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Abstract—In this paper, we investigate the question of QoS
prediction of Web Service Composition (WSC) implementing
a business process. We focus on the graph reduction technique
and the prediction of the Service Response Time. In the
graph reduction technique, we assume that a Web Service
Composition can be represented as a graph. The main thesis
is that the QoS of such a graph can be obtained from a
composition of the ones of its nodes.

Multiple graph reduction algorithms have been proposed in
the literature. Our contribution is twofold. We first propose a
fast algorithm based on graph reduction for the prediction of
the Service Response Time of a Web Service Composition. In
comparison to those existing in the literature, this algorithm
uses less memory space and has a better time complexity. The
obtained improvements are in particular significant on very
large Web Service Composition where the number of services
is huge. Our second contribution is an analysis of the graph
reduction technique for QoS prediction that takes into account
the unfolding of services. In such cases, we show that the
prediction of QoS can lead to a NP-complete problem. We
also provide an integer programming model for predicting the
Service Response Time in this case.

Keywords-Web Service Composition; Graph reduction; Busi-
ness process; QoS prediction; BPMN.

I. I NTRODUCTION

In this work, we are interested in the prediction of the
Quality of Service of Web Services Compositions (WSC).
We consider a setting comprising a finite set of Web Services
executed on a finite set of Servers. Each Web Service has
a set of operations that may participate in various Business
processes [1]. At a moment, a user request is initiated in
a business process; Its execution can be described as a
subgraph that traverses multiple Web Services according to
the interconnection structure of the business process. Our
goal is to estimate the Service Response Time [2].

The QoS prediction on WSC has been investigated in
multiple works. Many of them are based on the graph
reduction technique [2], [3]. Three main stages are important
for defining such a technique: the definition of a finite set
of generic subgraph patterns, the definition of aggregations
rules stating for each subgraph pattern how to infer the
QoS values from the ones of its nodes, the definition of
a reduction algorithm that proceeds by decomposing an
arbitrary subgraphs in generic patterns and aggregating the
QoS.

Several subgraphs structures, aggregations rules [2], [4],
[3], [5] and graphs reductions algorithms [2], [6] exist for
QoS prediction of WSCs. These works examined the pre-
diction on various QoS dimensions as the Service Response
Time, the throughput, the price, the reliability, the fidelity
etc.

The graph reduction is a simple and modular technique
for QoS prediction. One of its limitations is the hardness
to handle unstructured compositions of Web Services [6].
Alternative techniques exist for QoS prediction. Most of
them adopt a different representation of the service compo-
sition. We have for instance, Stochastic Automata Network
representations and, workflow nets ones [7], [8].

In this work, we are interested in predicting the Service
Response Time of WSCs with the graph reduction technique.
Despite our restriction to Service Response Time, our study
can easily be generalized to others QoS parameters following
precursor works on graph reduction [2], [3].

We first propose a fast algorithm for graph reduction. In
comparison to what exists in the literature [2], [6], this graph
reduction algorithm uses less memory and perform fewer
operations. The obtained improvements are significant when
dealing with huge compositions of services. Our second
contribution is an analysis of the graph reduction technique
that takes into account the services unfolding. In such cases,
we show that the prediction of QoS can lead to a NP-
complete problem that we propose to solve with an integer
programming based model.

The remainder of the paper is organized as follows:
In the sections II and III, we discuss about Web Service
Composition modeling. The sections V and IV deal with
the Service Response Time prediction. We conclude in
Section VI.

II. A MODEL FOR WEB SERVICE COMPOSITION

In this section, we present our viewpoint about the struc-
ture of a WSC.

A. Web Service Composition

Our vision of a WSC is illustrated in Figure 1. The
services composition is a Hierarchical Service Graph (HSG)
with three layers: an operation and business process layer,
a Web Service layer and a machine layer.
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Figure 1: Example of Web Service Composition.

The machine servers and their interconnection constitute
the machine layer of the HSG. At least one Web Service
is unfolded on each machine. For instance, on the machine
M5 of Figure 1, we have the Web ServiceW2. Each Web
Service exists in one or many instances on a machine and,
must implement at least one operation. For instance,W1
implements the operationsA,C,D. An operation denotes an
atomic action that can be realized from the public interface
of a Web Service. In practice, user authentication or user
account creation are typical operations supported by Web
Services. A same operation can be implemented by more
than one Web Service. Finally, the operations participate
in a business process that we will consider as being an
orchestration, as defined in the Business Process Modeling
Notations (BPMN) [1]. This process in our work is given
by an operation graphGo = (V ∪ C,Evc). Here, V is
the set of operations,C are connectors between operations
andEvc describes interconnection between operations and
connectors.

This vision of WSC takes implicitly into account some
common critical questions while designing WSC. We refer
here to the selection of the adequate Web Service for
executing an operation or the planning of Web Services on
machines in order to optimize the QoS [6], [9]. Our focus,
we recall, is on the QoS prediction.

As defined above, a HSG admits the possibility of having
a same Web Service, unfolded on multiple machines. More,
multiple Web Services can implement the same operations.
In the sequel however, we will assume that an operation is
implemented only by a single Web Service that itself can
be unfolded only on a single machine. For qualifying this
restriction, we will say that such HSGs areinjective between
the layers.

In the rest of the paper, HSG will be considered as the
basic structure for defining a WSC. Our main focus on
such graphs will be on the operations level where a BPMN
orchestration is described. We will not take into account
all available BPMN constructs for orchestration design. The
next section defines the restricted set of BPMN elements on
which we will focus.

B. BPMN patterns for the operations level

We will restrict the set of possible business processes to
a finite set of patterns frequently used in business process

modeling. The chosen patterns here are: sequence, fork,
inclusive choice and exclusive choice. An illustrative de-
scription of these patterns in the BPMN notations is given
in Figure 2. We provide a textual description in the sequel.
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Figure 2: Pattern in process definition

1) Sequence and loop pattern:In the sequence pattern,
we have two subgraphsP1, P2 of Go = (V ∪ C,Evc) that
are connected. Each subgraph can be an operation, or, a
combination of subgraphs under the given pattern structures.
The loop pattern is given by a single operation that can be
executed repetitively. In practice, it might happen that a loop
comprises a subgraph instead of a single operation. Even if
we do not perform this case here, our solutions can easily
be generalized to handle it.

2) Fork, exclusive and inclusive pattern:In the fork
pattern, we have two opening and closingFork connectors
that are linked ton subgraphsPi. These latter ones may
be reduced to operations or subgraphs combinations. The
inclusive and exclusive patterns respect the same rules.
The only difference are the used connectors (exclusive and
inclusive connectors).

One can notice that we restricted ourself in this work to
structured BPMN patterns. This choice is, amongst other
things, justified by the existence of algorithms for turning
arbitrary BPMN patterns into structured ones [10].

In the patterns illustration of Figure 2, we considered
Pi as subgraphs. In the special case, where eachPi is an
operation, we will say that we have anelementary BPMN
pattern. In the next section, we introduce other concepts for
the manipulation of HSGs.

3) Other concepts on Hierarchical Service Graphs:We
will say that an operation graphGo = (V ∪ C,Evc)
is decomposable if its interconnection structure can be
described as a recursive composition of sequence, fork,
exclusive and inclusive patterns. For instance, a sequence
operationA connected to a decomposable subgraphP1, is,
a decomposable graph.

On decomposable graphs, we make the following obser-
vation:

Fact 1: If an operation graphGo = (V ∪ C,Evc) is
decomposable, then, each operation and opening connector



has at most one predecessor; There is also a unique node
u ∈ V ∪C without predecessors and a unique node without
successors inGo.
This fact follows from the description of the BPMN patterns;
It will have a considerable importance in this work. The
unique node without predecessors will be calledroot node
and the unique one without successorsleaf node.

For capturing the possible encapsulations of subgraphs in
an operation graph, we propose to associate to all opening
connectors adeepnessparameter defined in the sequel.

Definition 1: Given an operation graphGo, let us sup-
pose that for an opening connectoru, we haven paths
Pt1, . . . P tn leading to it. In each pathPti, we haveαi

opening connectors andβi closing connectors. The deepness
of u is defined asmax

1≤i≤n
{αi − βi}

From the fact 1, we can deduce that on a decomposable
graph, there is always an opening connector with a null
deepness.

We presented the basic structure that we will use for
studying WSC. Our goal is to estimate the Service Response
Time (SRT) of Web Service Compositions. In the next sec-
tion, we deal with the modeling of the SRT on Hierarchical
Service Graph.

III. M ODELING THE SERVICE RESPONSETIME

A. Execution of a user request on Hierarchical Service
Graph

For each user request, we denote by its execution trace, the
subgraph of operations connectors and links that therequest
traverses. This subgraph can be reduced to a path between
operations and connectors, if, it does not have a BPMN
inclusive connector. We will assume in this work that given
the execution trace of a request, the SRT is concentrated on
the operations that it contains. For each operationu, we also
assume that we have a parametertu, that is, the value of its
mean response Time. This time can be obtained by running
many times the operation and getting the mean resulting
time. Our main thesis in SRT modeling is that the SRT of
an operation graph can be obtained by composing the ones
of its operations. We will see how this composition can be
done in the next section.

B. SRT modeling on subgraphs

We only consider here operation graphs composed of
subgraphs that can be described with elementary BPMN
patterns (see Section II-B). We qualify such subgraphs as
elementary. In table I, we propose some aggregations rules
for computing the SRT of elementary subgraphs knowing
the ones of their operations. Our rules are essentially based
on the proposed in [2]. In the aggregations, we assumed that
an operation can start its execution as soon as all required
inputs are available. In practice, however, other overheads
(due for example to queuing phenomenon on network) must
be taken into account.

Elementary subgraph Representation SRT

Sequence
P1 P2

tp1 + tp2

Loop
P1 ∑n1

i=1
pli.i.tp1

Fork

P1

Pi

Pn

max{tp1 , . . . , tpn}

Exclusive

P1

Pi

Pn ∑n
i=1

pri.tpi

Inclusive

P1

P2

ps1.tp1 + ps2.tp2
+ps3.max{tp1 , tp2}

Table I: Service Response Time on elementary subgraphs

For a loop operationP1, we assumed that we know the
maximal number of iterationsn1 that it can comprises. We
also assume that we have the probabilitypli of executing
the loopi times.

For the fork subgraph, we only presented the aggregation
in one case. Indeed, it can happen for example thatP1

andPn are operations of the same Web Service in a fork
subgraph. This is the case for example on Figure 1 with the
operationsC andD. If the Web Service only exist in one
instance, then the concurrent execution of these operations
will not be possible. In such situations, we will say that
the business process execution is serialized. If, however,all
operations can use a different Web Service instance, then
we can execute them in parallel. The SRT presented in the
table are for this latter case. The case where the execution
can be serialized will be considered in Section V.

For the sake of simplicity, we assumed in this work
that open inclusive connector are always connected to only
two paths (they have an outgoing degree equal to2). The
probability ps1 and ps2 are the one that we have for a
request to take the first or the second path aftertraversing
this connectorandps3 is the one for taking the two paths.
In simplifying the structure of the inclusive connector, we
reduce the potential combinatory explosion required when
the outgoing degree of such connector is arbitrary.
Finally, on exclusive connectors, we assumed that we have
the probabilitypri for a request to take the pathPi.

One might criticize our SRT modeling because of the
restricted set of patterns and the assumption of deterministic
execution times. About the set of patterns, let us underline
that more elaborated BPMN patterns and aggregations rules
can be found in [2], [4], [3], [5]. However, our pattern set
is sufficient for defining a new graph reduction approach
that can be extended on other BPMN patterns. About the
deterministic setting, we remark that an alternative modeling



dealing with probabilistic execution time can be found in [5].
Despite its interest, we point out that in such cases, the
modeling requires more input information. Moreover, the
SRT estimation on the entire composition is then exponential
on the number of Web Services. Thus, it cannot then
handle large composition of services. In the next section,
we consider the question of QoS prediction admitting that
for all fork subgraph, there is no serialization constraint.

IV. ESTIMATION OF THE SERVICE RESPONSETIME

WITHOUT SERIALIZATION CONSTRAINTS

We are interested in the prediction of the mean execution
time for a user request when we do not have a serialization
constraint. The absence of serialization constraint means
that we can always execute parallel paths simultaneously
as defined in the business process specification. We point
out that most works on QoS prediction are done under this
assumption.

A. Graph reduction

Given an operation graphGo = (V ∪ C,Evc), the graph
reduction technique proceeds by multiple steps where a
subgraph ofGo is substituted by a single node. At the step
i of the reduction, a decomposable subgraphGi is chosen.
The SRT of this subgraph is computed; The subgraph is then
replaced by a new created operation whose SRT is set as
the one ofGi (this replacement is also called the reduction
of Gi). One proceeds like this untilGo contains a single
operation. The SRT of this node is then returned as the SRT
of Go. Figure 3 gives an illustration of this technique.

For easing graph reduction, a first step of the graph
reduction can consist in replacing all loop operations by non-
looping ones. Thus, we will have a graph without the loop
pattern. We will admit in the remainder that for the graph
to reduce, all loop operations have already been replaced. It
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Figure 3: Example of graph reduction

might happen in the reduction that we want to substitute a
fork subgraph whose branches contain a fork, exclusive or
inclusive subgraph. On Figure 3, this is the case if we want
to reduce the fork subgraph composed of operations nodes
B,C,D,E at the beginning. For reducing this subgraph we

need first to reduce all the inner fork, exclusive or inclusive
subgraphs. This challenge has led to, at least, two types of
reduction approaches in the literature. We discuss them in
the sequel.

In [2], one of the most popular graph reduction algorithm
(called SWR) was proposed. SWR proceeds by arbitrarily
choosing the subgraph to reduce. When face to a subgraph
containing an inner fork, exclusive or inclusive connector,
the algorithm will look for another one. The idea is that
in repeating this process, one will certainly reduce for all
subgraphs their inner connectors. SWR algorithm admits
redundant attempts of reduction of the same subgraph. On
large graphs, this certainly has an impact on the execution
time. A recursive approach that possibly can avoid redundant
attempts of reduction has been proposed in [6]. However, as
the approach is recursive, we have in the execution additional
overhead on time and memory utilization caused, for exam-
ple, by the management of the stacks of functions. More
important, this approach deals with unstructured BPMN
patterns while we focus on structured ones. In the sequel, we
will propose an iterative approach for graph reduction that
avoids redundant attempts of reduction on structured BPMN
patterns.

B. A two phases approach for graph reduction

Our graph reduction approach proceeds in two phases.
The first phase deals with the computation of a reduction
order. The idea in such an order is to define an ordered set
of decomposable subgraphs for the reduction. The second
stage is the reduction with the defined order. We discuss
these stages below.

C. Elementary reduction order

We define an elementary reduction order as follows:
Definition 2: Given a graphGo, a reduction order is an

ordered list of decomposable subgraphs〈G1, G2, . . . , Gn〉 of
Go such that: 1)G1 is an elementary subgraph; 2) After the
reduction ofG1, . . . , Gi, the subgraphGi+1 is elementary;
3) After the reduction ofG1, . . . , Gn, Go has only one node.

An important question with the definition above consists
in knowing whether or not given a decomposable graph,
such a reduction order is always possible. We establish that
it is the case in the following.

Lemma1: If an operation graphGo is decomposable,
then,Go contains at least one elementary subgraph.

Proof: For the proof, we use the deepness concept
defined in Section II-B3. We will consider two cases. Given
an operation graphGo, let us suppose that it does not
have an opening connector. Then, we only have sequence
pattern with operations. In this case, We can easily find an
elementary sequence subgraph inGo. Let us now suppose
thatGo has at least one opening connector. In this case, let
us consider any opening connector with maximal deepness.
Since the connector is of maximal deepness, on each of its



branches, we do not have an opening connector. Thus, either
we have a sequence graph (but only with operations) on a
branch, or we have only one operation on all branches. If
we have a sequence with operations on a branch, then we
have an elementary graph. In the case where we have only
a single operation on all its branches, we have again an
elementary where this opening connector is the root node.

Lemma2: If an operation graphGo is decomposable,
then, after the reduction of an elementary subgraph ofGo,
we have again an elementary subgraph inGo or Go is
reduced to an operation.

Proof: After the reduction of an elementary subgraph in
Go, we have two cases. IfGo is an operation, then we have
the proof. If it is not the case, then, we can easily notice that
Go will be an operation graph that is decomposable. From
the lemma 1, we can deduce that it will have an elementary
subgraph.
Lemma 2 can also explain why the SWR algorithm does
not loop infinitely. Indeed, it states that in considering all
subgraphs, we will always find a reducible one.

Theorem1 (Existence of an elementary reduction order):
If an operation graphGo is decomposable, then, there exists
at least one elementary reduction order

This theorem is a direct consequence of the previous
lemmas. In the next section, we will propose an algorithm
for computing a reduction order.

D. An algorithm for computing elementary reduction order

For representing a reduction order, we first notice that
from the fact 1, a couple(r, l) wherer is a root node andl
a leaf one is sufficient to represent a decomposable subgraph.
Thus, we can store a reduction order〈G1, . . . , Gn〉, as
n couples(root, leaf). The benefit is that we will need
a memory space inO(n) memory space instead of the
O(n.|V ∪ C|)) required if we represented all subgraphs. In
addition, to improve the memory storage, this choice as we
will see is advantageous for simplifying the design of our
algorithm.

We assume in the algorithm that for any operationu,
next(u) defines its direct successor. We also use the clas-
sical primitivesPush(S, e) andPop(S, e) for putting and
retrieving an elemente at the top of a stackS and, a
special primitivePushx(S, e) that proceeds asPush at the
difference that it does not modifyS if e is already inS 1. The
core of the algorithm is given by the iterative functionOrder

of Algorithm 1. At the beginning of the execution, it puts
the unique node without predecessors and all its successors
in the stackSd. At each iteration, a node is removed from
Sd and is processed by one of the three other functions
depending on its type. This processing obeys to the following

1For the implementation, we create for each stack a special marker that
is set on each node when it is put in the stack

rules: if a nodeu is retrieved fromSd and u is marked,
then, one will try to insert a new decomposable subgraph
in the reduction order (here denotedORD). Otherwise, one
continues with some Depth First Search steps in order to
explore the graph.

Algorithm 1 Compute the reduction orderORD
function ORDER(Go, r, ORD,Sd, St, Se)

Mark r; Pushr and all its successors inSd

while Sd is not emptydo
Pop(u)
if u is an operationthen

ORDER OPERATION(Go,u, ORD,Sd, St, Se)
else ifu is an opening connectorthen

ORDER OPEN(Go,u, ORD,Sd, St, Se)
else ifu is an closing connectorthen ’

ORDER CLOS(Go,u, ORD,Sd, St, Se)
end if

end while
end function
function ORDER OPERATION(Go, u, ORD,Sd, St, Se)

if u is markedthen
if next(u) is not a closing connector or is not nullthen

Insert(ORD, (u, next(u)))
end if

else ifnext(u) is a closing connectorthen
Pushx(Se, next(u)); Pushx(St, next(next(u)))

else ifnext(u) is not null then
Mark u; Push(Sd, u); Push(Sd, next(u))

end if
end function
function ORDER OPEN(Go, u, ORD,Sd, St, Se)

if u is markedthen
Pop(Se, w); Insert(ORD, (u,w))
if next(w) is not a closing connector or nullthen

Insert(ORD, (u, next(w)))
end if
Pop(St, v); Push(Sd, v)

else
Mark u; Push(Sd, u)
Push all successors ofu in Sd

end if
end function
function ORDER CLOS(Go, u, ORD,Sd, St, Se)

Pushx(Se, u); Pushx(St, next(u))
end function

Let us suppose that a marked connector is retrieved from
Sd at a moment in the execution. The function ORDER is
designed such as to guarantee at this moment that if we apply
completely the built partial reduction orderORD, u will the
root of an elementary subgraph whose leaf is in a nodew

the top ofSe. We will then insert(u,w) in the reduction
order. Since after the reduction of(u,w), we will have to
reduce the resulting node with the successor ofnext(w),
we will also insert(u, next(w)) if next(w) is not a closing
connector or null.

A marked operationu can also be retrieved at a moment
from Sd. At this stage, the design of the ORDER function
guarantees that if we apply the partial reduction orderORD,
the successor ofu will be a task. In this case, we will insert
(u, next(u)) in the reduction order. Other important aspects
of the algorithm are the management of closing connectors
and the insertion of a graph in the reduction order. We
discuss them below.

When we are exploring successors of an opening connec-



tor u in the stackSd, if at a moment a closing connector is
discovered, we will put it in the stackSe. The algorithm is
designed such as to guarantee that when we will retrieveu

from Sd, on the top ofSe, we will have the corresponding
closing connector. The intermediary stackSt is also used for
managing closing connectors. The idea is that when a closing
connector v is encountered, a backtrack for identifying
the corresponding opening connectoru (in order to set
an elementary subgraph(u, v) in ORD) will be done. A
problem with this backtracking is that the successors of the
encountered closing connector must still be explored. Thus,
before backtracking, this successor is saved in the stackSt.
After treatingu, the exploration continues with it.

Finally for the insertion of subgraphs in the reduction
orderORD, the Insert function is used. Given the couple
(r, l) denoting the root and the leaf of a subgraph, this
function will insert it in ORD after all couples(u, r) in
ORD but before any couple(v, l). This choice ensures that
when we will have to reduce a subgraph(r, l), wherer is
a task,l will be a reduced node. It is important to notice
that the insert function can proceed in always inserting each
couple (u, r) at the end ofORD. We need eventually to
revert order only when an insertion must be done with an
opening connector.

On Fig. 4, we give an example of decomposable
graph. If we apply the Algorithm 1 on this graph, then
the order generated at the end is:〈(H,K), (E,G),
(c31, c32), (A, c31), (c41, c42), (B, c41), (c21, c22),
(c21, J), (c11, c12), (c11, I)〉. The importance of the
Insert function can be seen here. Indeed, in interverting
the position of the couples(A, c31) and(c31, c32), we will
have difficulties when applying reduction.
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Figure 4: Example of decomposable graph

We showed how to build a reduction order. In the next
section, we propose an analysis of our two phases approach
for reduction.

E. Analysis

The first stage of our reduction approach consists in
executing Algorithm 1. Its memory complexity is dominated
by the storage of the reduction order〈G1, . . . , Gn〉. Since
n ≤ |V ∪C|, we conclude that we use, at most,O(|V ∪C|)
space in the worst case. The main function in Algorithm 1 is
the ORDER function. Its time complexity is dominated by
two actions : 1) the number of times an element is removed
from the stackSd. 2) The number of time an element is put

in it. Each node is put inSd two times at most. In the first
time it is not marked and in the second it is. This implies that
this node can also be removed from the stack only twice:
when it is not marked and when it is. We conclude that
the time complexity of ORDER is inO(2|V ∪C|). Given a
reduction order, the second stage of our approach algorithm
consists in using it to compute the SRT. We proceed for
this iteratively. At the iterationi, the subgraphGi is chosen
and its SRT is computed using the rules defined in Table I.
A new node is created with this associated SRT andGi

is replaced by this latter one. Its is easy to notice that at
each iteration, we replace at most|V ∪ C| elements ofGo

by a new node. Therefore, the reduction stage can be done
in O(n.|V ∪ C|) or O(|V ∪ C|2) since we have, at most,
n ≤ |V ∪C| elementary subgraphs. Since the complexity of
reduction when an order is available is inO(|V ∪C|2), we
conclude that our two phases approach leads to a memory
complexity inO(|V ∪ C|) while the time complexity is in
O(|V ∪ C|2).

In the result above, we assumed that given the operation
graphGo = (V ∪ C,Evc), Evc hasO(|V ∪ C|2) elements.
However, with our BPMN patterns, all operations and con-
nectors will not be pairwise interconnected in a business
process. It is reasonable to assume that we haveO(|V ∪C|)
elements inEvc. In this case, our algorithm has a time
and memory complexity inO(|V ∪ C|). Let us notice that
the SWR algorithm has, in this case, a time complexity in
O(|V ∪ C|2) [2].

At some points, our proposal for graph reduction in this
work can be viewed as an iterative version of the recursive
solution proposed in [6]. However, let us notice that our
solution is based on the introduced notion of reduction order.
In particular, we used it to explain why a correct result might
be expected. In the work of [6], unstructured patterns are
considered. We believe that in such cases, it is hard to obtain
a definition of a reduction order that can always guarantee
a reduction.

In the next section, we will consider the prediction of SRT
with serialization.

V. ESTIMATION OF SERVICE RESPONSETIME

ESTIMATION WITH SERIALIZATION

Until now, we considered the prediction of QoS without
serialization constraint. Let us now consider the examples
given on Figure 5. In Fig. 5a), we have an elementary graph
whose operations belong to different Web Services. There is
no serialization required while executing this composition.
In this case, our two phases approach can be used for
SRT prediction. In the case in Fig. 5b) we have a busi-
ness process with4 operationsA,B,C,D. Three of them
(A,B,D) belong to the same Web ServiceW1. If we do
not have three instances ofW1, then some operations must
wait for the termination of others. It is hard to take into
account such situations in the graph reduction algorithm
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proposed before. For instance, when reducing the elementary
subgraph composed ofA,B,C, what must be the SRT for
the operationA? Indeed, if we just have twoW1 instances,
we have indeed multiple choices. We can set for instance
ta+ td by considering that the operationD will be executed
beforeA, ta + tc or ta.

In this part, we deal with the prediction of SRT by taking
into account this new constraint. Due to space limitations,
we will restrict our study to decomposable graphs that
contain only two types of patterns: the fork and sequence
patterns. Let us notice that even with these restrictions, the
serialization constraint remains. In the next we formalizethe
problem of QoS prediction with this additional constraint.

A. Modeling the problem of SRT prediction under serializa-
tion

In presence of conflictual execution of operations, an
adequate selection of Web Service instance must be operated
in the execution. In this part, we propose to estimate the min-
imal SRT that can be envisioned in presence of conflictual
execution. The estimation of this time can be stated formally
as follows:
BPMN Fork-Sequence Scheduling Problem (BFSP)
Instance: We have an operation graphGo = (V ∪C,Evc),
for each operationvi ∈ V a mean execution timet(vi), a set
of Web Service instancesW ′ = {w′

1, . . . , w
′
u}, a function

f : V −→ W ′ giving for each operation the possible Web
Service on which it can be executed.
Question: Find for each operationvi ∈ V a starting date
τ(vi) ∈ R

+ and a Web Service instanceγ(vi) ∈ f(vi) such
that :

1) Z = max{τ(vi) + t(vi)} is minimized ;
2) If γ(vi) = γ(vj) thenτ(vi)+t(vi) ≤ τ(vj) or τ(vj)+

t(vj) ≤ τ(vi) ;
3) if vi precedesvj according toEvc, thenτ(vi)+t(vi) ≤

τ(vj).

BFSP problem states the question of the best sequencing
of the operations in order to minimize the maximal time
(the Z above) at which an operation is finalized in a
WSC. The constraint2) states that we cannot execute
two operations assigned on the same machine at the same
moment. The constraint3) states that we cannot execute an
operation without the result of its predecessors.BFSPhas

some similitudes with the classical Web Service selection
problem [6], [9] where we are looking for adequate Web
Services for executing operations of a WSC. However, while
in service selection, the goal is just to have an assignment
of Web Services, in our case, we must, being given an
assignment, define an execution order between operations.
BFSPis on many aspects close to the multi-mode scheduling
problem defined in [11]. The following result characterizes
its hardness.

Theorem2: BFSP is NP-complete

Proof:

First, let us notice that it is simple to assert that given
the datesτi for each operation and an assignmentγ, one
can estimate the maximal time for executing operations
and check in polynomial time if it is a valid solution for
BFSP. Thus, the problem is in the NP class. For showing
the NP-completeness, We will proceed by reduction to the
multiprocessor scheduling problem [11]. The idea of the
reduction is that the multiprocessor scheduling problem
correspond toBFSPwhenGo is an elementary fork graph.
The multiprocessor scheduling problem can be defined as
follows: Given a set ofn independent tasksT1, . . . , Tn, m
identical resources, a time durationl(Ti) that states for each
taskTi its execution time on1 resource, the objective is to
find a n datesd1, . . . , dn for executing the tasks such that
more thanm tasks are not executed concurrently at a given
time instant andmax

1≤i≤n
{di + l(Ti)} is minimized.

We can solve any instance of this problem by associating
to it aBFSPinstance. This instance is defined as follows. We
set the graphGo = (V ∪C,Evc) of theBFSPinstance as an
elementary fork graph whose internal nodes are operations
vi. Each vi here corresponds to a taskTi. We define
W ′ = {w′

1, . . . , w
′
m} such that eachw′

i corresponds to a
resource. We definef : V −→ W ′ as f(vi) = W ′ (that is
each operation can be executed on any instance). For each
operation, we sett(vi) = l(Ti). For solving a multiprocessor
scheduling instance, we solve the associatedBFSPinstance
and set for each taskTi of the multiprocessor instance, the
value of di as the valuesτ(vi) obtained from theBFSP
instance.

It is easy to notice that if we have a solution for the
associatedBFSP instance, we can easily notice that in it,
there is not more thatm operations executed at a given date.
Thus, we have a solution for the multiprocessor scheduling
instance. Reciprocally, if we have a solution for the multi-
processor scheduling instance, then we have a solution for
the associatedBFSP instance in settingτ(vi) = di.

SinceBFSP is NP-complete, it is hard to find a solution in
polynomial time for it unlessP = NP . In the sequel, we
will propose an integer programming model for solving it.



B. Integer programming model for SRT prediction under
serialization

The proposed model is based on three types of variables.
These are the variablesτi that contain real values stating
the starting time of each operationvi ∈ V . We have the
variablesγik stating whether or not the operationvi will be
executed with the web service instancew′

k and the variables
xija that we use to avoid cases where two operationsvi and
vj (with i < j) assigned to a same web service instance are
executed during the same time period. For each operationvi,
we denote byPred(vi) the set of operations that precede it.
We propose the following integer programming model:

Minimize τmax

Subject to:

1) τi ≥ 0; ∀vi
2) γik ∈ {0, 1}; ∀vi, w′

k ∈ f(vi)
3)

∑

w′

k
∈f(vi)

γik = 1; ∀vi

4) τj + t(vj) ≤ τi; ∀vj ∈ Pred(vi)
5) xija ∈ {0, 1}; ∀vi, vj , a ∈ {1, 2}, i < j

6) xij1 + xij2 ≤ 1; ∀vi, vj , i < j

7) xij1 + xij2 ≥ γik + γjk − 1; ∀vi, vj , i < j,
w′

k ∈ f(vi) ∩ f(vj)
8) τi + t(vi)−M(1− xij1) ≤ τj ; ∀vi, vj , i < j

9) τj + t(vj)−M(1− xij2) ≤ τi; ∀vi, vj , i < j

10) M =
∑

vi∈V

t(vi)

11) τmax ≥ τi + t(vi); ∀vi

In this formulation, the constraints2 and 3 ensure that
each operation will be assigned to one web service instance
on which it can be executed. The constraint4 ensures that
an operation cannot be executed before its predecessors. The
constraints5, 6, 7 define the possible values ofxija. They
guarantee that one of the valuesxij1 or xij2 will be equal1
if vi andvj are assigned to the same web service instance. If
xij1 = 1 then from constraint8 we know that the operation
vj cannot start beforevi. If xij1 = 0, then if the web
services instance assignment ofvi and vj are conflicting,
we necessary havexij2 = 1. In this case, the operationvj
is executed beforevi.

One can notice that this model comprises a polynomial
number of variables and constraints. Therefore, the SRT
prediction under serialization can be made by solving the
corresponding integer formulation using a classical integer
programming solver and then returning the value ofτmax.

VI. CONCLUSION

In this paper, we investigated the question of Service
Response Time prediction of a Web Service Composition
using the graph reduction technique. We propose a fast
algorithm for graph reduction and analyzed its complex-
ity. We also analyze the prediction of Service Response
Time when taking into account the unfolding of a Web

Service Composition. In these cases, we showed that the
SRT prediction can lead to an NP-complete problem. We
propose in such cases an integer programming model for
predicting the SRT. For continuing this work, we envision
to consider the prediction of Service Response Time with a
largest set of BPMN patterns. We also envision to consider
additional delay time in the execution of a composition
due for example to synchronization or information routing
between operations.
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