
Baile Project
Research line 3: Analysis of Choreography Service Allocation to Computing Nodes in a Grid or Cloud Environment

Emilio francesquini
Universidade de são Paulo
emilio@ime.usp.br

May, 2011

1

Motivations
 Grid and Cloud Environments

 Distinct allocations lead to distinct execution times
 Heterogeneous machines
 Variations on the communication time between each machine pair

 Network properties are dynamic
 Location
 Load
 ...

 We intend to minimize the total execution time of a choreography

2

Possible techniques
 Migration, Duplication, and Preemption of Services

and Choreographies
 Lower, or even avoid if possible, the amount of

communication needed
 Lower the processing time in each and every machine

taking part in the choreography enactment
 All these techniques would be based on measurable

attributes of the whole system (e.g. free/committed
CPU, memory, and network resources)

3

Meanwhile...
 There have been significant changes on the

hardware context. Multi-core processor
availability, for example, is patent

 An increasing share of the
Top 500 (www.top500.org)
are endowed with multi-core
processors Tilera Tile GX100 - 100-

core general purpose
processor

4

Why?
5

 Power Wall
 Memory Wall
 ILP Wall

S
o

u
rce

: w
w

w
.cs.virg

in
ia

.e
d

u
/stre

a
m

/

Problems 1/2
 Currently existing software is not capable

of profiting from the new hardware
 Most people find concurrent programming

difficult

 Apple GCD

 Actor Model [HBS73]

6

Problems 2/2
 Memory

 Hierarchy
 Bottlenec

ks
 Cache

misses

Balle and Palermo [Balle2007], showed that a simple
allocation change could lead to a speedup of up to
10.48% on a 16-core machine
Pousa et al. [Pousa08] showed, for a NUMA architecture,
that a speedup of up to 31% could be achieved if the
default Linux memory-page placement policy were
changed

7

Summing Up
 A choreography can be seen as a parallel application

composed of several tasks that communicate with each other
 So to use a well known terminology we will not talk about the allocation

of services to computers but the allocation of tasks to computing nodes

 To optimize the the performance of a large-scale choreography,
we also need to optimize it locally

 Problems with the current solutions
 They are not scalable (manual testing and choice of an allocation) for

each application
 There is no on-the-fly adaptation to changing environments/application

behavior

8

Our Proposal
 Online and Offline Application and Environment

Profiling
 Dynamic scheduling of tasks
 Dynamic placement of memory-pages
 Proceed gradually to a comprehensive solution
 For 2011 we propose

 Study the current solutions (seek and point out their
strengths and deficiencies)

 Propose and implement a novel prototype scheduler
that fixes the issues found on the current solutions

9

Two Approaches
10

 Top-down

 Bottom-up

hwloc

Bottom-up
11

a
u
to

p
in

 [K
lu

g
0
8
]

Bottom-up
12

 Hardware Performance Counters
 Examples

 Level 1/2/3 data/instruction cache misses
 Cache Line Invalidation (SMP)
 Data/Instruction translation lookaside buffer misses
 Integer/FP instructions executed
 FLOPS
 Total cycles
 MIPS
 …

Bottom-up
13

hwloc

References
 [Balle2007] Enhancing an Open Source Resource Manager with Multi-Core/Multi-threaded Support, S. M.

Balle and D. Palermo, Job Scheduling Strategies for Parallel Processing, 2007.

 [Pousa08]Christiane Pousa Ribeiro, Jean-Francois Mehaut, Alexandre Carissimi, Marcio Castro, and Luiz
Gustavo Fernandes. Memory affinity for hierarchical shared memory multiprocessors. Computer
Architecture and High Performance Computing, Symposium on, 0:59–66, 2009.

 [HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for artificial
intelligence. 1973.

 [Klug08] Tobias Klug, Michael Ott, Josef Weidendorfer, and Carsten Trinitis:
"autopin - Automated Optimization of Thread-to-Core Pinning on Multicore Systems" Transactions on High-
Performance Embedded Architectures and Compilers, 3(4), 2008

14

	Slide 1
	Motivations
	Possible techniques
	Meanwhile...
	Why?
	Problems 1/2
	Problems 2/2
	Summing Up
	Our Proposal
	Two Approaches
	Bottom-up
	Bottom-up
	Bottom-up
	References

