-
erties of Free Software projects, such as their quality, growth,
and evolution [35]. Our study contributes with an unprece-
dented analysis of source code metrics from thousands of
Free Software projects, causally linking software source code
characteristics with attractiveness. In doing so, we expect to
raise awareness on an important topic so far neglected. Free

Software projects fail when they lack attractiveness. Therefore,
understanding what influences attractiveness provides manage-
rial knowledge to project leaders, pointing them to the right
direction on prioritizing their resources.

Our results indicated that source code size and structural
complexity explain a relevant percentage of the attractiveness
of Free Software projects. Attractiveness is based on human
perceptions and influenced by people’s cognition, making it
a complex issue, hard to understand and explain completely.
Nevertheless, our study was able to explain 18% of software
users and 12% of project developers, through a set of four
source code metrics. These statistical results are significant
for the social context that Free Software projects adoption and
volunteering are inserted.

In this paper, we showed that lines of code (LOC) has a
significant effect on the number of project users. Our results
also indicated that structural complexity (SC) has a negative
influence on project attractiveness. Therefore, a project will
face greater difficulties to grow without observing some source
code attributes such as cohesion, coupling, and modularity,
which favors developer contributions such as new features and
bug fixes.

In other words, our analysis indicated that software struc-
tural complexity growth may decrease the positive effects of
new added features on attractiveness. Ideally, a project should
keep its complexity constant as new code is incorporated,
because developers are interested in improving the software,
and the users in the improvements. This demonstrates to
project leaders (in communities, foundations, governments,
and companies) the importance to monitor metrics such as
LCOM4 and CBO together with NM and LOC, thereby in-
creasing their chances of forming a community of contributors
around their software, further enhancing its quality. Thus,
projects should grow managing their complexity, keeping the
new members willingness to contribute.

Our study differs from related work because we analyzed
a large sample of Free Software projects. Table I shows how
diverse our sample of 6,773 projects is. There are projects
with thousands of modules (7,177 — Broadcom replacement
firmware!?), millions of lines of code (2,983,103 — Broadcom
replacement firmware), large structural complexity (4,940 —
pyCDK'?), several hundred members (288 — TinyOS'#), and
hundreds of millions of downloads (941,498,760 — MinGW:
Minimalist GNU for Windows'?). This sample was based
on well-defined criteria and the number of projects involved
provided us with statistical confidence in the results.

Nevertheless, this study has some limitations that motivate
future work. Our sample is restricted to projects written in
C available at SourceForge.net and our analysis to a limited
set of metrics. In the future, we will include projects from
other repositories, and extend this study to other source code

metrics and programming languages such as C++ and Java.
12sourceforge.
13sourceforge.
l4sourceforge.
l550urceforge.

net/projects/newbroadcom
net/projects/pycdk
net/projects/tinyos
net/projects/mingw

Furthermore, widely known projects such as GNU/Linux and
Firefox should be included in studies of this kind, for their
metrics may signal represent values that could be seen as
targets or references.

Finally, we acknowledge that source code metrics are not the
only variables capable of influencing attractiveness. Our previ-
ous work has identified that things such as the restrictiveness
of the license, type of project, software life-cycle stage, and
intended audience are all capable of influencing attractiveness
[8]. At first sight, assuming that all these variables from our
previous study are independent from the source code metrics
we studied here, roughly 40% of attractiveness variance would
be then explained. However, including variables in an equation
in a statistically sound manner is not a trivial task. Accord-
ingly, there is a need to further identify the interaction between
that set of variables with the ones reported in this study.

ACKNOWLEDGMENTS

The authors of this paper are supported by CNPQ, FAPESP,
and the Qualipso project. This research has been developed in
the USP Free Software Competence Center and the authors
would like to thank Claudia Melo, Lucianna Almeida, Joenio
Costa, Beraldo Leal, and Nelson Lago for their contributions.

REFERENCES

[1] Y. Benkler, The Wealth of Networks: How Social Production Transforms
Markets And Freedom. Yale University Press, 2006.

[2] A. Wasserman and E. Capra, “Evaluating Software Engineering Pro-
cesses in Commercial and Community Open Source Projects,” in Work-
shop Emerging Trends in FLOSS Research and Development, 2007.

[3] D. Riehle, “The Economic Motivation of Open Source Software: Stake-
holder Perspectives,” IEEE Computer, vol. 40, no. 4, pp. 25-32, 2007.

[4] Forrester-Consulting, “Open Source Paves the Way for the Next Gener-
ation of Enterprise IT,” Forrester Research, Tech. Rep., 2008.

[5] M. Michlmayr, F. Hunt, and D. Probert, “Quality Practices and Problems
in Free Software Projects,” in First International Conference on Open
Source Systems, M. Scotto and G. Succi, Eds., Genova, Italy, 2005, pp.
309-310.

[6] K. J. Stewart and S. Gosain, “The Impact of Ideology on Effectiveness
in Open Source Software Development Teams,” MIS Quarterly, vol. 30,
no. 2, pp. 291-314, June 2006.

[71 E. S. Raymond, The Cathedral & the Bazaar, T. O’Reilly, Ed.
bastopol, CA, USA: O’Reilly & Associates, Inc., 1999.

[8] C. Santos Jr., J. Pearson, and F. Kon, “Attractiveness of Free and
Open Source Software Projects.” in Proceedings of the 18th European
Conference on Information Systems (ECIS), Pretoria, South Africa, 2010,
(forthcoming).

[9] E. E. Mills, “Software Metrics,” Software Engineering Institute, SEI -

Carnegie Mellon University, Tech. Rep., 1988.

E. Tempero, “On Measuring Java Software,” in ACSC ’08: Proceedings

of the Thirty-First Australasian Conference On Computer Science,

vol. 74. Darlinghurst, Australia, Australia: Australian Computer

Society, Inc., 2008, pp. 7-7.

T. C. Jones, Applied Software Measurement: Assuring Productivity and

Quality. New York: McGraw-Hill, 1991.

M. Lorenz and J. Kidd, Object-Oriented Software Metrics.

Hall, 1994.

K. Beck, Smalltalk: best practice patterns.

USA: Prentice-Hall, Inc., 1997.

J. Bansiya and C. Davi, “Automated Metrics and Object-Oriented De-

velopment: Using QMOOD++ for Object-Oriented Metrics,” Dr. Dobb’s

Journal, vol. 22, no. 12, pp. 42, 44-48, December 1997.

S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-

Oriented Design,” IEEE Transactions on Software Engineering, vol. 20,

no. 6, pp. 476493, 1994.

Se-

[10]

(11]
[12] Prentice
[13] Upper Saddle River, NJ,

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

M. Hitz and B. Montazeri, “Measuring Coupling and Cohesion in
Object-Oriented Systems,” in Proceedings of International Symposium
on Applied Corporate Computing, 1995.

D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko, “The
Structural Complexity of Software: An Experimental Test,” Software
Engineering, IEEE Transactions on, vol. 31, no. 11, pp. 982-995, Nov.
2005.

C. Richter, Designing Flexible Object-Oriented Systems with UML.
Thousand Oaks, CA, USA: New Riders Publishing, 1999.

J. P. Johnson, “Open source software: Private provision of a public
good,” Journal of Economics and Management Strategy, vol. 11, no. 4,
pp. 637-662, 2002.

K. Crowston and B. Scozzi, “Open Source Software Projects as Virtual
Organizations: Competency Rallying for Software Development,” in IEE
Proceedings Software, vol. 149, no. 1, 2002, pp. 3-17.

U. Raja and M. J. Tretter, “Investigating open source project success:
A data mining approach to model formulation, validation and testing,”
Working Paper, Texas A&M University, College Station, Texas, Tech.
Rep. Paper-071-31, 2006.

M. Shaikh and T. Cornford, “Version management tools: Cvs to bk in
the linux kernel,” Long Range Planning, vol. 34, pp. 699-725, 2003.
A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open source
software development: the apache server,” in ICSE '00: Proceedings of
the 22nd international conference on Software engineering. New York,
NY, USA: ACM, 2000, pp. 263-272.

V. Balijepally, R. K. Mahapatra, S. P. Nerur, and K. Price, “Are
two heads better than one for software development? the productivity
paradox of pair programming,” MIS Quarterly, vol. 33, no. 1, pp. 91—
118, 2009. [Online]. Available: http://aisel.aisnet.org/misq/vol33/iss1/7/
K. Crowston, , and J. Howison, “Hierarchy and centralization in free and
open source software team communications,” Knowledge Technology &
Policy, vol. 18, pp. 65-85, 2006.

A. E. Hassan, Z. M. Jiang, and R. C. Holt, “Source versus object code
extraction for recovering software architecture,” Reverse Engineering,
Working Conference on, vol. 0, pp. 67-76, 2005.

G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and J. J. Amor,
“Mining Large Software Compilations over Time: Another Perspective
of Software Evolution,” in Proceedings of the International Workshop
on Mining Software Repositories (MSR 2006), Shanghai, China, 2006.
A. Terceiro and C. Chavez, “Structural Complexity Evolution in Free
Software Projects: A Case Study,” in QACOS-OSSPL 2009: Proceedings
of the Joint Workshop on Quality and Architectural Concerns in Open
Source Software (QACOS) and Open Source Software and Product Lines
(OSSPL), M. Ali Babar, B. Lundell, and F. van der Linden, Eds., 2009.
J. F. Hair, W. C. Black, B. J. Babin, R. E. Anderson, and R. L. Tatham,
Multivariate data analysis, 6th ed. Upper Saddle River, NJ: Pearson
Education In, 2006.

H. Barkmann, R. Lincke, and W. Lowe, “Quantitative Evaluation of
Software Quality Metrics in Open-Source Projects,” in AINA Workshops,
2009, pp. 1067-1072.

I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code Quality
Analysis in Open Source Software Development,” Information Systems
Journal, vol. 12, pp. 43-60, 2002.

V. Midha, “Does Complexity Matter? The Impact of Change in Struc-
tural Complexity On Software Maintenance and New Developers’ Con-
tributions in Open Source Software,” in ICIS 2008 Proceedings, 2008.
E. Capra, C. Francalanci, and F. Merlo, “An Empirical Study on the
Relationship Between Software Design Quality, Development Effort and
Governance in Open Source Projects,” IEEE Transactions on Software
Engineering, vol. 34, no. 6, pp. 765-782, Nov.-Dec. 2008.

D. Barbagallo, C. Francalenei, and F. Merlo, “The Impact of Social
Networking on Software Design Quality and Development Effort in
Open Source Projects,” in ICIS 2008 Proceedings, 2008. [Online].
Available: {http://aisel.aisnet.org/icis2008/201}

K.-J. Stol, M. A. Babar, B. Russo, and B. Fitzgerald, “The Use of
Empirical Methods in Open Source Software Research: Facts, Trends
and Future Directions,” in FLOSS’09: Proceedings of the 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 19-24.

