
Web Services Choreography

Victoriano Alfonso Phocco Diaz
alfonso7@ime.usp.br

Glaucus Augustus G. Cardoso
glaucus@ime.usp.br

Orientador: Prof. Marco Aurélio Gerosa
gerosa@ime.usp.br

2

Agenda

• Basic Concepts

• Web Services Composition

• Choreography

• Standards

• Choreography Languages

• WS-CDL

• Issues, Challenges and Trends

• Development and Tools

• Conclusions

3

Agenda

• Basic Concepts

• Web Services Composition

• Choreography

• Standards

• Choreography Languages

• WS-CDL

• Issues, Challenges and Trends

• Development and Tools

• Conclusions

4

Basic Concepts

5

What is Web Services?

“A Web service is a software system designed to support

interoperable machine-to-machine interaction over a

network.”[1]

It was built to solve the problem of system integration

It is mainly based on:

• WSDL, which describes what types of data are exchanged
and the available operations.

• SOAP, which specifies the pattern to call a specified service

• UDDI, which makes the services discoverable

[1] - http://www.w3.org/TR/ws-arch/#whatis

6

What is SOA?

“SOA is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different

ownership domains. It provides a uniform means to offer,

discover, interact with and use capabilities to produce desired

effects consistent with measurable preconditions and

expectations.” [1]

In SOA, systems are build by grouping services (not web
services necessarily)

[1] - http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

7

SOA goals

It provides a way to use services as reusable software

components

It improves manageability of large-scale systems

It makes easier the use of Internet advantages related to

scalability, cutting costs of cooperation

It offers a scalable paradigm to organize large systems that

require interoperability to meet its goals

It is possible to implement a system using SOA through distributed

systems technologies such as CORBA, COM, and RMI

Plataform (Java, .NET, etc)

Software Component

Services

CoS

* CoS (Composition of Services)

SOA-based system

Software ComponentSoftware Component

ServicesServicesServices

CoS CoS CoS CoS CoS CoS

8

9

Image from

Fig.: SOA architecture

from http://ie.sun.com/practice/software/soa/images/ig_soa_before.gif

10

Web Services
Composition

11

What is it?

It is the grouping of services to produce other services (more complex)

Compositions can be complex and aggregate a lot of services that may be

within different domains

Composition is mostly done manually, although a few ways to do it
automatically have been studied

The service composition is made possible mainly due to SOA

“The full potential of Web Services as an integration platform will be
achieved only when applications and business processes are able to

integrate their complex interactions by using a standard process integration

model. The interaction model that is directly supported by WSDL is

essentially a stateless model of request-response or uncorrelated one-way

interactions.”[1]

[1] - http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

12

Approachs

Problem

SOAP+WSDL standards only supply atomic interactions

and do not keep the state of the interation

Solution

Orchestrations and Choreographies supply a dynamic interaction
and integration with state maintenance (stateful).

13

Choreography

14

What is it?

Choreography is the process of execution of business logic where

each participant involved are responsible for execution of its own

task (there is no central controller)

In choreography, the participants are able to identify a sequence of

messages, being stateful

Choreography languages define rules to services
intercommunication while orchestration languages are executable

and define operators to execute, catch exceptions, do parallelism,

etc

15

How is Choreography Used?

 Precisely defines the sequence of interactions

between a set of cooperating WS

 Generates the necessary code skeletons that can

be said to implement the required external

observable behavior of a WS

16http://www.w3.org/TR/2004/WD-ws-cdl-10-20041012/figure1.png

17

Benefits of Choreography

Language

 All uses of a choreography description need a

standardized language

 Enables the construction of more robust WS

 More effective interoperability

 Reduces the cost of implementing WS

 Increases the utility of WS

18

Orchestration Vs Choreography

 Different aspects to create business process from

integrated web services, but are complementary.

 Sometimes look like a synonymous.

 Orchestration:

 Single agent that controls and coordinates interactions

 Choreography:

 Descriptions of observable behavior

 Observable message exchanges between a collection of

services

Web

Service

Web

Service

Web

Service

Web

Service

Web

Service

Web

Service

Process flow

collaboration

Web Services

Orquestration

Web Services

Choreography

Fig. : Orchestration and Choreography

19

20

Standards

21

Major Consortiums

World Wide Web Consortium (W3C)
Was created in October 1994 to lead the World Wide Web to
its full potential by developing common protocols that
promote its evolution and ensure its interoperability

Organization for the Advancement of Structured

Information Standards (OASIS):
Is a not-for-profit, global consortium that drives the
development, convergence, and adoption of e-business
standards

Web Services Interoperability Organization (WS-I)
Is an open, industry organization chartered to promote Web
services interoperability across platforms, operating
systems, and programming languages

22

23
Alfonso-Carlos 20 / 30

24

Standards Evolution

 WSFL by IBM.

 XLANG by Microsoft .

 WSCI – Web Services Choreography Interface

Sun, SAP, BEA, and Intalio (august 2002).

 BPEL4WS (a.k.a. BPEL) – Business Process Execution Language

for Web Services - IBM and Microsoft (April 2003).

 BPML – Business Process Management Language.

BPMI.org (chartered by Intalio, Sterling Commerce, Sun, CSC,

and others),Now is BPMN.

 BPSS – now is ebXML of OASIS (started in 1999).

25

Standards Evolution

 XLANG, WSFL and WSCI are no longer being

supported by any standard organization.

 WS-BPEL (by OASIS) replace XLang.

 WSFL and WSCI was superseded by WS-CDL (by

W3C, November 2005).

 BPMN 2.0 (september 2009) introduces diagrams for

specifying service choreographies.

 The academic field has put forward other service

choreography languages, for example Let's Dance

(2006), and BPEL4Chor (from July 2007).

26

Comparing BPEL with CDL
BPEL

• Orchestration implies a centralized control mechanism.

• Recursive Web Service Composition.
• Executable language.

Requires Web Services.

CDL

 Choreography has no centralized control. Instead control is

shared between domains.

 Description language.

 Does not need Web Services but is targeted to deliver over

them.
CDL doesn't see BPEL is unique or different to any other end-point language. Hence you

can generate to BPEL just as easily as you can do to Java

27

•Loosely coupled, interaction through standardized interfaces
•Standardized data transmission via XML

•Asynchronous messaging

•Platform independent (.NET, J2EE)

Protocols stack

Data

Type

Interface

Behavior (Orchestration)

Message

BPEL4WS

Web Service Standards

Im
p
lem

en
tatio

n
 P

latfo
rm

s

M
icro

so
ft .N

et, S
u
n
 J2

E
E

, etc

WSDL

SOAP

XML Schema

XML

WS-CDLInteraction (Choreography)

WS-BPEL

28

Choreography Languages

29

WSCI (Web Service Choreography Interface)

 The specification supports message correlation (like
state full), sequency rules, treatment of exceptions,

transactions and dinamic colaboration

 Describes the observable (view of an external

observator) behaviour of the web services

30

Messages choreography: Describes the order and the
period of message exchange

Transactional control: Describe the transactional

operations and the "undo" steps

Treatment of exceptions: Describe how the service will

treat the exception and the possible flow sequence

Thread management: Describe how the service can

manage multiple interactions with multiple services

WSCI some features

31

WS-CDL

 Describes the behavior observable and common to a group
of participants who cooperate to execute one activity.

 Specifies specially the exchange of information and the
conditions of ordination that must be meet.

It is supported by The W3C Web Services Choreography

Working Group, actually is a Candidate Recommendation.

Latest version: W3C Working Draft 19 June 2006.

32

Local choreographies can be generated from WS-CDL also

skeletons for orchestration

Reusability : The same condition must be reusable by
other participants in other contexts

Cooperation : Choreographies must define the sequence

of message exchange between the participants

Multi-collaboration: Choreographies can have any

number of participants and process

WS-CDL - features

33

Composition : Choreographies can be combined to make a new
one, that can be executable in other context

Modularity : Choreographies can be defined just including others
choreographies

Information-oriented collaboration : Choreographies describes

how their participants go through the execution based in the

exchanged information

Synchronization of information : Choreographies allow
information share between their participants

WS-CDL - features

34

WS-CDL - features

Exceptions treatment : Can define how to treat the

exceptions

Transactions: Allow transactional work and exception

control during a long execution

Pattern compositions : Allow complementary work with

other specifications like WS-Reliability, WSCAF, WS-

Security, WS-BPEL and many others

Semantics : Choreographies must have semantic

description for all of its participants.

35

WS-CDL

36

WS-CDL Usage Picture

Fig. : Integrating Web Services-based applications using WS-CDL

37

Why Process Calculus?

Model Completeness Compositionality Parallelism Resources

Turing
Machines

   

Lambda

   

Petri Nets

   

CCS

   



   

Table: pi-calculus characteristics

38

WS-CDL and pi-calculus

Operation Notation Meaning

Prefix π.P Sequence

Action a(y), a(y) Communication

Summation
a(y).P + b(x).Q
∑ πi(Pi

Choice

Recursion P={…..}.P Repetition

Replication !P Repetition

Composition P | Q Concurrency

Restriction (vx)P Encapsulation

Collapse send and
receive
into an

interact on channels

Table: ws-cdl and pi-calculus

39

WS-CDL and the pi-calculus

 Static checking for livelock, deadlock and leaks

Session types and causality

 Robust behavioral type system

Session types

40

 Package root element

 Sets target namespace

Allows importing

 Contains all further
definitions

 Especially one or more

choreographies

<package
name="ncname"
author="xsd:string"?
version="xsd:string"
targetNamespace="uri"
xmlns="http://www.w3.org/2004/04/
ws-chor/cdl">

importDefinitions*
informationType*
token*
tokenLocator*
role*
relationship*
participant*
channelType*
Choreography-Notation*

</package>

exchanged Information

Collaborating parties

Way for exchange

Interactions between
parties

WS-CDL Package

41

 Information type

 Independence of schema

 Token, token locators

Accessing same
information in diverse

sources

informationType

tokensvars
type

XML Schema
Other type

System

ref

Token

orderID
messages locators

Data Concepts

42

Data Concepts

 Channel

 For communication with a participant

 Dynamic, actual endpoint in data

 Can be passed around

 Variables

 Information exchange, state, channel variables

 Reside in Roles

43

Participants & Roles

 Roles

Enumerate behaviors, optionally linked to WSDL

interfaces

 Participants

 Play one or more roles

 Apparently not used in WS-CDL

 Relationships

 Associate specific behaviors of two roles “for a

purpose”

 Complex relationships broken down to pairs

44

Participants & Roles

Fig. : Participants and Roles

45

<choreography name="ConsumerRetailerChoreo" root="true">
<relationship ... /> *
<variableDefinitions>

<variable ... /> *
</variableDefinitions> ?
... <!–- local choreographies -->

<interaction initiateChoreography="true">
...

</interaction>
<exception> ... </exception> ?
<finalizer> ... </finalizer> ?

</choreography>

Choreography Syntax

46

Activities

 Perform actual work

 Ordering structures (complex activities)
 Sequence, parallel

 Choice – implicit selection by incoming message

 WorkUnits (guarded activities)
 Condition and repetition for activity

 Optionally blocking on data availability

 Variable assignment
Create or update a variable in a role

 NoAction
non-observable effects

47

<workunit name="POProcess"

guard="cdl:getVariable(

‘POAcknowledgement’,

‘tns:customer’)"

block="true">

... <!--some PO processing activity -->

</workunit>

WorkUnit Example

48

Activities

 Interaction

 Roles within a relationship communicate/align

information and state

 Time-to-complete timeout mechanism

 Can initiate choreography

 Performing a choreography

 Choreography composition

 Including variable and role aliasing

49

Interaction Example

<interaction channelVariable="tns:retailer-channel"
operation="handlePurchaseOrder" align="true">

<participate relationship="tns:ConsumerRetailerRelationship"

fromRole="tns:Consumer" toRole="tns:Retailer"/>

<exchange messageContentType="tns:purchaseOrderType"

action="request">

<use variable="cdl:getVariable(tns:purchaseOrder, tns:Consumer)"/>

<populate variable="cdl:getVariable(tns:purchaseOrder,

tns:Retailer)"/>

</exchange>

<exchange messageContentType="purchaseOrderAckType”

action="respond">

...

</exchange>

<record role="tns:Retailer" action="request">

<source variable="cdl:getVariable(tns:purchaseOrder, PO/CustomerRef,

tns:Retailer)"/>

<target variable="cdl:getVariable(tns:consumer-channel,

tns:Retailer)"/>

</record>

</interaction>

50

Perform Syntax

<perform choreographyName="qname">

<alias name="ncname">

<this variable="XPath-expression"

| role="qname" />

<free variable="XPath-expression"

| role="qname" />

</alias>

</perform>

51

Issues, Challenges and Trends

52

Fig. : Variety of standards

53

Service orchestration

 Service interaction at message-level

 Point to point compositions from perspective & control

of a single endpoint.

 Executable business processes

54

Service Choreography

In maturity process, actually: WS-CDL,

BPEL4Chor (academic)

Leaving WS-CDL as a Candidate Recommendation

55

Choreogaphy Challenges

 Composability analysis for repleceability, compatibility &
conformance.

 Autonomic composition of service.

 QoS aware service composition.

 Business-driven composition.

 Composition of resources, human & organizations in the

form of services.

 Highlight and improve the semantic characteristic that are

present in the current standards

56

QoS utilization

 Integrating QoS into choreography is valuable for

designing and analyzing the choreography.

 Calculate the overall quality of a composed

system, give QoS information of its individual

elements.

 Another is how to choose some services from a

group of candidates to implement an abstract

composition while ensuring some QoS criteria.

57

Validation and verification

 Formal approaches are useful in analyzing and

verifying web service properties:

There is a model-based approach to verify web service
compositions.

 Prevent deadlocks, live-locks, functional

requirements (e.g. the purchase order will be

either accepted or rejected, but not both accepted

and rejected).

58

Validation and verification

 Many investigations in this issue, create models

for a CDL-subset.

 Model-checking technique to verify the

correctness of specified systems.

 Given a system, we might check its consistency,

and

 Various properties (e.g. no deadlock), and the

satisfaction with business constraints.

59

Development and Tools

60

BPEL4CHOR – editor (Tools4BPEL)

Available Tools

61

Outdated Tools

 LTSA WS-Engineer Eclipse Plug-in.
 Broken link of the install site for LTSA Eclipse plug-in.

 Support for WS-CDL 1.0

 WS-CDL Eclipse:
 Hosted on Sourceforge

 Support for WS-CDL 1.0

 Discontinued 5 years ago

62

PI Calculus for SOA

Pi4 Technologies Foundation open source tool suite:
www.pi4tech.org

Eclipse plugins
Graphical modeling environment

Static type checking (completeness, lock free, race condition free)

• Export
o WS-CDL
o WSDL
o HTML
o BPMN

• Generate
o UML artifacts
o Java (for J2EE)
o Java (for Axis)
o BPEL

• Monitor
o Against WS-CDL description
o Legacy and/or generated

63Fig. : Overview of pi4SOA plugin

64
Fig. : Roles and Relationsships

65Fig. : Base Types

66
Fig. : Choreography flows

67Fig. : Scenario Editor

68

Fig.: Export to BPMN model

69

SOA in Numbers

“SOA markets at $3.5 billion in 2009 are anticipated to reach

8.2 billion by 2016. Market growth is a result of demand for

automated business process that permits flexibility in

response to changing business conditions. SOA provides this

as application middleware that permits IT to manage

change.”

“IBM is the market leader in SOA application middleware with

75% market share.”

Some enterprises such as: IBM, Microsoft, Google, Oracle, Red

Hat, Hewlett Packard (HP), Computer Associates (CA), have

interests in SOA

http://wintergreenresearch.com/reports/SOA%20Engines.html

70

Conclusions

 The goal of the WS-CDL language is to propose a

declarative XML based language that concerns about

global, multi-party, peer-to-peer collaborations in the web

services area.

Although WS-CDL borrow terminologies from Pi-

Calculus, the link to this or another formalism is not

clearly established.

 Design of web services appears to have a new approach

comparing with traditional software development.

71

Bibliography

Barker, A. , Walton C.D., Robertson D. "Choreographing Web Services".
Services Computing, IEEE Transactions on , vol.2, no.2, pp.152-166, April-June
2009.

Cambronero, M.E.; Diaz, G. Martinez, E. Valero, V. , "A Comparative Study
between WSCI, WS-CDL, and OWL-S" e-Business Engineering, 2009. ICEBE
'09. IEEE International Conference on , vol., no., pp.377-382, 21-23 Oct. 2009.

Alistair B. , Marlon D., Philipa O. "A Critical Overview of the

Web Services Choreography Description Language

(WS-CDL)". BPTrends, March 2005.

Stephen Ross T. "Orchestration and Choreography: Standards, Tools and
Technologies for Distributed Workflows". Pi4 Technology, London, UK and
W3C, Geneva, Switzerland.

72

Bibliography

Paulo Henrique M. "Coreografia de Serviços WEB (Uma abordagem para a
integração de serviços Web) ". Barchelor's work of Universidade Federal de
Santa Catarina, June 2007.

Adam Barker, Christopher D. Walton, and David Robertson. "Choreographing
Web Services". IEEE Transactions on Services Computing, Vol. 2, N° 2, April-
June 2009.

Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann,
"Service-Oriented Computing: State of the Art and Research
Challenges”. Computer, vol. 40, no. 11, pp. 38-45, Oct. 2007,
doi:10.1109/MC.2007.400.

73

Any questions ?

