Open CirrusTM A Cloud Computing Testbed

A Street and and

Dejan Milojicic Senior Research Manager, Managing Director, Open Cirrus Hewlett-Packard Laboratories dejan.milojicic@hp.com

© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Open Cirrus[™] Cloud Computing Testbed

Shared: research, applications, infrastructure (11K cores), data sets Global services: sign on, monitoring, store. Open source stack (prs, tashi, hadoop) Sponsored by HP, Intel, and Yahoo! (with additional support from NSF)

• 11 sites currently, target of around 20 in the next two years.

Open Cirrus

- Objectives
 - Create an ecosystem for Cloud services modeling
 - Foster systems research around cloud computing
 - Expose research community to enterprise level requirements
 - Provide realistic traces of cloud workloads
 - Vendor-neutral open-source stacks and APIs for the cloud
- How are we unique
 - Support for systems research and applications research
 - Federation of heterogeneous datacenters
 - Interesting data sets

Process

- Central Management Office, oversees Open Cirrus
- Governance model
 - Research team
 - Technical Team
 - New site additions
 - Support (legal (export, privacy), IT, etc.)
- Each site
 - Runs its own research and technical teams,
 - Contributes individual technologies
 - Operates some of the global services
- E.g. HP Site supports: Portal and PRS

-Home About Us Resources V Services Contact V Forums

Open Cirrus (TM)						
	Home					
Search this site: Search this site: Marthalyons My account COE Collaboration Space Admin Forums Vorkflow summary Create content Recent posts Feed aggregator Administer Log out	<text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>	New forum topics • Hi Everyone • Participating in Open Cirrus • Why is Open Cirrus unique and interesting to the systems community? • Why are we building Open Cirrus? • Welcome!!!! Some facts about Open Cirrus! more More are currently 1 user and 0 guests online. Online users • marthalyons				
_	 HP Labs Site - Martha Lyons, martha.lyons@hp.com Intel Pittsburgh Research Site - Michael Kozach, email@intel.com Yahoo! Research - Thomas Kwan, email@yahoo.com UIUC - KIT - Singapore IDA - 					

HP Labs Cirrus Cluster topology

Intel Research BigData Cluster

UIUC cluster network topology

- . Console switches: connect to 1 port/head node
- . Links to external UIUC network connect either to both head nodes, or to both core switches
- Each storage node has 1x10Gb/s to each core switch
- · Each compute node has 1x1Gb/s link to each core switch
- · Core switches have 2x10Gb/s inter-switch links between them

8

Open Cirrus Sites

	Characteristics							
Site	#Cores	#Servers	Public partition	Memory Size	Storage Size	Spindles	Network	Focus
HP	1,024	256	178	3.3TB	632TB	1152	10G internal 1Gb/s x-rack	Hadoop, Cells, PRS, scheduling
IDA	2,400	300	100	4.8TB	43TB+ 16TB SAN	600	1Gb/s	Apps based on Hadoop, Pig
Intel	1060	155	145	1.16TB	353TB local 60TB attach	550	1Gb/s	Tashi, PRS, MPI, Hadoop
KIT	2048	256	128	10TB	1PB	192	1Gb/s	Apps with high throughput
UIUC	1024	128	64	2TB	~500TB	288	1Gb/s	Datasets, cloud infrastructure
Yahoo	3200	480	400	2.4TB	1.2PB	1600	1Gb/s	Hadoop on demand

Access Model

- At a minimum, sites must expose a ssh gateway
- Sites may also provide additional external connections
 - Some provision for web services is highly recommended
- Sites may also be divided into resource pools by service
 - Some services may require a front-end machine (e.g. hadoop)

Open Cirrus* Software Components

Compute Node Services

Open Cirrus Software Stack

Zoni, Physical Resource Sets (PRS)

- Zoni service goals
 - Provide mini-datacenters to researchers
 - Isolate experiments from each other
 - Stable base for other research
- Zoni service approach
 - Allocate sets of physical co-located nodes, isolated inside VLANs
 - Start simple, add features as we go
 - Base to implement virtual resource sets
- Hardware as a Service (HaaS)

Tashi Software Architecture

Programming the Cloud: Hadoop

- An open-source Apache software foundation project sponsored by Yahoo!
 - http://wiki.apache.org/hadoop/ProjectDescription
 - reproduce the proprietary software infrastructure developed by Google
- Provides a parallel programming model (MapReduce), a distributed file system, and a parallel database
 - http://en.wikipedia.org/wiki/Hadoop
 - http://code.google.com/edu/parallel/mapreduce-tutorial.html

How do users get access to Open Cirrus sites?

- Project PIs apply to each site separately
- Contact email addresses on the Open Cirrus portal
 <u>http://opencirrus.org</u>
- Each Open Cirrus site decides which users and projects get access to its site
- A global sign on for all sites
 - Users are able to login to each OpenCirrus site for which they are authorized using the same login and password.

What kinds of research projects are Open Cirrus sites looking for?

- Open CirrusTM is seeking research in the following areas (different centers will weight these differently)
 - Datacenter federation
 - Datacenter management
 - Web services
 - Data-intensive applications and systems
 - Hadoop map-reduce applications
- The following kinds of projects are of less interest
 - Traditional HPC application development
 - Production applications that just need lots of cycles
 - Closed source system development

Metrics of Success

- Community
 - Technology used
 - # Sites, Projects, (Vibrant) Users
 - Research Productivity (Shared Cost of Research), # papers published
 - Cross-collaboration (Portal traffic)
 - # New open source components
- Technical
 - Utilization of Open Cirrus, TCO
 - Ease of use (e.g. provision 50% of OC nodes in < 30sec)
 - Federation transparency/adoption
 - Reliability

Metrics of Success: Shared Innovation

Single site Cloud: to Outsource or Own?

- Medium-sized organization: wishes to run a service for M months
 - Service requires 128 servers (1024 cores) and 524 TB
 - Same as UIUC cloud site
- Outsource (e.g., via AWS): monthly cost
 - Storage ~ \$62 K
 - Total ~ \$136 K (using 0.45:0.0.4:0.15 split for hardware:power:network)
- Own: monthly cost
 - Storage ~ \$349 K / M
 - \$ 1555 K / M + 7.5 K (includes 1 sysadmin / 100 nodes)
- Breakeven analysis: more preferable to own if:
 - -M > 5.55 months (storage)
 - Not surprising: Cloud providers benefit monetarily most from storage
 - -M > 12 months (overall)
- With underutilization of x%, still more preferable to own if:
 - -x > 33.3%
- $_{20}$ Even with CPU util of 20%, storage > 47% makes owning preferable

Federation Economics

• Cost reduces with size of federation increasing to 50

Open Cirrus v. Other Testbeds

	Testbeds							
	Open Cirrus	IBM/Google	TeraGrid	PlanetLab	EmuLab	Open Cloud Consortium	Amazon EC2	LANL/NSF cluster
Type of research	Systems & applications	Data-intensive applications research	Scientific applications	Systems and services	Systems	interoperab. across clouds using open APIs	Commer. use	Systems
Approach	Federation of heterog. data centers	A cluster supported by Google and IBM	Multi-site hetero clusters super comp.	A few 100 nodes hosted by research instit.	A single-site cluster with flexible control	Multi-site heterogeneous clusters	Raw access to virtual machines	Re-use of LANL's retiring clusters
Participants	HP, Intel, IDA, KIT, UIUC, Yahoo!	IBM, Google, Stanford, U.Washington, MIT	Many univ. & orgs	Many univ & organizations	University of Utah	4 centers –	Amazon	CMU, LANL, NSF
Distribution	6 sites	1 site	11 partners in US	> 700 nodes world-wide	>300 nodes univ@Utah	480 cores, distributed in four locations		1000s of older, still useful nodes at 1 site

Clouds vs. Grids

	Cloud Computing	Grid Computing
Objective	Provide desired computing platform via network enabled services	Resource sharing
Infrastructure	One or few data centers, heterogeneous/homogeneous resource under central control, Industry and Business	Geographically distributed, heterogeneous resource, no central control, VO Research and academic organization
Middleware	Proprietary, several reference implementations exist (e.g. Amazon)	Well developed, maintained and documented
Application	Suited for generic applications	Special application domains like High Energy Physics
User interface	Easy to use/deploy, no complex user interface required	Difficult use and deployment Need new user interface, e.g., commands, APIs, SDKs, services
Business Model	Commercial: Pay-as-you-go	Publicly funded: Use for free
Operational Model	Industrialization of IT Fully automated Services	Mostly Manufacture Handcrafted Services
QoS	Possible	Little support
On-demand provisioning	Yes	No

Open Cirrus Research Summary

ΗP

- Mercado
- Policy Aware Data Mgmt
- Wikipedia Mining & tagging
- SPARQL Query over Hadoop (UTD)
- N-tier App Benchmark (GaTech)

- Economic Cloud Stack
- Parallel Data Series
- OpenNet
- Exascale Data Center

Intel

- Everyday Sensing and Perception
- SLIPstream/Sprout
- Parallel Machine Learning
- NeuroSys
- Computational Health
- FastBeat (w/France Telecom)

• Tashi (with CMU, Yahoo)

• PRS (with HP)

Cloud application frameworks and services

Cloud infrastructure services

IT infrastructure layer

Exascale Data Center

Scalable Monitoring

Resource Matchmaking

- Data computation overlay for aggregation and analysis services
- Anomaly detection with minimal a priori knowledge
- Scale to exascale level
- Determine resource requirements without a priori knowledge
- VM placement in a virtual laaS platform
- Reduce performance variability

Cloud Benchmarks: support this research and build community

PIs: Niraj Tolia, Vanish Talwar {niraj.tolia, vanish.talwar}@hp.com

OpenNet on OpenCirrus

- OpenNet
 - Programmable, open layer-2 network
 - Features for
 - Robust, adaptive routing over redundant layer-2 networks
 - VM machine migration *without* dropping connections
 - In-situ network monitoring
 - Quality-of-Service guarantees
 - Installed on OpenCirrus cluster at HP Fall 2009
- OpenNet on OpenCirrus
 - Full bisection bandwidth
 - Virtual machine migration
 - Platform for high energy efficiency in the Data Center
 - Based on SPAIN (HP Labs), PortLand (UC San Diego)
 - Joint project between HP Labs, UC San Diego (funded by HP Open Innovation Program)

OpenCirrus on GENI

• GENI: Global Environment for Network Innovations

- Major National Science Foundation program to provide a national-scale experimental facility for computer science researchers
- Currently entering Spiral Two prototyping phase
- OpenCirrus on GENI
 - Give access to GENI researchers to the OpenCirrus platform (PlanetLab Control Framework for OpenCirrus)
 - Give OpenCirrus users access to GENI resources
- Key technological challenges
 - Mutual authentication between PlanetLab Control and OpenCirrus
 - Exchange of authorization and access functions
 - Resource allocation
- Status
 - Joint proposal to GENI Project Office by HP Labs (Kevin Lai, Rick McGeer) and UC San Diego (Alex Snoeren, Amin Vahdat)
 - Accepted by GENI Project Office (GPO) for Spiral Two Funding
 - Part of GPO proposal to NSF for Spiral Two (decision early Sept)

Mercado Cloud-enabled services marketplaces

- Business process specification, service selection, instantiation, choreography & adaptation over independently created service components
- Service-oriented and model-based architectures, combined with Web 2.0, social networking, and semantic web mechanisms

PI: Sharad Singhal sharad.singhal@hp.com

SPARQL Query over Hadoop for Very Large RDF Datasets

- Provide a semantic web framework using Hadoop which scales for large RDF data sets.
 - Use the Lehigh University Benchmark (LUBM) data (provides 14 queries) to measure SPARQL queries implemented over Map/Reduce framework provided by Hadoop.
 - Goal: to find the best possible way to query the data (SPARQL) by Map/Reduce programming.

N-tier Application Benchmark & Evaluation over Open Cirrus

- Generate, deploy, and run N-tier application benchmarks (including non-stationary workloads)
 - Collect data on standard and custom N-tier application benchmarks such as RUBiS (e-commerce) and RUBBoS (bulletin board) over a wide range of settings and configurations (both hardware and software)
 - Collect, analyze, and evaluate performance data using statistical software tools.
 - Apply the experimental evaluation results to cloud management applications such as configuration planning and adaptive reconfiguration

Summary

- Cloud is creating a new paradigm in computing
 - Flexible and elastic resource provisioning
 - Economy of scale makes it attractive
 - Move from manufacture towards industrialization of IT (Everything as a Service)
- OpenCirrus offers interesting R&D opportunities
 - Cloud systems and applications research and development
 - Interesting data sets and federation of heterogeneous data centers
- OpenCirrus workshop at HP Palo Alto on June 8/9 has links to a lot of materials

