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Motivations

o Grid and Cloud Environments

© Distinct allocations lead to distinct execution times
m Heterogeneous machines
= Variations on the communication time between each machine pair
= Network properties are dynamic
= Location
= Load

© We intend to minimize the total execution time of a choreography




Possible techniques

Migration, Duplication, and Preemption of Services
and Choreographies
Lower, or even avolid If possible, the amount of
communication needed

Lower the processing time in each and every machine
taking part in the choreography enactment

All these techniques would be based on measurable
attributes of the whole system (e.qg. free/committed
CPU, memory, and network resources)



Meanwhile. ..
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Why?
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Problems 1/2

Currently existing software is not capable
of profiting from the new hardware

Most people find concurrent programming
difficult

Apple GCD
Actor Model [HBS /3]



Problems 2/
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Balle and Palermo [Balle2007], showed that a simple
allocation change could lead to a speedup of up to
10.48% on a 16-core machine

Pousa et al. [Pousa08] showed, for a NUMA architecture,
that a speedup of up to 31% could be achieved if the
default Linux memory-page placement policy were
changed



summing Up

A choreography can be seen as a parallel application
composed of several tasks that communicate with each other

So to use a well known terminology we will not talk about the allocation
of services to computers but the allocation of tasks to computing nodes

To optimize the the performance of a large-scale choreography,
we also need to optimize it locally

Problems with the current solutions

They are not scalable (manual testing and choice of an allocation) for
each application

There is no on-the-fly adaptation to changing environments/application
behavior



Our Proposal

Online and Offline Application and Environment
Profiling

Dynamic scheduling of tasks

Dynamic placement of memory-pages

Proceed gradually to a comprehensive solution

For 2011 we propose

Study the current solutions (seek and point out their
strengths and deficiencies)

Propose and implement a novel prototype scheduler
that fixes the issues found on the current solutions



Two Approaches
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Bottom-up

14m T T T T
1200 -:++++ + ++ o+ A e T o i ; TEREE + 4+t _|_+ T
b2 Q
-
1000 + 4+ . 8’
e I B o e R oo o A
% 800 | ;3
= 7N
‘E [
- 1 C
k- 600 S
O
200 | i
314.mgrid, 4 Threads, unpinned  +
0 314.mgrid, 4 Threads, pinned  +

0 10 20 30 40 50



Bottom-up

Hardware Performance Counters

Examples
Level 1/2/3 data/instruction cache misses
Cache Line Invalidation (SMP)
Data/lnstruction translation lookaside buffer misses
Integer/FP instructions executed
FLOPS
Total cycles
MIPS
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