
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Building a Theory of So�ware Teams Organization
in a Continuous Delivery Context

Leonardo Leite, Fabio Kon
{leofl,kon}@ime.usp.br

University of São Paulo, Brazil

Gustavo Pinto
gpinto@ufpa.br

Federal University of Pará, Brazil

Paulo Meirelles
paulo.meirelles@unifesp.br

Federal University of São Paulo, Brazil

ABSTRACT

Based on Grounded Theory guidelines, we interviewed 27 IT pro-

fessionals to investigate how organizations pursuing continuous

delivery should organize their development and operations teams.

In this paper, we present the discovered organizational structures:

(1) siloed departments, (2) classical DevOps, (3) cross-functional

teams, and (4) platform teams.

CCS CONCEPTS

• Software and its engineering→ Software development pro-

cessmanagement;Programming teams; Software post-development

issues.

KEYWORDS

Continuous Delivery, Release Process, DevOps, Software Teams

ACM Reference Format:

Leonardo Leite, Fabio Kon, Gustavo Pinto, and Paulo Meirelles. 2020. Build-

ing a Theory of Software Teams Organization in a Continuous Delivery

Context. In 42nd International Conference on Software Engineering Compan-

ion (ICSE ’20 Companion), October 5–11, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3377812.3390807

1 INTRODUCTION

To remain competitive in the software market, many software orga-

nizations are looking for ways to speed up their release processes

to get their products and new features to their customers faster

and more efficiently. In this way, continuous delivery automation

impacts various aspects of software production (e.g., development,

testing, deployment). With an automated deployment pipeline, one

could question the role of an engineer responsible solely for new de-

ployments. Indeed, the adoption of continuous delivery has also an

impact on the organizational structure [1], since release activities

involve many divisions of a company (e.g., developers, operations,

and business). The lack of clear roles and obligations may incur

into lengthy negotiations and stress between IT departments [6].

Therefore, organizations moving toward continuous delivery

have not only to upgrade their software tooling arsenal but also

better shape and integrate their IT teams. Such integration can

occur according to different patterns that we call organizational

structures. However, there is no substantial literature tackling how

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390807

organizations should structure their teams to excel in the context

of continuous delivery. This lack of research is particularly unfortu-

nate due to at least two crucial reasons: (1) organizations wishing

to adopt continuous delivery can be disoriented regarding how

to design their human resources structure toward this goal; (2)

given a chosen structure, the organization might be unaware of the

consequences of this choice. The existing literature presents some

classifications for organizational structures [5, 6, 8], but such desig-

nations are arbitrary, without an empirical approach to establish

the existence of these structures.

To mitigate this gap, this paper addresses the following research

question:Which organizational structures are software-producing

organizations adopting for managing IT technical teams in a contin-

uous delivery context?

2 APPROACH

For tackling our research question, we are building a theory in the

taxonomy form. Taxonomies, common on software engineering

research, are classification systems that group similar instances

to increase the cognitive efficiency of its users by enabling them

to reason about classes instead of individual instances [7]. If the

taxonomy provides explanation, it can be considered a theory for

understanding, a system of ideas for making sense of what exists or

is happening in a domain [7].

In this work we applied Grounded Theory [2], a well-suited

methodology for generating taxonomies [7] and a widely-used

research approach in software engineering [3, 4, 9], to discover

the existing organizational structures in the field. Grounded The-

ory is adequate for our purposes since it is suitable for questions

like “what’s going on here?” – we want to know what is going

on software-producing organizations – and useful to construct a

relevant conceptual and theoretical foundation for the field [9].

We conducted interviews with objective questions about the

working day-to-day of participants to find out the underlying orga-

nizational structures. Initially, we had brainstorming conversations

with seven specialists, who helped us to better understand the rel-

evance of the problem and to shape the questions to be asked in

follow-up interviews. We then conducted 20 semi-structured inter-

views with IT professionals. The only requirement was that the

company should have a continuous delivery process or at least an

initiative toward it.

We employed several strategies to foster diversity and to enhance

comparison possibilities in our sample. We choose a broad range of

organization and interviewee profiles: different company sizes (7

companies with more than 1,000 employees), domains, countries

(Brazil, USA, Germany, and France), genders (7 women), experience

levels (11 interviewees graduated more than ten years ago), and

roles (developers, managers, infrastructure specialists, and even a

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea Leite et al., Leonardo Leite, Fabio Kon, Gustavo Pinto, and Paulo Meirelles

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

designer); besides including two public and one private nonprofit

organizations. We also conducted the selection process with theo-

retical purposes in mind, thus applying theoretical sampling (e.g.,

selecting scenarios where it is challenging to achieve continuous

delivery).

For analysis, we applied the constant comparative method and

coding, which are intended to discipline the creative generation

of theory. During this process, we created two artifacts for each

interview: the transcripts (excluding minor details and meaning-

less noise) and the codes (condensing transcripts in a few words).

We also created two global artifacts: the comparison sheet (inter-

viewees in lines and properties in columns) and the conceptual

framework (a diagram with discovered concepts and conceptual

properties). Finally, by analyzing, comparing, and using all these

artifacts, we are elaborating our taxonomy, the theory itself. The

artifacts construction is carried by one researcher and reviewed by

the other ones, while the taxonomy elaboration is paired by two

researchers and reviewed by the other ones.

3 RESULTS

We found four organizational structures:

i)We classified eight interviewees contexts as traditional siloed

departments, with limited collaboration among departments and

barriers for continuous deployment. Some typical characteristics:

developers and operators have well-defined and different roles; de-

velopers have aminimal vision of what happens in production; mon-

itoring and handling incidents are mostly done by the infrastructure

team; developers often neglect non-functional requirements (NFR);

security can be seen as an infrastructure concern only; DevOps

initiatives are centered on adopting continuous integration tools

rather than improving collaboration among silos; as a consequence,

communication and collaboration among teams are hard.

ii) We classified six interviewees contexts as having a classical

DevOps structure, with intense collaboration among developers

and the infrastructure team. Some typical characteristics: roles re-

main well-defined, although developers and operators are closer

(e.g., for database management, infrastructure staff creates and

tunes the database, whereas developers write queries and manage

the schema), which fosters a culture of collaboration; usually, there

are no conflicts regarding who is responsible for each task; De-

vOps is achieved through a delivery pipeline; developers and the

infrastructure team shares NFR responsibilities; the infrastructure

staff is still in the front line of tracking monitoring and incident

handling; success of classical DevOps requires strong alignment

among departments.

iii)We classified three interviewees contexts as possessing cross-

functional teams, with self-sufficient teams having both develop-

ment and operations skills. Some typical characteristics are: a single

team encompasses both developers and infrastructure specialists

to take total responsibility for the life cycle of a set of services;

this structure is the one that most supports communication and

collaboration among people with different skills; everyone in the

team can be assigned to incident handling; the challenge here is to

guarantee that each unit has all the necessary skills.

iv) We classified three interviewees contexts as presenting plat-

form teams, with the infrastructure team providing highly-automated

infrastructure services to empower product teams. Some typical

characteristics are: the existence of a delivery platform minimizes

the need for product teams having infrastructure specialists; prod-

uct teams become decoupled from the members of the platform

team; usually, the communication among the development team

and the platform team happens when infrastructure members pro-

vide consulting for developers; the product team is the first one to

be called when there is an incident; the infrastructure people are

escalated if the problem is related to some infrastructure service;

although the product team becomes fully responsible for NFRs of

its services, it is not a significant burden, since the platform ab-

stracts away the underlying infrastructure and handles several NFR

concerns.

4 CONCLUSION

Our work presents an initial taxonomy of organizational struc-

tures, based on recent observations from the field employing a

well-accepted methodology. In particular, our proposed taxonomy

points to the benefits of i) helping practitioners to differentiate

classical DevOps from cross-functional teams, which were tradi-

tionally blended under the term DevOps, and ii) highlighting the

platform team as a distinctive choice for organizations. We expect

the under-development taxonomy to be applicable to empowering

practitioners to discuss the current situation of organizations, sup-

porting decisions on structural changes; another application would

be supporting, for example, engineers in job interviews to evaluate

the suitability of working for a given company.

ACKNOWLEDGMENTS

This researchwas supported byCNPq (proc. 465446/2014-0, 309032/2019-

9, and 406308/2016-0), FAPESP proc. 15/24485-9, and FAPESPA.

REFERENCES
[1] Lianping Chen. 2015. Continuous Delivery: Huge Benefits, but Challenges Too.

IEEE Software 32, 2 (2015), 50–54.
[2] Barney Glaser and Anselm Strauss. 1999. The discovery of grounded theory: strate-

gies for qualitative research. Aldine Transaction.
[3] Rashina Hoda and James Noble. 2017. Becoming Agile: A Grounded Theory of

Agile Transitions in Practice. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE ’17). 141–151.

[4] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. 2018. Building a
collaborative culture: a grounded theory of well succeeded devops adoption in
practice. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2018). 6:1–6:10.

[5] Andi Mann, Michael Stahnke Alanna Brown, and Nigel Kersten. 2018. 2018 State of
DevOps Report. https://puppet.com/resources/whitepaper/2018-state-of-devops-
report, accessed on Jul 2019.

[6] Kristian Nybom, Jens Smeds, and Ivan Porres. 2016. On the Impact of Mixing Re-
sponsibilities Between Devs and Ops. In International Conference on Agile Software
Development (XP 2016). Springer International Publishing, 131–143.

[7] Paul Ralph. 2019. Toward Methodological Guidelines for Process Theories and
Taxonomies in Software Engineering. IEEE Transactions on Software Engineering
45, 7 (2019), 712–735.

[8] Matthew Skelton and Manuel Pais. 2013. DevOps Topologies. https://web.
devopstopologies.com/, accessed on Jul 2019.

[9] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded Theory in Soft-
ware Engineering Research: A Critical Review and Guidelines. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE ’16). 120–131.

2


