USP - Universidade IME - Ingtituto da
t

de Sdo0 Paulo Matematica s Estatistica

Web Services Choreography

Victoriano Alfonso Phocco Diaz Glaucus Augustus G. Cardoso
alfonso7@ime.usp.br glaucus@ime.usp.br

Orientador: Prof. Marco Aurelio Gerosa
gerosa@ime.usp.br

Basic Concepts

Web Services Composition
Choreography

Standards

Choreography Languages
WS-CDL

Issues, Challenges and Trends
Development and Tools
Conclusions

Basic Concepts

Web Services Composition
Choreography

Standards

Choreography Languages
WS-CDL

Issues, Challenges and Trends
Development and Tools
Conclusions

Basic Concepts

“A Web service 1s a software system designed to support
Interoperable machine-to-machine interaction over a
network.”[1]

It was built to solve the problem of system integration

It Is mainly based on:

« WSDL, which describes what types of data are exchanged
and the available operations.

« SOAP, which specifies the pattern to call a specified service

« UDDI, which makes the services discoverable

[1] - http://www.w3.0rg/TR/ws-arch/#whatis

“SOA 1s a paradigm for organizing and utilizing distributed

capabilities that may
ownership domains.
discover, interact wit

be under the control of different
t provides a uniform means to offer,
n and use capabilities to produce desired

effects consistent wit
expectations.” [1]

In SOA, systems are
services necessarily)

N measurable preconditions and

build by grouping services (not web

[1] - http://www.0asis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

It provides a way to use services as reusable software
components

It improves manageability of large-scale systems

It makes easier the use of Internet advantages related to
scalability, cutting costs of cooperation

It offers a scalable paradigm to organize large systems that
require interoperability to meet its goals

It is possible to Implement a system using SOA through distributed
systems technologies such as CORBA, COM, and RMI

SOA-based system

* CoS (Composition of Services)

Before SOA After SOA

Closed - Monolithic - Brittle Shared services - Collaborative - Interoperable - Integrated

Order
Processing

Order Account
Processing Management

:
E
=

Reusable
Service
Status

[¥]
Reusable Check
Service

{ H Dﬁ Repository E Data Repository
Data External L Data External
Marketing Sales CRM Finance Wibhouwse Blvtmer Marketing Sales CRM Finance Wilkhouse Eortmver

Fig.: SOA architecture
from http://ie.sun.com/practice/software/soa/images/ig_soa_before.gif

Web Services
Composition

10

It is the grouping of services to produce other services (more complex)

Compositions can be complex and aggregate a lot of services that may be
within different domains

Composition is mostly done manually, although a few ways to do it
automatically have been studied

The service composition is made possible mainly due to SOA

“The full potential of Web Services as an integration platform will be
achieved only when applications and business processes are able to
Integrate their complex interactions by using a standard process integration
model. The interaction model that is directly supported by WSDL is
essentially a stateless model of request-response or uncorrelated one-way
interactions.”[1]

[1] - http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

11

Problem
SOAP+WSDL standards only supply atomic interactions

and do not keep the state of the interation

Solution

Orchestrations and Choreographies supply a dynamic interaction
and integration with state maintenance (stateful).

12

Choreography

13

Choreography is the process of execution of business logic where
each participant involved are responsible for execution of its own
task (there is no central controller)

In choreography, the participants are able to identify a sequence of
messages, being stateful

Choreography languages define rules to services
Intercommunication while orchestration languages are executable
and define operators to execute, catch exceptions, do parallelism,
etc

14

= Precisely defines the sequence of interactions
between a set of cooperating WS

= Generates the necessary code skeletons that can
be said to Implement the required external
observable behavior of a WS

15

Business
Analysts
Choreo GUI

W5-CDL

Choreography between
Company A & Company B

BPEL4WS Java,
EJBs
i Traditicnal
Senerated Integration
Wharkf|ow
]]
Company A Company B

http://www.w3.0rg/TR/2004/WD-ws-cdl-10-20041012/figurel.png

16

All uses of a choreography description need a
standardized language

Enables the construction of more robust WS
More effective interoperability

Reduces the cost of implementing WS
Increases the utility of WS

17

Different aspects to create business process from
Integrated web services, but are complementary.

Sometimes look like a synonymous.

Orchestration:

= Single agent that controls and coordinates interactions
Choreography:

= Descriptions of observable behavior

» Observable message exchanges between a collection of
services

18

Web

Service

Process flow

Web Services
Orguestration

collaboration

Web

Web

: Service
Service

Web Services
Choreography

Fig. : Orchestration and Choreography

Web
Service

19

Standards

20

World Wide Web Consortium (W3C)
Was created in October 1994 to lead the World Wide Web to
its full potential by developing common protocols that
promote its evolution and ensure its interoperability

Organization for the Advancement of Structured

Information Standards (OASIS):
|s a not-for-profit, global consortium that drives the
development, convergence, and adoption of e-business
standards

Web Services Interoperability Organization (WS-I)
Is an open, industry organization chartered to promote Web
services interoperabllity across platforms, operating
systems, and programming languages

21

o8
FU]ITSU SOA soltware

""'?
z hea A
N
< Sun

D RAC LE | microsystems

redHat

Microsoft @ INTALIO

invent
o
h‘) STERLING
® COMMERCE

Adobe

22

autodesk COMPAQ TOSHIBA IE=ES
' accenture MCAFEE S IPRTER 1' eEp ORACLE
Intel \ & Peregrine Miicrosoft FU]ITSU s Consulting

DAIMLERCHRYSLER flamenco Toret ator Gomprany,
017 SAaND, cENTRAL o
#)amcracker # (bp] IONA
LOUDCLOUD” :
—P%c— ““‘ %IE
KANA A :
epicentric” % hea <y CAPECLEAR
Co’ : REUTERS B BusiNess OBjecTs 53}3.?,3 n?l'm C°'C°h8n90+
epicor . ooy
plumtree G Front.noc> Borland

ESYBASE' REED ELSEVIER ~ setutiows
0Sas. e on
COMMERCE - re FileNET macromedia

ONE. St
g e QweSt Rl webMethods, ~¢-——= |DEDWARDS
PS @reatoo) friSign versaia

gl’OOVGNETWOR KS SYSTEMES

by IBM.
by Microsoft .
—Web Services Choreography Interface
Sun, SAP, BEA, and Intalio (august 2002).

(a.k.a. BPEL) — Business Process Execution Language
for Web Services - IBM and Microsoft (April 2003).

— Business Process Management Language.

BPMI.org (chartered by Intalio, Sterling Commerce, Sun, CSC,
and others),Now is

— Now IS of OASIS (started in 1999).

24

XLANG, WSFL and WSCI are no longer being
supported by any standard organization.

(by OASIS) replace XLang.

WSFL and WSCI was superseded by (by
W3C, November 2005).

2.0 (september 2009) introduces diagrams for
specifying service choreographies.

The academic field has put forward other service
choreography languages, for example
(2006), and (from July 2007).

25

BPEL
 Orchestration implies a centralized control mechanism.

 Recursive Web Service Composition.
« Executable language.
Requires Web Services.

.CDL
» Choreography has no centralized control. Instead control is

shared between domains.
= Description language.
= Does not need Web Services but Is targeted to deliver over

them.
CDL doesn't see BPEL is unique or different to any other end-point language. Hence you
can generate to BPEL just as easily as you can do to Java

26

Loosely coupled, interaction through standardized interfaces
Standardized data transmission via XML

«Asynchronous messaging

Platform independent (.NET, J2EE)

Interaction (Choreography) WS-CDL

Behavior (Orchestration) WS-BPEL
Interface WSDL

Message SOAP

Type XML Schema

J18 43¢ unsS 18N’ HOSOIIIN
SwIoj1e|d uolreluawa|dwi

Data XML

Web Service Standards

27

Choreography Languages

28

* The specification supports message correlation (like
state full), sequency rules, treatment of exceptions,
transactions and dinamic colaboration

= Describes the observable (view of an external
observator) behaviour of the web services

29

*Messages choreography: Describes the order and the
period of message exchange

=Transactional control: Describe the transactional
operations and the "undo" steps

*Treatment of exceptions: Describe how the service will
treat the exception and the possible flow sequence

*Thread management: Describe how the service can
manage multiple interactions with multiple services

30

= Describes the behavior observable and common to a group
of participants who cooperate to execute one activity.

= Specifies specially the exchange of information and the
conditions of ordination that must be meet.

=1t is supported by The W3C Web Services Choreography
Working Group, actually is a Candidate Recommendation.

=_atest version: W3C Working Draft 19 June 2006.

31

Local choreographies can be generated from WS-CDL also
skeletons for orchestration

Reusability : The same condition must be reusable by
other participants In other contexts

Cooperation : Choreographies must define the sequence
of message exchange between the participants

Multi-collaboration: Choreographies can have any
number of participants and process

32

Composition : Choreographies can be combined to make a new
one, that can be executable in other context

Modularity : Choreographies can be defined just including others
choreographies

Information-oriented collaboration : Choreographies describes
how their participants go through the execution based in the
exchanged information

Synchronization of information : Choreographies allow
Information share between their participants

33

=EXxceptions treatment : Can define how to treat the
exceptions

*Transactions: Allow transactional work and exception
control during a long execution

»Pattern compositions : Allow complementary work with
other specifications like WS-Reliability, WSCAF, WS-
Security, WS-BPEL and many others

»Semantics : Choreographies must have semantic
description for all of its participants.

34

WS-CDL

35

Business
Analysts
Choreography GUI

WS-CDL

l Choreography between Co. l

A&Co.B
WS-BPEL Java
Wrktow =

Company A Company B

Fig. : Integrating Web Services-based applications using WS-CDL

Model

Completeness

Compositionality

Parallelism

Resources

Turing
Machines m
Lambda

M M
Petri Nets

M M M
CCS

M M M
L’

M M

M

X

Table: pi-calculus characteristics

37

Operation Notation Meaning
Prefix m.P Sequence
Action a(y), a(y) Communication
a
— Collapse send and
Summation a(y):PPT b(x).Q Choice
Z T"(| interact on channels
M
Recursion P={.....}.P Repetition
Replication P Repetition
Composition P|Q Concurrency
Restriction (VX)P Encapsulation

Table: ws-cdl and pi-calculus

38

= Static checking for livelock, deadlock and leaks
Session types and causality

= Robust behavioral type system
Session types

39

= Package root element
= Sets target namespace
= Allows importing

= Contains all further
definitions

= Especially one or more
choreographies

<package
name="ncname"

author="xsd:string"?
version="xsd:string"

targetNamespace="uri"
xmlns="http://www.w3.0rg/2004/04/

ws-chor/cdl">

importDefinitions*
iInformationType*
token*
tokenLocator*
role*

relationship*
participant*
channelType*

</package>

ot
L

W exchanged Information

»= Collaborating parties

——=> Way for exchange

5

40

= Information type
* Independence of schema

= Token, token locators
= Accessing same
Information in diverse
sources

vars

tokens _H

e

informationType

ref

Other type
System

lwlll

Messages

[

|4
locators Token
orderlD

41

= Channel
= For communication with a participant
» Dynamic, actual endpoint in data
= Can be passed around

= Variables
» Information exchange, state, channel variables
= Reside In Roles

42

= Roles

Enumerate behaviors, optionally linked to WSDL
Interfaces

= Participants
* Play one or more roles
= Apparently not used in WS-CDL

= Relationships
" Associate specific behaviors of two roles “for a
purpose”
= Complex relationships broken down to pairs

43

Play role(s)

Role 1

Behavior A

I

Role 2

Behavior X

F Y

I
1 r
i |

relationships

Fig. : Participants and Roles

44

<choreography name="ConsumerRetailerChoreo" root="true">
<relationship ... /> *
<variableDefinitions>
<variable.../>*
</variableDefinitions> ?
... <I—local choreographies -->

<interaction initiateChoreography="true">

</interaction>

<exception> ... </exception>"?

<finalizer> ... </finalizer> ?
</choreography>

45

Perform actual work

Ordering structures (complex activities)

= Sequence, parallel
= Choice — implicit selection by incoming message

WorkUnits (guarded activities)

= Condition and repetition for activity
= Optionally blocking on data availability

Variable assignment
Create or update a variable in a role

NoAction

non-observable effects

46

<workunit name="POProcess"
guard="cdl:getVariable (
‘POAcknowledgement’ ,
‘tns:customer’)"

block="true">

<!--some PO processing activity -->

</workunit>

47

= |nteraction

» Roles within a relationship communicate/align
Information and state

= Time-to-complete timeout mechanism
= Can Initiate choreography

= Performing a choreography
= Choreography composition
* Including variable and role aliasing

48

<interaction channelVariable="tns:retailer-channel"
operation="handlePurchaseOrder" align='"true">
<participate relationship="tns:ConsumerRetailerRelationship"
fromRole="tns:Consumer" toRole="tns:Retailer"/>

<exchange messageContentType="tns:purchaseOrderType"
action="request'">
<use variable="cdl:getVariable (tns:purchaseOrder, tns:Consumer)"/>
<populate variable="cdl:getVariable (tns:purchaseOrder,
tns:Retailer)"/>
</exchange>
<exchange messageContentType="purchaseOrderAckType”
action="respond">

</exchange>

<record role="tns:Retailer" action="request">
<source variable="cdl:getVariable (tns:purchaseOrder, PO/CustomerRef,
tns:Retailer)"/>
<target variable="cdl:getVariable (tns:consumer-channel,
tns:Retailer)"/>
</record>

</interaction>

49

<perform choreographyName="gname'">
<alias name="ncname'">
<this variable="XPath-expression"
| role="gname" />
<free variable="XPath-expression"
| role="gname" />
</alias>

</perform>

50

Issues, Challenges and Trends

ol

Simple

Acces

Mechanism ~ WS-COL Metadata ys.cAF

ebXML
e WS-RF o
WS-Transfer .S ..

_ WS Restirce ooy 5 2 Markup rl]'[[l[:0| Prﬂces R —

= Portals S _ —
£ EZ Wfeatin 52 5 EI]|scnver = s
Sais= Whelablity 3 E‘ Architecture ™ l‘.untmuum "— = 3E
temational = = WS Hanageabiity "’ 5 & = EE
x Security = : LB og=
5 e Application pgpp “’WS Trust WS-Security _ _ Reliable (e Eﬁai.

et i Busin NESS i s

WS-Provisioning WS-Metadataxchange WSRP XML-Signature = = = 2
SAML oisgh Untimization WS- AtomicTransaction ¢ “FUnIVBrsal s £58 W3- Chﬂfﬂ?vggigldhg |
Flange TrANSTiSsin s Wlourdnation "~ wsgig = ‘%’ Eglntegr?tmn ressing
£ yon 158 TG i ot 3 5 2, ordnatin
WSBPEL <2 : g = Remote UDDI= =

Fig. : Variety of standards

52

= Service Interaction at message-level

= Point to point compositions from perspective & control
of a single endpoint.

= EXxecutable business processes

53

Service Choreography

In maturity process, actually: WS-CDL,
BPEL4Chor (academic)

& C N % http//www.w3.org/2002/ws/chor/ >
" . About Web semices - Web Senices Activity ¢
WSS ArChltchCtU I:E.‘ Administrative page - Web Ser
omain

Web Services Choreography Working Group

Charter - Drafts - Meeting records - Discussion lists - Participants (IPR declarations) - implementations - Related resources

The Working Group was closed on the 10th July 2009.

Discussion lists
Technical discussions take place on the public public-ws-chor@w3 org mailing list (public archive).

Leaving WS-CDL as a Candidate Recommendation
54

Composability analysis for repleceability, compatibility &
conformance.

Autonomic composition of service.
QoS aware service composition.
Business-driven composition.

Composition of resources, human & organizations in the
form of services.

Highlight and improve the semantic characteristic that are
present In the current standards

25

= |ntegrating QoS into choreography is valuable for
designing and analyzing the choreography.

= Calculate the overall quality of a composed
system, give QoS information of its individual
elements.

= Another Is how to choose some services from a
group of candidates to implement an abstract
composition while ensuring some QoS criteria.

56

» Formal approaches are useful in analyzing and
verifying web service properties:

There iIs a model-based approach to verify web service
compositions.

= Prevent deadlocks, live-locks, functional
requirements (e.g. the purchase order will be
elther accepted or rejected, but not both accepted

and rejected).

¥

= Many investigations in this issue, create models
for a CDL-subset.

= Model-checking technique to verify the
correctness of specified systems.

= Given a system, we might check its consistency,
and

= Various properties (e.g. no deadlock), and the
satisfaction with business constraints.

o8

Development and Tools

59

Wo.
et domain
WS-CDL Implementations

This listis not a complete list of all the implementation around.

Name Platforms Last Update Availability Screenshots Notes

<% Pi4SOA CDL Editor Eclipse Free
WS-CDL Eclipse Eclipse 2005-05-19 Free
LTSAWS-Engineer Eclipse 2005-11-30 Free

i
-ﬂmb BPEL4CHOR - editor (Tools4BPEL)
60

= L TSAWS-Engineer Eclipse Plug-in.

= Broken link of the install site for LTSA Eclipse plug-in.
= Support for WS-CDL 1.0

= WS-CDL Eclipse:

» Hosted on Sourceforge
= Support for WS-CDL 1.0
= Discontinued 5 years ago

61

P14 Technologies Foundation open source tool suite:
www.pidtech.org
Eclipse plugins
Graphical modeling environment
Static type checking (completeness, lock free, race condition free)

 Export Generate * Monitor
o WS-CDL o UML artifacts o Against WS-CDL description
o WSDL o Java (for J2EE) o Legacy and/or generated
o HTML o Java (for Axis)
o BPMN o BPEL

62

& Navigator R N\ = 71| @ PurchaseGoods.cim | i PuchaseGoods Purcha | @ SuccessfuPurchase s [m simplerfpinvalid s¢ u

5 & & & v
e LI
¥ i3 Examples e - =) (=) [
P & seftings 1 Selec
v = examples .
. & Grouping C... ©
primer .
4 BuyerSelerCDL cdm [Choke
v 3 purchasing r Conditional [BuyerRequestsaug)
b & bpmn F Parsllel —+ request
b & himi - = response '
b & PurchaseBoods wshpel [+ Sequerce ool
b & umi = EMEH ' '
i BuyConfirmed. xml _
& BufFsled i e
X BuyReguest.xml EActvities ©
& CredtCheckinalid xml me‘
i CredtCheckOk xml _— < |(Choice}
i CreditCheckRequest xml !
& maldPurchase scr I rteracton }
E PurchaseGoods.cdm r No Action
¥ SuccessiulPurchase.scn 8
B UnsuccessioPuntasescn [f| TP
- E}S‘:mm Silent Action [_: l - — .ﬂ.ﬂﬁh‘ﬂ‘lﬂlllll'rh.
v & simplerq S
= T
2 commiodoinesid con <] | Roles and Rellionships Base ypes | Choreography Flows
|c i i |H { - [1‘-‘\ =
fﬂﬁmmﬁﬁwmﬂmwﬁx L I uﬂﬁ SE‘@

Fig. : Overview of pi4SOA plugin 63

@ UnsuccessfulPurchase.scn

=

4 BuyerSalerCOLedm 5

[+ Select
= Types £

’i Role

== Behavior

W, Relationship

4 [CreditCheckerRals
(= credmhe.:ker@

4 [BuyerRaleType»
(= EluyerEhahaviur)

ISellerCreditCheck|

BuyerSelle

IShipperBuyer

i |SellerRoleTyper

C =, SellerBehavior

ISellerShipped

4 [ShipperRoleType»
(= Shipperaehaﬁ@

Roles and Relationships | Base Types | Choreagraphy Flows |

Fig.: Roles and Relationsships 64

-~

4 UnsuccessfulPurchase. scn

[Select

[B Name Spaces

L= Base Types <« = B Participant Types

Fl:s MameSpace

m Participant
Type

& Role Type

Relationship
Type

Information
Type

'@ Channel Type

= Token

ﬁ'ﬁ:ken Locator

% Eehavior

& FPassing
Channel
Details

rli; Identity

"_ﬁ] Buyer

‘_ﬁJL CreditChecker
i

Ul Seller
Jiiij Shipper

Role Types
P> ;E BuyerRoleType
- ;E CreditCheckerRoleType
=~ CreditCheckerBehavior
i sellerHoleType
i ShipperRoleType
< B Relationship Types
ke Buyerseller
¢ SellerCreditCheck
Ay Sellershipper
“‘-Q ShipperBuyer
P B Channel Types
P B Information Types
b W Tokens
- Token Locators

Roles and Relationships | Base Types[Choreography Fluws[

PERCIEST Ry

Fig. : Base Types

65

& UnsuccessfulPurchase.scn m

o [| B P B

[+ Select D ainy

= Grouping C... <
E Choice [BuyerRequests Quats

—* request
"‘ Conditional +— rasponse

E Parallel e

I Sequence ll

- !

= Activities ©

ﬁ Assign

5 Interaction
o At h lHlEHlmFrﬁnt}
n] Iyl update
r NoBartering — sendChannel : WE:::-du-
m Perform {Request New Price
[‘ Silent Action
[pssign> .
- ’.: oopy 4
* Participant | = I
- .]

Roles and Relationships | Base Types Choreography Fluws|

Fig.: Choreography flows 66

% Navigator &8 - = O @ UnsuccessfulPurchase.scn m

@ B ¥ [+ Selact

| BuyRequest. xml

K| CreditChecklnvalid. xmil
| CreditCheckOk.xm & Record State
M| CreditCheckRequest. xml .

Elapsed Time \ — — — ¢~~~ 7 T
@ InvalidPurchase.sch . — | T
18 PurchaseGoods. cdm ' Import IUPdateDunte[xsd:stﬂg‘ |
Scenario |
|

F Assert State

¥ primer 1~ /| & Scenario £
@ BuyerSellerCDL cdm o Pariciprt Buyer Seller
= purchasing . .
b = bpmn 1 F'“ Event Growp | o S
v (=t K, Message
P = PurchaseGoods_wsbpel = ik g que STFU'GU'“E(HS'-'] strin |
P& uml |
Send
x| BuyConfirmed.xml F o - |
| BuyFailed. xml F Receive equestForQuote(xsd: string) response |
|
|

@ SuccessfulPurchase.scn
& UnsuccessfulPurchase.scn

W = sCcenarios
v = simplerfg
& simplerfg-invalid.scn
4 simplerfg-valid.scn S
& simplerfg.cdm [¢] i
A _project || Scenario Editor| Simulation Log

‘i

Fig.: Scenario Editor 67

% Nawigator 32

- E % L v

Examples 1=
& setlings
= examples
= & pnmer
I BuyerSellesCDL cdm
= &= purchasing
~ i bpmn
& PuchaseGoods_Purchas:
m PurchaseGoods_Purchas: 1
P & himd
P & PurchaseGoods_wsbpel
P & uml
X BuyConfirmed xmi
X BuyFailed xml
[¥ BuyRequest xml
[CreddCheckinvald xmi
X CredaCheckOk ymi
¥ CreddCheckRequest xmi
g InvalidPurchase scn
1% PurchaseGoods cdm

¢ SuccesshilPurchase scn

Rt

=

0|/ tcstPuceesn_[@ Boreomiecncon (6 snpeienit |, ~ °

ir Palette 2

k Qe
EBasic BPM_. «

g
Teat Annitation

Task

Fig.: Export to BPMN model

68

“SOA markets at $3.5 billion in 2009 are anticipated to reach
8.2 billion by 2016. Market growth is a result of demand for
automated business process that permits flexibility in
response to changing business conditions. SOA provides this
as application middleware that permits IT to manage
change.”

“IBM 1s the market leader in SOA application middleware with
75% market share.”

Some enterprises such as: IBM, Microsoft, Google, Oracle, Red
Hat, Hewlett Packard (HP), Computer Associates (CA), have
Interests in SOA

69

http://wintergreenresearch.com/reports/SOA%20Engines.html

* The goal of the WS-CDL language is to propose a
declarative XML based language that concerns about
global, multi-party, peer-to-peer collaborations in the web

Services area.

= Although WS-CDL borrow terminologies from Pi-
Calculus, the link to this or another formalism is not
clearly established.

= Design of web services appears to have a new approach
comparing with traditional software development.

70

Barker, A. , Walton C.D., Robertson D. "Choreographing Web Services".

Services Computing, IEEE Transactions on, vol.2, no.2, pp.152-166, April-June

2009.

Cambronero, M.E.; Diaz, G. Martinez, E. Valero, V. , "A Comparative Study
between WSCI, WS-CDL, and OWL-S" e-Business Engineering, 2009. ICEBE

'09. IEEE International Conference on, vol., no., pp.377-382, 21-23 Oct. 2009.

Alistair B. , Marlon D., Philipa O. "A Critical Overview of the
Web Services Choreography Description Language
(WS-CDL)". BPTrends, March 2005.

Stephen Ross T. "Orchestration and Choreography: Standards, Tools and
Technologies for Distributed Workflows". Pi4 Technology, London, UK and
W3C, Geneva, Switzerland.

71

Paulo Henrique M. "Coreografia de Servicos WEB (Uma abordagem para a
Integracao de servicos Web) ". Barchelor's work of Universidade Federal de
Santa Catarina, June 2007.

Adam Barker, Christopher D. Walton, and David Robertson. "Choreographing
Web Services". IEEE Transactions on Services Computing, Vol. 2, N° 2, April-
June 2009.

Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann,
"Service-Oriented Computing: State of the Art and Research

Challenges”. Computer, vol. 40, no. 11, pp. 38-45, Oct. 2007,
doi:10.1109/MC.2007.400.

72

Any questions ?

73

