Balle Project

Research line 3: Analysis of Choreography Service Allocation to Computing Nodes in a Grid or Cloud Environment

Emilio francesquini
Universidade de sao Paulo

emilio@ime.usp.br

Motivations

o Grid and Cloud Environments

© Distinct allocations lead to distinct execution times
m Heterogeneous machines
= Variations on the communication time between each machine pair
= Network properties are dynamic
= Location
= Load

© We intend to minimize the total execution time of a choreography

Possible techniques

Migration, Duplication, and Preemption of Services
and Choreographies
Lower, or even avolid If possible, the amount of
communication needed

Lower the processing time in each and every machine
taking part in the choreography enactment

All these techniques would be based on measurable
attributes of the whole system (e.qg. free/committed
CPU, memory, and network resources)

Meanwhile. ..

O There have been significant changes on the
hardware context. Multi-core processor
avallability, for exampls

9 An Increasing share of t
Top 500 (www.top500. ordes ==
are endowed with multi-d&a:
DroCessors e

Tilera Tile GX100 - 100-
core general purpose
processor

Why?

Power Wall
Memory Wall
LP Wall

Ferformance

tinyg bandwidth == HUGE EOTTLEHECK
1800 ¢ | | | I I I 3
108 CPU Speed — —=
: DRAM Speed —— :

Jweal)s/Npa.IuIbIIA‘SO'MMM :80IN0S

A.1 I I I I I I
1975 192868 19285 19968 1995 268600 2885 2814
Year

Problems 1/2

Currently existing software is not capable
of profiting from the new hardware

Most people find concurrent programming
difficult

Apple GCD
Actor Model [HBS /3]

Problems 2/

O Memory
| Hierarchy
I Bottlenec
KS

0 Cache
MIsses

Balle and Palermo [Balle2007], showed that a simple
allocation change could lead to a speedup of up to
10.48% on a 16-core machine

Pousa et al. [Pousa08] showed, for a NUMA architecture,
that a speedup of up to 31% could be achieved if the
default Linux memory-page placement policy were
changed

summing Up

A choreography can be seen as a parallel application
composed of several tasks that communicate with each other

So to use a well known terminology we will not talk about the allocation
of services to computers but the allocation of tasks to computing nodes

To optimize the the performance of a large-scale choreography,
we also need to optimize it locally

Problems with the current solutions

They are not scalable (manual testing and choice of an allocation) for
each application

There is no on-the-fly adaptation to changing environments/application
behavior

Our Proposal

Online and Offline Application and Environment
Profiling

Dynamic scheduling of tasks

Dynamic placement of memory-pages

Proceed gradually to a comprehensive solution

For 2011 we propose

Study the current solutions (seek and point out their
strengths and deficiencies)

Propose and implement a novel prototype scheduler
that fixes the issues found on the current solutions

Two Approaches

2 Top-down

-
necsuﬁp"nﬂ

0 Bottom-up

I 9

hwloc

Bottom-up

14m T T T T
1200 -:++++ + ++ o+ A e T o i ; TEREE + 4+t _|_+ T
b2 Q
-
1000 + 4+ . 8’
e I B o e R oo o A
% 800 | ;3
= 7N
‘E [
- 1 C
k- 600 S
O
200 | i
314.mgrid, 4 Threads, unpinned +
0 314.mgrid, 4 Threads, pinned +

0 10 20 30 40 50

Bottom-up

Hardware Performance Counters

Examples
Level 1/2/3 data/instruction cache misses
Cache Line Invalidation (SMP)
Data/lnstruction translation lookaside buffer misses
Integer/FP instructions executed
FLOPS
Total cycles
MIPS

B O tt O | I I U p Machine [1EGE)
Socket P&E0
L2 (409E8KE) L2 (4096KE)
L1 (32KE) L1 (32KE) L1i32KE) L1 i32KE)
ff Core P#0 Core P#1 Core P&E2 Core P
J FLU P&0 PL P PL P PL P&&
ik
.-
Socket P#1
L2 (4096KE] L2 (4096KE)
hwloc
L1 (32KB) L1 (32KB) L1 (32KE]) L1 (32KE)
Core P#0 Core P#1 Core P&2 Core P
FLU P#1 PL P#5 PLU P#3 PLI P#7

References

- [Balle2007] Enhancing an Open Source Resource Manager with Multi-Core/Multi-threaded Support, S. M.
Balle and D. Palermo, Job Scheduling Strategies for Parallel Processing, 2007.

- [Pousa08]Christiane Pousa Ribeiro, Jean-Francois Mehaut, Alexandre Carissimi, Marcio Castro, and Luiz
Gustavo Fernandes. Memory affinity for hierarchical shared memory multiprocessors. Computer
Architecture and High Performance Computing, Symposium on, 0:59-66, 2009.

- [HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for artificial
intelligence. 1973.

- [Klug08] Tobias Klug, Michael Ott, Josef Weidendorfer, and Carsten Trinitis:

"autopin - Automated Optimization of Thread-to-Core Pinning on Multicore Systems" Transactions on High-
Performance Embedded Architectures and Compilers, 3(4), 2008

	Slide 1
	Motivations
	Possible techniques
	Meanwhile...
	Why?
	Problems 1/2
	Problems 2/2
	Summing Up
	Our Proposal
	Two Approaches
	Bottom-up
	Bottom-up
	Bottom-up
	References

